Skip to main content

Advertisement

Log in

Design and implementation of efficient QCA full-adders using fault-tolerant majority gates

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

CMOS technology is facing physical limitations in scaling the manufacturing process. Therefore, to deepen the development of better designs in a smaller area, it is necessary to look for other alternatives. One of the most studied approaches is Quantum Cellular Automata (QCA). However, it has the disadvantage of its reliability during the manufacturing processes, with high error rates that are difficult to improve. To contribute to the design of more reliable operators based on this technology, new fault-tolerant full-adders are presented in this paper. The proposed solutions improve area up to 57.14%, total energy dissipation up to 36.27%, and average energy dissipation per cycle up to 36.22% compared to those previously proposed. This reduction in power consumption is especially important to make QCA more competitive as it has to operate in low-temperature environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30

Similar content being viewed by others

Notes

  1. To obtain the results, QCADesigner has been used. The QCADesigner-E (QD-E) is an extension of the QCADesigner. It calculates the estimation of the power dissipation of QCA circuits. It is integrated as an additional simulation module that is based on the Coherence Vector Simulation (CVSE) [9, 10]

  2. Note that, comparisons to CMOS technology are omitted as it is outside of this work’s scope and is already analyzed in the literature by other authors.

References

  1. Powell JR (2008) The Quantum Limit to Moore’s Law. Proc IEEE 96(8):1247. https://doi.org/10.1109/JPROC.2008.925411

  2. Soares T, Nizer Rahmeier J, Lima V, Augusto Lascasas Freitas L, Melo L, Vilela Neto O (2018) NMLSim: a nanomagnetic logic (NML) circuit designer and simulation tool. J Comput Electron 17:1370. https://doi.org/10.1007/s10825-018-1215-8

    Article  Google Scholar 

  3. Gu Z, Nowakowski ME, Carlton D, Storz R, Hong J, Chao W, Lambson B, Bennett P, Alam MT, Marcus MA, Doran A, Young A, Scholl A, Bokor J (2014) Speed and reliability of nanomagnetic logic technology, arXiv : Mesoscale and Nanoscale Physics

  4. Wolkow RA, Livadaru L, Pitters J, Taucer M, Piva P, Salomons M, Cloutier M, Martins BVC (2014) Silicon Atomic Quantum Dots Enable Beyond-CMOS Electronics, Field-Coupled Nanocomputing: Paradigms, Progress, and Perspectives (Springer Berlin Heidelberg), pp. 33–58. https://doi.org/10.1007/978-3-662-43722-3-3

  5. Karunaratne DK, Bhanja S (2012) Study of single layer and multilayer nano-magnetic logic architectures. J Appl Phys 111(7):07A928. https://doi.org/10.1063/1.3676052

    Article  Google Scholar 

  6. Lent CS, Tougaw PD, Porod W, Bernstein GH (1993) Quantum cellular automata. Nanotechnol 4(1):49. https://doi.org/10.1088/0957-4484/4/1/004

    Article  Google Scholar 

  7. Orlov A, Amlani I, Bernstein G, Lent CS, Snider GL (1997) Realization of a functional cell for quantum-dot cellular automata. Sci 277(5328):928. https://doi.org/10.1126/science.277.5328.928

    Article  Google Scholar 

  8. Farazkish R, Sayedsalehi S, Navi K (2012) Novel design for quantum dots cellular automata to obtain fault-tolerant majority gate. J Nanotechnol. https://doi.org/10.1155/2012/943406

    Article  Google Scholar 

  9. Walus K, Dysart TJ, Jullien GA, Budiman RA (2004) QCADesigner: a rapid design and Simulation tool for quantum-dot cellular automata. IEEE Trans Nanotechnol 3(1):26. https://doi.org/10.1109/TNANO.2003.820815

    Article  Google Scholar 

  10. Torres FS (2015) Manual for QCADesigner-Energy (QD-E). github.com/FSillT/QCADesigner-E/blob/master/ManualQDE.pdf

  11. Patterson JLHD (2018) Computer Organization and Design: The Hardware / Software Interface (RISC-V Edition) (Morgan Kaufmann)

  12. Hauck ADS (2008) Reconfigurable Computing: The Theory and Practice of FPGA-Based Computation (Morgan Kaufmann)

  13. Safoyev N, Jeon J (2018) Coplanar QCA adders for arithmetic circuits. Int J Eng Technol (UAE) 7:15. https://doi.org/10.14419/ijet.v7i4.4.19597

    Article  Google Scholar 

  14. Safoyev N, Jeon JC (2020) Design and evaluation of cell interaction based vedic multiplier using quantum-dot cellular automata, Electron 9(6). https://doi.org/10.3390/electronics9061036

  15. Rasouli Heikalabad S, Salimzadeh F, Zirak Barughi Y (2020) A unique three-layer full adder in quantum-dot cellular automata. Comput Electr Eng.

