Skip to main content
Log in

Application of distributed motion estimation for swarm MAVs in a GPS-restricted environment based on a wireless sensor network

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

To meet the requirements for motion estimation of a swarm of micro-aerial vehicles in a GPS-restricted environment, a distributed motion estimation algorithm is proposed that combines an inertial measurement unit, magnetometer, wireless ranging network and altimeter data. Based on the information sharing and mutual positioning ability of the wireless sensor network, the long-term stability of motion estimation in a GPS-restricted environment is improved on the basis of information from neighboring vehicles. A centralized information filter for large-scale swarm micro-aerial vehicles is proposed that uses the information distribution principle. To address the difficulty of high-dimensional state inversion in centralized information filtering, the theory of distributed information filters for large-scale systems is adopted to decompose the high-dimensional optimal centralized information filter into distributed sub-filters. Based on the logged data, the simulation results show that the accuracy of motion estimation using the distributed filtering method is not significantly lower than with centralized filtering, and is more suitable for distributed deployment on micro-aerial vehicles, enabling stable motion estimation to be maintained in a GPS-restricted environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Figure 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Zhou Y, Rao B, Wang W (2020) UAV swarm intelligence: recent advances and future trends. IEEE Access 8:183856–183878. https://doi.org/10.1109/ACCESS.2020.3028865

    Article  Google Scholar 

  2. Fan JR, Li DG (2020) Analysis on MAV/UAV cooperative combat based on complex network. Defence Technol 16(01):154–161. https://doi.org/10.1016/j.dt.2019.09.002

    Article  Google Scholar 

  3. Ye F, Chen J, Sun Q, Tian Y, Jiang T (2021) Decentralized task allocation for heterogeneous multi-UAV system with task coupling constraints. J Supercomput 77(1):111–132. https://doi.org/10.1007/s11227-020-03264-4

    Article  Google Scholar 

  4. Bürkle A, Segor F, Kollmann M (2011) Towards autonomous micro UAV swarms. J Intell Rob Syst 61(1–4):339–353. https://doi.org/10.1007/s10846-010-9492-x

    Article  Google Scholar 

  5. Coppola M, McGuire KN, De Wagter C (2020) A survey on swarming with micro air vehicles: Fundamental challenges and constraints. Front Robot AI 7:18. https://doi.org/10.3389/frobt.2020.00018

    Article  Google Scholar 

  6. Bijjahalli S, Sabatini R, Gardi A (2020) Advances in intelligent and autonomous navigation systems for small UAS. Prog Aerosp Sci. https://doi.org/10.1016/j.paerosci.2020.100617

    Article  Google Scholar 

  7. Hong E, Lim J (2017) Visual inertial odometry using coupled nonlinear optimization. 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE pp 6879–6885. https://doi.org/10.1109/IROS.2017.8206610

  8. Tomic T, Schmid K, Lutz P (2012) Toward a fully autonomous UAV: Research platform for indoor and outdoor Urban search and rescue. Robot Autom Mag IEEE 19(3):46–56. https://doi.org/10.1109/MRA.2012.2206473

    Article  Google Scholar 

  9. Wang R, Di K, Wan W (2018) Improved point-line feature based visual SLAM method for indoor scenes. Sensors. https://doi.org/10.3390/s18103559

    Article  Google Scholar 

  10. Dissanayake M, Newman P, Clark S (2013) A solution to the simultaneous localization and map building (SLAM) problem. IEEE Trans Ra 17(3):229–241. https://doi.org/10.1109/70.938381

    Article  Google Scholar 

  11. Cadena C, Carlone L, Carrillo H (2016) Past, present, and future of simultaneous localization and mapping: toward the robust-perception age. IEEE Trans Rob 32(6):1309–1332. https://doi.org/10.1109/TRO.2016.2624754

    Article  Google Scholar 

  12. Yu S, Nuske S, Scherer S (2017) A multi-sensor fusion MAV state estimation from long-range stereo, IMU GPS and barometric sensors. Sensors 17(12):11. https://doi.org/10.3390/s17010011

    Article  Google Scholar 

  13. Kumari J, Kumar P, Singh SK (2019) Localization in three-dimensional wireless sensor networks: a survey. J Supercomput 75(8):5040–5083. https://doi.org/10.1007/s11227-019-02781-1

    Article  Google Scholar 

  14. Barczyk M, Lynch AF (2012) Integration of a triaxial magnetometer into a helicopter UAV GPS-aided INS. IEEE Trans Aerosp Electron Syst 48(4):2947–2960. https://doi.org/10.1109/TAES.2012.6324671

    Article  Google Scholar 

  15. Li Y, Zahran S, Zhuang Y (2019) IMU/magnetometer/barometer/mass-flow sensor integrated indoor quadrotor UAV localization with robust velocity updates. Remote Sens 11(7):838. https://doi.org/10.3390/rs11070838

