Skip to main content

Advertisement

Log in

An efficient and high-order sliding mesh method for computational aeroacoustics

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

This paper presents an efficient sliding mesh method to simulate the noise emission from aero-engines. The vortexes shed from the rotating blade and interact with the downstream stationary outlet guide vanes (OGVs), producing noise. The challenges in simulating the problem are the accurate modelling of the wake turbulence, and the capabilities to capture the acoustic waves, the energy of which is several orders lower than the turbulent components. To model the relative motion between the rotors and OGVs, a sliding mesh method is developed to account for the rotation of the rotor blades and wakes, which can lead to efficiency and accuracy challenges. In this work, an advanced treatment is developed for efficient and high-accuracy interpolation by combining both patch and sliding interfaces. The grid along the sliding interface is uniformly distributed taking advantage of the patch interface, providing huge benefits to the overall performance by reusing data and omitting repeated calculation. The algorithm using message passing interface is well designed for maintaining ideal performance of the code. The fan–OGV geometry is represented as unwrapped two-dimensional cascades with isotropic and anisotropic turbulence synthesised and injected to simulate the fan-wake. The numerical results are compared to analytical solutions for accuracy validation. The simulations numerically reveal the effect of turbulence intensity, length scale and anisotropy in the fan wake on the noise emission due to the turbulence-OGV interaction. Also the blockage effect of rotating blades on the noise propagation and its impact on the hearing of observers are discussed. Moreover, it is shown that the new method is able to maintain a high accuracy for acoustic computation and an ideal performance is obtained from the numerical code using a parallel computing algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Amiet R (1975) Acoustic radiation from an airfoil in a turbulent stream. J Sound Vib 41(4):407–420

    Article  Google Scholar 

  2. Ashcroft G, Zhang X (2003) Optimized prefactored compact schemes. J Comput Phys 190(2):459–477

    Article  Google Scholar 

  3. Atassi H, Ali A, Atassi O, Vinogradov I (2004) Scattering of incident disturbances by an annular cascade in a swirling flow. J Fluid Mech 499:111

    Article  Google Scholar 

  4. Biava M, Barakos G (2016) Optimisation of ducted propellers for hybrid air vehicles using high-fidelity CFD. Aeronautical J 120(1232):1632–1657

    Article  Google Scholar 

  5. Blandeau V, Joseph P, Jenkins G, Powles C (2011) Comparison of sound power radiation from isolated airfoils and cascades in a turbulent flow. J Acoust Soc Am 129(6):3521–3530

    Article  Google Scholar 

  6. Castilla R, Gamez-Montero P, Raush G, Codina E (2017) Method for fluid flow simulation of a gerotor pump using openfoam. J Fluids Eng 139(11):111101

    Article  Google Scholar 

  7. Chandar D, Gopalan H (2016) Comparative analysis of the arbitrary mesh interface (AMI) and overset methods for dynamic body motions in openfoam. AIAA paper 2016-3324

  8. Charles F, Sofiane K, Michael D, Luis R, Xesús N, Jacky M (2020) Numerical assessment of fan blades screen effect on fan/ogv interaction tonal noise. J Sound Vib 481:115428

    Article  Google Scholar 

  9. Chassaing J, Ramirez L, Foulquie C, Khelladi S, Colominas I (2015) New high-resolution-preserving sliding mesh techniques for higher-order finite volume schemes. Comput Fluids 118:114–130

    Article  MathSciNet  Google Scholar 

  10. Cheong C, Joseph P, Lee S (2006) High frequency formulation for the acoustic power spectrum due to cascade-turbulence interaction. J Acoust Soc Am 119(1):108–122

    Article  Google Scholar 

  11. D Martina (2011) Random-vortex-particle methods applied to broadband fan interaction noise. PhD thesis, University of Southampton

  12. Esteban F, Richard H (2012) A high order discontinuous galerkin-fourier incompressible 3d navier-stokes solver with rotating sliding meshes. J Comput Phys 231(21):7037–7056

    Article  MathSciNet  Google Scholar 

  13. Fattah R, Hu Z, Angland D (2013) Aeroacoustics of a landing gear door. AIAA paper 2013-2259

  14. Foulquié C, Khelladi S, Deligant M, Ramírez L, Nogueira X, Mardjono J (2020) Numerical assessment of fan blades screen effect on fan/OGV interaction tonal noise. J Sound Vib 481:115428