  16. Ahmadpour SS, Mosleh M, Rasouli Heikalabad S (2019) Robust QCA full-adders using an efficient fault-tolerant five-input majority gate. Int J Circuit Theory Appl 47:1037. https://doi.org/10.1002/cta.2634

    Article  Google Scholar 

  17. Abedi D, Jaberipur G, Sangsefidi M (2015) Coplanar full adder in quantum-dot cellular automata via clock-zone-based crossover. IEEE Trans Nanotechnol 14(3):497. https://doi.org/10.1109/TNANO.2015.2409117

    Article  Google Scholar 

  18. Mokhtari D, Rezai A, Rashidi H, Rabiei F, Emadi S, Karimi A (2018) Design of novel efficient full adder architecture for Quantum-dot Cellular Automata technology. FACTA UNIVERSITATIS Ser Electron Energ. https://doi.org/10.2298/FUEE1802279M

    Article  Google Scholar 

  19. Ahmadpour SS, Mosleh M, Rasouli Heikalabad S (2020) The design and implementation of a robust single-layer QCA ALU using a novel fault-tolerant three-input majority gate. J Supercomput 76:10155. https://doi.org/10.1007/s11227-020-03249-3

    Article  Google Scholar 

  20. Liu W, Zhang T, McLarnon E, O’Neill M, Montuschi P, Lombardi F (2019) Design and Analysis of Majority Logic Based Approximate Adders and Multipliers, IEEE Transactions on Emerging Topics in Computing pp. 1–5. https://doi.org/10.1109/TETC.2019.2929100

  21. Niemier M (2004) Designing digital systems in quantum cellular automata. Ph.D. thesis, University of Notre Dame

  22. Reis D (2016) Robustness analysis and enhancement strategies for quantum-dot cellular automata structures. Ph.D. thesis

  23. Danehdaran F, Bagherian Khosroshahy M, Navi K, Bagherzadeh N (2018) Design and power analysis of new coplanar one-bit full-adder cell in quantum-dot cellular automata. J Low Power Electron 14:38. https://doi.org/10.1166/jolpe.2018.1529

    Article  Google Scholar 

  24. Kavitha SS, Kaulgud N (2017) Quantum dot cellular automata (QCA) design for the realization of basic logic gates, pp. 314–317. https://doi.org/10.1109/ICEECCOT.2017.8284519

  25. Shin S, Jeon JC, Kee-Young Y (2014) Design of wire-crossing technique based on difference of cell state in quantum-dot cellular automata. Int J Control Autom. https://doi.org/10.14257/ijca.2014.7.4.14

    Article  Google Scholar 

  26. Hosseinzadeh H, Heikalabad SR (2018) A novel fault tolerant majority gate in quantum-dot cellular automata to create a revolution in design of fault tolerant nanostructures, with physical verification. Microelectron Eng 192(C):52. https://doi.org/10.1016/j.mee.2018.01.019

    Article  Google Scholar 

  27. Du H, Hongjun L (2016) Design and analysis of new fault-tolerant majority gate for quantum-dot cellular automata. J Comput Electron 15:1484. https://doi.org/10.1007/s10825-016-0918-y

    Article  Google Scholar 

  28. Kumar D, Mitra D (2016) Design of a practical fault-tolerant adder in QCA. Microelectron J 53:90. https://doi.org/10.1016/j.mejo.2016.04.004

    Article  Google Scholar 

  29. Sun M, Lv H, Zhang Y, Xie GJ (2018) the fundamental primitives with fault-tolerance in quantum-dot cellular automata. J Electron Test 34:1. https://doi.org/10.1007/s10836-018-5723-z

    Article  Google Scholar 

  30. Farazkish R (2018) Novel efficient fault-tolerant full-adder for quantum-dot cellular automata. Int J Nano Dimens 9(1):58

    Google Scholar 

  31. Wang X, Xie G, Deng F, Quan Y, Lü H (2018) Design and comparison of new fault-tolerant majority gate based on quantum-dot cellular automata, J Semicond 39(8). https://doi.org/10.1088/1674-4926/39/8/085001

  32. Ahmadpour SS, Mosleh M (2019) New designs of fault-tolerant adders in quantum-dot cellular automata. Nano Commun Netw 19:10. https://doi.org/10.1016/j.nancom.2018.11.001

    Article  Google Scholar 

  33. Moghimizadeh T, Mosleh M (2019) A novel design of fault-tolerant RAM cell in quantum-dot cellular automata with physical verification. J Supercomput 75:5688. https://doi.org/10.1007/s11227-019-02812-x

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Garcia-Herrero.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bravo-Montes, J.A., Martín-Toledano, A., Sánchez-Macián, A. et al. Design and implementation of efficient QCA full-adders using fault-tolerant majority gates. J Supercomput 78, 8056–8080 (2022). https://doi.org/10.1007/s11227-021-04247-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-021-04247-9

Keywords

Navigation