Skip to main content

Advertisement

Log in

Design and energy dissipation analysis of simple QCA multiplexer for nanocomputing

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

The multiplexer is an integral design component of the conventional CMOS technology and modern QCA nanotechnology. It is also an elementary building block of nanocommunication networks and nanocomputing circuits. This article proposes a simple single-layer 2:1 QCA multiplexer without using any wire-crossing and majority voter. The proposed design outperforms prior reported works by ~ 17, ~ 20, and ~ 17%, in terms of cell count, total area measurement, and cell area need, respectively. In addition, an exhaustive energy dissipation analysis of the suggested multiplexer was performed using the tools QCAPro and QDE for a better performance evaluation. In particular, the suggested module is ~ 9% more energy efficient (according to QDE) and ~ 37% better energy-delay cost effective than the best previously reported design. According to QCAPro (γ = 0.5EK), the proposed design is ~ 31% more energy efficient than the earliest best-reported design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this article.

References

  1. Lent CS, Tougaw PD, Porod W, Bernstein GH (1993) Quantum cellular automata. Nanotechnology 4:49–57. https://doi.org/10.1088/0957-4484/4/1/004

    Article  Google Scholar 

  2. Tougaw PD, Lent CS (1994) Logical devices implemented using quantum cellular automata. J Appl Phys 75:1818–1825. https://doi.org/10.1063/1.356375

    Article  Google Scholar 

  3. Lent CS, Tougaw P (1997) A device architecture for computing with quantum dots. Proc IEEE 85(4):541–557. https://doi.org/10.1109/5.573740

    Article  Google Scholar 

  4. Orlov AO, Amlani I, Bernstein GH, Lent CS, Snider GL (1997) Realization of a functional cell for quantum-dot cellular automata. Science. https://doi.org/10.1126/science.277.5328.928

    Article  Google Scholar 

  5. Jeon JC (2021) Designing nanotechnology qca–multiplexer using majority function-based nand for quantum computing. J Supercomput 77:1562–1578. https://doi.org/10.1007/s11227-020-03341-8

    Article  Google Scholar 

  6. Ahmadpour SS, Mosleh M, Heikalabad SR (2021) Efficient designs of quantum-dot cellular automata multiplexer and ram with physical proof along with power analysis. J Supercomput. https://doi.org/10.1007/s11227-021-03913-2

    Article  Google Scholar 

  7. Khan A, Arya R (2021) Optimal demultiplexer unit design and energy estimation using quantum dot cellular automata. J Supercomput 77:1714–1738. https://doi.org/10.1007/s11227-020-03320-z

    Article  Google Scholar 

  8. Wang L, Xie G (2018) Novel designs of full adder in quantum-dot cellular automata technology. J Supercompu 74:4798–4816. https://doi.org/10.1007/s11227-018-2481-8

    Article  Google Scholar 

  9. Mohammadi M, Mohammadi M, Gorginc S (2016) An efficient design of full adder in quantum-dot cellular automata (qca) technology. Microelectron J 50:35–43. https://doi.org/10.1016/j.mejo.2016.02.004

    Article  Google Scholar 

  10. Kamrani H, Heikalabad SR (2021) Design and implementation of multiplication algorithm in quantum-dot cellular automata with energy dissipation analysis. J Supercomput 77:5779–5805. https://doi.org/10.1007/s11227-020-03478-6

    Article  Google Scholar 

  11. Khan A, Arya R (2021) High performance nanocomparator: a quantum dot cellular automata-based approach. J Supercomput. https://doi.org/10.1007/s11227-021-03961-8

    Article  Google Scholar 

  12. Gudivada AA, Sudha GF (2021) Novel optimized tree-based stack-type architecture for 2n-bit comparator at nanoscale with energy dissipation analysis. J Supercomput 77:4659–4680. https://doi.org/10.1007/s11227-020-03453-1

    Article  Google Scholar 

  13. Angizi S, Moaiyeri MH, Farrokhi S, Navi K, Bagherzadeh N (2015) Designing quantum-dot cellular automata counters with energy consumption analysis. Microprocess Microsyst 39(7):512–520. https://doi.org/10.1016/j.micpro.2015.07.011

    Article  Google Scholar 

  14. Angizi S, Sarmadi S, Sayedsalehi S, Navi K (2015) Design and evaluation of new majority gate-based ram cell in quantum-dot cellular automata. Microelectron J 46(1):43–51. https://doi.org/10.1016/j.mejo.2014.10.003

