Abstract
The multiplexer is an integral design component of the conventional CMOS technology and modern QCA nanotechnology. It is also an elementary building block of nanocommunication networks and nanocomputing circuits. This article proposes a simple single-layer 2:1 QCA multiplexer without using any wire-crossing and majority voter. The proposed design outperforms prior reported works by ~ 17, ~ 20, and ~ 17%, in terms of cell count, total area measurement, and cell area need, respectively. In addition, an exhaustive energy dissipation analysis of the suggested multiplexer was performed using the tools QCAPro and QDE for a better performance evaluation. In particular, the suggested module is ~ 9% more energy efficient (according to QDE) and ~ 37% better energy-delay cost effective than the best previously reported design. According to QCAPro (γ = 0.5EK), the proposed design is ~ 31% more energy efficient than the earliest best-reported design.
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11227-021-04191-8/MediaObjects/11227_2021_4191_Fig1_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11227-021-04191-8/MediaObjects/11227_2021_4191_Fig2_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11227-021-04191-8/MediaObjects/11227_2021_4191_Fig3_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11227-021-04191-8/MediaObjects/11227_2021_4191_Fig4_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11227-021-04191-8/MediaObjects/11227_2021_4191_Fig5_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11227-021-04191-8/MediaObjects/11227_2021_4191_Fig6_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11227-021-04191-8/MediaObjects/11227_2021_4191_Fig7_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11227-021-04191-8/MediaObjects/11227_2021_4191_Fig8_HTML.png)
Similar content being viewed by others
Data availability
All data generated or analyzed during this study are included in this article.
References
Lent CS, Tougaw PD, Porod W, Bernstein GH (1993) Quantum cellular automata. Nanotechnology 4:49–57. https://doi.org/10.1088/0957-4484/4/1/004
Tougaw PD, Lent CS (1994) Logical devices implemented using quantum cellular automata. J Appl Phys 75:1818–1825. https://doi.org/10.1063/1.356375
Lent CS, Tougaw P (1997) A device architecture for computing with quantum dots. Proc IEEE 85(4):541–557. https://doi.org/10.1109/5.573740
Orlov AO, Amlani I, Bernstein GH, Lent CS, Snider GL (1997) Realization of a functional cell for quantum-dot cellular automata. Science. https://doi.org/10.1126/science.277.5328.928
Jeon JC (2021) Designing nanotechnology qca–multiplexer using majority function-based nand for quantum computing. J Supercomput 77:1562–1578. https://doi.org/10.1007/s11227-020-03341-8
Ahmadpour SS, Mosleh M, Heikalabad SR (2021) Efficient designs of quantum-dot cellular automata multiplexer and ram with physical proof along with power analysis. J Supercomput. https://doi.org/10.1007/s11227-021-03913-2
Khan A, Arya R (2021) Optimal demultiplexer unit design and energy estimation using quantum dot cellular automata. J Supercomput 77:1714–1738. https://doi.org/10.1007/s11227-020-03320-z
Wang L, Xie G (2018) Novel designs of full adder in quantum-dot cellular automata technology. J Supercompu 74:4798–4816. https://doi.org/10.1007/s11227-018-2481-8
Mohammadi M, Mohammadi M, Gorginc S (2016) An efficient design of full adder in quantum-dot cellular automata (qca) technology. Microelectron J 50:35–43. https://doi.org/10.1016/j.mejo.2016.02.004
Kamrani H, Heikalabad SR (2021) Design and implementation of multiplication algorithm in quantum-dot cellular automata with energy dissipation analysis. J Supercomput 77:5779–5805. https://doi.org/10.1007/s11227-020-03478-6
Khan A, Arya R (2021) High performance nanocomparator: a quantum dot cellular automata-based approach. J Supercomput. https://doi.org/10.1007/s11227-021-03961-8
Gudivada AA, Sudha GF (2021) Novel optimized tree-based stack-type architecture for 2n-bit comparator at nanoscale with energy dissipation analysis. J Supercomput 77:4659–4680. https://doi.org/10.1007/s11227-020-03453-1