    Article  Google Scholar 

  16. Li J, Bi Y, Li K (2018) Accurate 3D localization for MAV swarms by UWB and IMU fusion. 2018 IEEE 14th International Conference on Control and Automation (ICCA). IEEE pp 100–105. https://doi.org/10.1109/ICCA.2018.8444329

  17. Queralta J P, Almansa C M, Schiano F(2020) UWB-based system for UAV Localization in GNSS-Denied Environments: Characterization and Dataset. arXiv preprint. arXiv:2003.04380arXiv:2003.04380https://doi.org/10.1109/IROS45743.2020.9341042

  18. Xu H, Wang L, Zhang Y (2020) Decentralized visual-inertial-UWB fusion for relative state estimation of aerial swarm. 2020 IEEE International Conference on Robotics and Automation (ICRA). IEEE, pp 8776–8782. https://doi.org/10.1109/ICRA40945.2020.9196944

  19. Yang C, Strader J, Gu Y (2020) Cooperative navigation using pairwise communication with ranging and magnetic anomaly measurements. J Aerosp Inf Syst 17(11):624–633. https://doi.org/10.2514/1.I010785

    Article  Google Scholar 

  20. Goel S (2017) A distributed cooperative uav swarm localization system: Development and analysis. Proceedings of the 30th International Technical Meeting of The Satellite Division of the Institute of Navigation (ION GNSS+ 2017) pp 2501–2518. https://doi.org/10.33012/2017.15217

  21. Welch G (2001) Kalman filter. Siggraph Tutorial 8(27599–23175):41

    Google Scholar 

  22. Assimakis N, Adam M, Douladiris A (2012) Information filter and kalman filter comparison: selection of the faster filter. Inf Eng 2(1):1–5

    Google Scholar 

  23. Ryu K, Back J (2019) Distributed Kalman-filtering: Distributed optimization viewpoint. 2019 IEEE 58th Conference on Decision and Control (CDC). IEEE pp 2640–2645. https://doi.org/10.1109/CDC40024.2019.9029645

  24. Bai H, Freeman RA, Lynch KM (2011) Distributed Kalman filtering using the internal model average consensus estimator. Proceedings of the 2011 American Control Conference. IEEE pp 1500–1505. https://doi.org/10.1109/ACC.2011.5991484

  25. Kim J, Shim H, Wu J (2016) On distributed optimal Kalman-Bucy filtering by averaging dynamics of heterogeneous agents. 2016 IEEE 55th Conference on Decision and Control (CDC). IEEE pp 6309–6314. https://doi.org/10.1109/CDC.2016.7799240

  26. Battistelli G, Chisci L, Mugnai G (2014) Consensus-based linear and nonlinear filtering. IEEE Trans Autom Control 60(5):1410–1415. https://doi.org/10.1109/TAC.2014.2357135

    Article  MathSciNet  MATH  Google Scholar 

  27. Battistelli G, Chisci L (2016) Stability of consensus extended Kalman filter for distributed state estimation. Automatica 68:169–178. https://doi.org/10.1016/j.automatica.2016.01.071

    Article  MathSciNet  MATH  Google Scholar 

  28. Khan UA, Moura JMF (2008) Distributing the Kalman filter for large-scale systems. IEEE Trans Signal Process 56(10):4919–4935. https://doi.org/10.1109/TSP.2008.927480

    Article  MathSciNet  MATH  Google Scholar 

  29. Talebi SP, Werner S (2019) Distributed Kalman filtering and control through embedded average consensus information fusion. IEEE Trans Autom Control 64(10):4396–4403. https://doi.org/10.1109/TAC.2019.2897887

    Article  MathSciNet  MATH  Google Scholar 

  30. Ming Y (2010) High dimensional inverse covariance matrix estimation via linear programming. J Mach Learn Res 11(8):2261–2286

    MathSciNet  MATH  Google Scholar 

  31. https: //dev.px4.io/zh/tutorials/tuning_the_ecl_ekf.html.

  32. https://docs.px4.io/master/en/flight_controller/pixhawk4.html

  33. Sidorenko J, Schatz V, Scherer-Negenborn N (2020) Error corrections for ultra-wideband ranging. IEEE Trans Instrum Measure 69(11):9037–9047. https://doi.org/10.1109/TIM.2020.2996706

    Article  Google Scholar 

Download references

Funding

This research was funded by national key laboratory fund, Grant Number 94767699.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinkui Wang.

Ethics declarations

Conflict of interest

We declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lou, W., Wang, J., Su, Z. et al. Application of distributed motion estimation for swarm MAVs in a GPS-restricted environment based on a wireless sensor network. J Supercomput 78, 9840–9861 (2022). https://doi.org/10.1007/s11227-021-04219-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-021-04219-z

Keywords

Navigation