    Article  Google Scholar 

  15. Lent CS, Tougaw PD (1993) Lines of interacting quantum dot cells: a binary wire. J Appl Phys. https://doi.org/10.1063/1.355196

    Article  Google Scholar 

  16. Lent CS, Isaksen B (2003) Clocked molecular quantum-dot cellular automata. IEEE Trans Electron Devices 50(9):1890–1896. https://doi.org/10.1109/TED.2003.815857

    Article  Google Scholar 

  17. Majeed AH, Alkaldy E, Zainal MS, Navi K, Nor D (2020) Optimal design of ram cell using novel 2:1 multiplexer in QCA technology. Circuit world 46(2):147–158. https://doi.org/10.1108/CW-06-2019-0062

    Article  Google Scholar 

  18. Jeon JC (2020) Low-complexity qca universal shift register design using multiplexer and d flip-flop based on electronic correlations. J Supercomput 76:6438–6452. https://doi.org/10.1007/s11227-019-02962-y

    Article  Google Scholar 

  19. Khan A, Mandal S (2019) Robust multiplexer design and analysis using quantum dot cellular automata. Int J Theor Phys 58(3):719–733. https://doi.org/10.1007/s10773-018-3970-5

    Article  MathSciNet  MATH  Google Scholar 

  20. Ahmadpour S, Mosleh M (2018) A novel fault-tolerant multiplexer in quantum-dot cellular automata technology. J Supercomput 74(9):4696–4716. https://doi.org/10.1007/s11227-018-2464-9

    Article  Google Scholar 

  21. Mosleh M (2018) A novel design of multiplexer based on nanoscale quantum-dot cellular automata. Concurr Comput Pract Exp 31(13):1–16. https://doi.org/10.1002/cpe.5070

    Article  Google Scholar 

  22. Asfestani MN, Heikalabad SR (2017) A unique structure for the multiplexer in quantum dot cellular automata to create a revolution in design of nanostructures. Physica B 512:91–99. https://doi.org/10.1016/j.physb.2017.02.028

    Article  Google Scholar 

  23. Rashidi H, Rezai A, Soltany S (2016) High-performance multiplexer architecture for quantum-dot cellular automata. J Comput Electron 15(3):968–981. https://doi.org/10.1007/s10825-016-0832-3

    Article  Google Scholar 

  24. Das JC, De D (2016) Optimized multiplexer design and simulation using quantum dot cellular automata. Indian J Pure Appl Phys 54:802–811

    Google Scholar 

  25. Sen B, Goswami M, Mazumdar S, Sikdar BK (2015) Towards modular design of reliable quantum-dot cellular automata logic circuit using multiplexers. Comput Electr Eng 45:42–54. https://doi.org/10.1016/j.compeleceng.2015.05.001

    Article  Google Scholar 

  26. Walus K, Dysart TJ, Jullien GA, Budiman RA (2004) QCADesigner: a rapid design and Simulation tool for quantum-dot cellular automata. IEEE Trans Nanotechnol 3(1):26–31. https://doi.org/10.1109/TNANO.2003.820815

    Article  Google Scholar 

  27. Sill Torres F, Wille R, Niemann P, Drechsler R (2018) An energy-aware model for the logic synthesis of quantum-dot cellular automata. IEEE Trans Comput Aided Des Integr Circ Syst 37(12):3031–3041

    Article  Google Scholar 

  28. Timler J, Lent CS (2002) Power gain and dissipation in quantum-dot cellular automata. J Appl Phys 91:823–831. https://doi.org/10.1063/1.1421217

    Article  Google Scholar 

  29. Srivastava S, Asthana A, Bhanja S, Sarkar S, “QCAPro - An error-power estimation tool for QCA circuit design”, (2011) IEEE International Symposium of Circuits and Systems (ISCAS). Rio de Janeiro 2011:2377–2380. https://doi.org/10.1109/ISCAS.2011.5938081

    Article  Google Scholar 

  30. Khan A, Arya R (2021) Towards cost analysis and energy estimation of simple multiplexer and demultiplexer using quantum dot cellular automata. Int Nano Lett. https://doi.org/10.1007/s40089-021-00352-y

    Article  Google Scholar 

Download references

Funding

No funds, grants, or other support is related to this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angshuman Khan.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, A., Arya, R. Design and energy dissipation analysis of simple QCA multiplexer for nanocomputing. J Supercomput 78, 8430–8444 (2022). https://doi.org/10.1007/s11227-021-04191-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-021-04191-8

Keywords

Navigation