Angizi S, Moaiyeri MH, Farrokhi S, Navi K, Bagherzadeh N (2015) Designing quantum-dot cellular automata counters with energy consumption analysis. Microprocess Microsyst 39(7):512–520. https://doi.org/10.1016/j.micpro.2015.07.011
Angizi S, Sarmadi S, Sayedsalehi S, Navi K (2015) Design and evaluation of new majority gate-based ram cell in quantum-dot cellular automata. Microelectron J 46(1):43–51. https://doi.org/10.1016/j.mejo.2014.10.003
Lent CS, Tougaw PD (1993) Lines of interacting quantum dot cells: a binary wire. J Appl Phys. https://doi.org/10.1063/1.355196
Lent CS, Isaksen B (2003) Clocked molecular quantum-dot cellular automata. IEEE Trans Electron Devices 50(9):1890–1896. https://doi.org/10.1109/TED.2003.815857
Majeed AH, Alkaldy E, Zainal MS, Navi K, Nor D (2020) Optimal design of ram cell using novel 2:1 multiplexer in QCA technology. Circuit world 46(2):147–158. https://doi.org/10.1108/CW-06-2019-0062
Jeon JC (2020) Low-complexity qca universal shift register design using multiplexer and d flip-flop based on electronic correlations. J Supercomput 76:6438–6452. https://doi.org/10.1007/s11227-019-02962-y
Khan A, Mandal S (2019) Robust multiplexer design and analysis using quantum dot cellular automata. Int J Theor Phys 58(3):719–733. https://doi.org/10.1007/s10773-018-3970-5
Ahmadpour S, Mosleh M (2018) A novel fault-tolerant multiplexer in quantum-dot cellular automata technology. J Supercomput 74(9):4696–4716. https://doi.org/10.1007/s11227-018-2464-9
Mosleh M (2018) A novel design of multiplexer based on nanoscale quantum-dot cellular automata. Concurr Comput Pract Exp 31(13):1–16. https://doi.org/10.1002/cpe.5070
Asfestani MN, Heikalabad SR (2017) A unique structure for the multiplexer in quantum dot cellular automata to create a revolution in design of nanostructures. Physica B 512:91–99. https://doi.org/10.1016/j.physb.2017.02.028
Rashidi H, Rezai A, Soltany S (2016) High-performance multiplexer architecture for quantum-dot cellular automata. J Comput Electron 15(3):968–981. https://doi.org/10.1007/s10825-016-0832-3
Das JC, De D (2016) Optimized multiplexer design and simulation using quantum dot cellular automata. Indian J Pure Appl Phys 54:802–811
Sen B, Goswami M, Mazumdar S, Sikdar BK (2015) Towards modular design of reliable quantum-dot cellular automata logic circuit using multiplexers. Comput Electr Eng 45:42–54. https://doi.org/10.1016/j.compeleceng.2015.05.001
Walus K, Dysart TJ, Jullien GA, Budiman RA (2004) QCADesigner: a rapid design and Simulation tool for quantum-dot cellular automata. IEEE Trans Nanotechnol 3(1):26–31. https://doi.org/10.1109/TNANO.2003.820815
Sill Torres F, Wille R, Niemann P, Drechsler R (2018) An energy-aware model for the logic synthesis of quantum-dot cellular automata. IEEE Trans Comput Aided Des Integr Circ Syst 37(12):3031–3041
Timler J, Lent CS (2002) Power gain and dissipation in quantum-dot cellular automata. J Appl Phys 91:823–831. https://doi.org/10.1063/1.1421217
Srivastava S, Asthana A, Bhanja S, Sarkar S, “QCAPro - An error-power estimation tool for QCA circuit design”, (2011) IEEE International Symposium of Circuits and Systems (ISCAS). Rio de Janeiro 2011:2377–2380. https://doi.org/10.1109/ISCAS.2011.5938081
Khan A, Arya R (2021) Towards cost analysis and energy estimation of simple multiplexer and demultiplexer using quantum dot cellular automata. Int Nano Lett. https://doi.org/10.1007/s40089-021-00352-y
Funding
No funds, grants, or other support is related to this research.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors have no conflicts of interest to declare that are relevant to the content of this article.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Khan, A., Arya, R. Design and energy dissipation analysis of simple QCA multiplexer for nanocomputing. J Supercomput 78, 8430–8444 (2022). https://doi.org/10.1007/s11227-021-04191-8
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11227-021-04191-8