    Article  Google Scholar 

  15. Ganz U, Joppa P, Patten T, Scharpf D (1998) Boeing 18-inch fan rig broadband noise test. NASA (CR-1998-208704)

  16. Gea-Aguilera F (2017) Aerodynamic and aeroacoustic modelling of engine fan broadband noise. PhD thesis, University of Southampton

  17. Gea-Aguilera F, Gill J, Zhang X (2017) Synthetic turbulence methods for computational aeroacoustic simulations of leading edge noise. Comput Fluid 157:240–252

    Article  MathSciNet  Google Scholar 

  18. Gea-Aguilera F, Gill J, Zhang X (2019) On the effects of fan wake modelling and vane design on cascade noise. J Sound Vib 459:114859

    Article  Google Scholar 

  19. Gill J, Zhang X, Joseph P (2013) Symmetric airfoil geometry effects on leading edge noise. J Acoust Soc Am 134(4):2669–2680

    Article  Google Scholar 

  20. Hixon R, Turkel E (1997) High-accuracy compact MacCormack-type schemes for computational aeroacoustics. AIAA paper 1997-0365

  21. Hu F, Hussaini M, Manthey J (1996) Low-dissipation and low-dispersion Runge-Kutta schemes for computational acoustics. J Comput Phys 124(1):177–191

    Article  MathSciNet  Google Scholar 

  22. Huff D (2007) Noise reduction technologies for turbofan engines. NASA/TM-2007-214495 pp 1–17

  23. Jarkowski M, Woodgate M, Barakos G, Rokicki J (2014) Towards consistent hybrid overset mesh methods for rotorcraft CFD. Int J Numer Methods Fluids 74(8):543–576

    Article  Google Scholar 

  24. Jenkins G (2013) Models for the prediction of rear-arc and forward-arc fan broadband noise in turbofan engines. PhD thesis, University of Southampton

  25. Jenkins G, Powles C, Joseph P (2012) Multimode blockage due to rotors and application to turbomachinery broadband noise. AIAA paper 2012-2130

  26. Jimenez B, Singh R (2015) Effect of duct-rotor aerodynamic interactions on blade design for hover and axial flight. AIAA paper 2015–1030:1030

    Google Scholar 

  27. Johnstone R, Chen L, Sandberg RD (2015) A sliding characteristic interface condition for direct numerical simulations. Comput Fluid 107:165–177

    Article  MathSciNet  Google Scholar 

  28. Jurdic V, Joseph P, Antoni J (2009) Investigation of rotor wake turbulence through cyclostationary spectral analysis. AIAA J 47(9):2022–2030

    Article  Google Scholar 

  29. Kaji S, Okazaki T (1970) Propagation of sound waves through a blade row. I. Analysis based on the semi-actuator disk theory. J Sound Vib 11(3):339–353

    Article  Google Scholar 

  30. Kim J, Lee D (2003) Characteristic interface conditions for multiblock high-order computation on singular structured grid. AIAA J 41(12):2341–2348

    Article  Google Scholar 

  31. Kissner C, Guérin S (2020) Influence of wake and background turbulence on predicted fan broadband noise. AIAA J 58(2):659–672

    Article  Google Scholar 

  32. Mittal R, Iaccarino G (2005) Immersed boundary methods. Annu Rev Fluid Mech 37:239–261

    Article  MathSciNet  Google Scholar 

  33. Nallasamy M, Envia E (2005) Computation of rotor wake turbulence noise. J Sound Vib 282(3–5):649–678

    Article  Google Scholar 

  34. Nicolas G, Marc M, Fabien W, Michel G (2010) High-performance computing to simulate large-scale industrial flows in multistage compressors. Int J High Perform Comput Appl 24(4):429–443

    Article  Google Scholar 

  35. Peers E, Zhang X, Kim J (2010) Patched characteristic interface condition for high-order multiblock aeroacoustic computation. AIAA J 48(11):2512–2522

    Article  Google Scholar 

  36. Podboy G, Krupar M, Helland S, Hughes C (2002) Steady and unsteady flow field measurements within a NASA 22 inch fan model. AIAA paper 2002-1033

  37. Posson H, Moreau S (2013) Effect of rotor shielding on fan-outlet guide vanes broadband noise prediction. AIAA J 51(7):1576–1592

    Article  Google Scholar 

  38. Rai M (1986) A conservative treatment of zonal boundaries for Euler equation calculations. J Comput Phys 62(2):472–503

    Article  MathSciNet  Google Scholar 

  39. Rai M, Madavan N (1990) Multi-airfoil Navier-Stokes simulations of turbine rotor-stator interaction. J Turbomach 112(3):377

    Article  Google Scholar 

  40. Ramírez J, Saravia M (2021) Assessment of reynolds-averaged navier-stokes method for modeling the startup regime of a darrieus rotor. Phys Fluids 33(3):037125

    Article  Google Scholar 

  41. Rumsey C (1996) Computation of acoustic waves through sliding-zone interfaces using an Euler/Navier-Stokes code. AIAA paper 1996-1752

  42. Standard ISO (2003) 226:2003,“Acoustics - Normal equal-loudness-level contours”. International Organization for Standardization

  43. Steijl R, Barakos G (2008) Sliding mesh algorithm for cfd analysis of helicopter rotor-fuselage aerodynamics. Int J Numer Methods Fluids 58(5):527–549

    Article  Google Scholar 

  44. Tam C, Kurbatskii K (2000) A wavenumber based extrapolation and interpolation method for use in conjunction with high-order finite difference schemes. J Comput Phys 157(2):588–617

    Article  MathSciNet  Google Scholar 

  45. Tanaka Y, Yokoyama H, Iida A (2018) Forced-oscillation control of sound radiated from the flow around a cascade of flat plates. J Sound Vib 431:248–264

    Article  Google Scholar 

  46. Whitehead D (1987) Classical two-dimensional methods. AGARD Manual on aeroelasticity in axial flow turbomachines, unsteady turbomachinery aerodynamics 1(AGARD-AG-298):3.1–3.30

  47. Wohlbrandt A, Kissner C, Guérin S (2018) Impact of cyclostationarity on fan broadband noise prediction. J Sound Vib 420:142–164

    Article  Google Scholar 

  48. Ying W, Fattah R, Zhong S, Zhang X, Gea-Aguilera F (2021) A numerical investigation of the rotor blockage effect on cascade noise using a sliding mesh method. J Sound Vib 502:116030

    Article  Google Scholar 

  49. Yokoyama H, Minowa K, Orito K, Nishikawara M, Yanada H (2020) Compressible simulation of flow and sound around a small axial-flow fan with flow through casing slits. J Fluids Eng 142(10):101215

    Article  Google Scholar 

  50. Zhang T, Barakos G (2020) High-fidelity CFD validation and assessment of ducted propellers for aircraft propulsion. J Am Helicopter Soc

  51. Zhang T, Barakos G (2021) High-fidelity numerical analysis and optimisation of ducted propeller aerodynamics and acoustics. Aerosp Sci Technol 113:106708

    Article  Google Scholar 

  52. Zhong S, Zhang X, Gill J, Fattah R (2017) A numerical investigation of the airfoil-gust interaction noise in transonic flows. AIAA paper 2017-3369

  53. Zhong S, Zhang X, Gill J, Fattah R, Sun Y (2018) A numerical investigation of the airfoil-gust interaction noise in transonic flows: acoustic processes. J Sound Vib 425:239–256

    Article  Google Scholar 

  54. Zhong S, Jiang H, Ying W, Zhang X, Huang X (2019) An efficient computation of cascade-gust interaction noise based on a hybrid analytical and boundary element method. J Sound Vib 461:114911

    Article  Google Scholar 

  55. Zhong S, Zhang X, Peng B, Huang X (2020) An analytical correction to Amiets solution of airfoil leading-edge noise in non-uniform mean flows. J Fluid Mech. https://doi.org/10.1017/jfm.2019.839

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This study is supported by National Key R&D Program of China (2018YFE0183800).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siyang Zhong.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ying, W., Fattah, R., Zhong, S. et al. An efficient and high-order sliding mesh method for computational aeroacoustics. J Supercomput 78, 9492–9520 (2022). https://doi.org/10.1007/s11227-021-04180-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-021-04180-x

Keywords

Navigation