Skip to main content

Advertisement

Log in

Computation offloading for object-oriented applications in a UAV-based edge-cloud environment

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

The high mobility and maneuverability of unmanned aerial vehicles (UAVs) enable them to act as temporary base stations (BSs) in extreme environments, expanding the computing capacities of terminals for intelligent applications, most of which are object-oriented ones. Computation offloading in a UAV-based edge-cloud environment is an excellent way to improve the performance of these object-oriented intelligent applications. In contrast, the computation-intensive tasks are offloaded to the cloud, and the data-intensive ones are offloaded to the edge. Though computation offloading over the cloud, edge, and terminals has been broadly studied, existing researches primarily establish scheduling algorithms on program high-level abstraction without consideration of challenges from program structures. We focus on task scheduling for offloading object-oriented applications while considering the ’encapsulation’ characteristic. We proposed a time-driven offloading strategy based on a particle swarm optimization algorithm employing the genetic algorithm operators with floating encoding (PGFE). This strategy introduces a genetic algorithm’s randomly two-point crossover and mutation operator to avoid converging on local optima effectively. The simulation results show that our strategy can reduce the average execution time of object-oriented applications by 11.78–48.02%, compared with other classic algorithms in a UAV-based edge-cloud environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Bai T, Wang J, Ren Y, Hanzo L (2019) Energy-efficient computation offloading for secure UAV-edge-computing systems. IEEE Trans Veh Technol 68(6):6074–6087

    Article  Google Scholar 

  2. Callegaro D, Levorato M (2018) Optimal computation offloading in edge-assisted UAV systems. In: IEEE Global Communications Conference (GLOBECOM)

  3. Chen X, Jiao L, Li W, Fu X (2016) Efficient multi-user computation offloading for mobile-edge cloud computing. IEEE/ACM Trans Netw 24(5):2795–2808

    Article  Google Scholar 

  4. Chen X, Chen J, Liu B, Ma Y, Zhong H (2019) AndroidOff: offloading android application based on cost estimation. J Syst Softw 158:110418

    Article  Google Scholar 

  5. Chen X, Chen S, Ma Y, Liu B, Zhang Y (2019) An adaptive offloading framework for android applications in mobile edge computing. Sci China 62(08):114–130

    Article  Google Scholar 

  6. Chen X, Li M, Zhong H, Ma Y, Hsu CH (2021) DNNOff: offloading dnn-based intelligent iot applications in mobile edge computing. In: IEEE transactions on industrial informatics

  7. Cui L, Zhang J, Yue L, Shi Y, Li H, Yuan D (2018) A genetic algorithm based data replica placement strategy for scientific applications in clouds. IEEE Trans Serv Comput 11(4):727–739

    Article  Google Scholar 

  8. Dorigo M, Birattari M, Stutzle T (2006) Ant colony optimization. IEEE Comput Intell Mag 1(4):28–39

    Article  Google Scholar 

  9. El Haber E, Nguyen TM, Assi C (2019) Joint optimization of computational cost and devices energy for task offloading in multi-tier edge-clouds. IEEE Trans Commun 67(5):3407–3421

    Article  Google Scholar 

  10. Foruhandeh M, Tadayon N, Aïssa S (2017) Uplink modeling of \(k\)-tier heterogeneous networks: a queuing theory approach. IEEE Commun Lett 21(1):164–167

    Article  Google Scholar 

  11. Gu X, Zhang G, Wang M, Duan W, Wen M, Ho PH (2021) UAV-aided energy efficient edge computing networks: security offloading optimization. IEEE Internet Things J. https://doi.org/10.1109/JIOT.2021.3103391

    Article  Google Scholar 

  12. Guo F, Zhang H, Ji H, Li X, Leung VCM (2018) An efficient computation offloading management scheme in the densely deployed small cell networks with mobile edge computing. IEEE/ACM Trans Netw 26(6):2651–2664

    Article  Google Scholar 

  13. Han P, Liu Y, Guo L (2021) Interference-aware online multicomponent service placement in edge cloud networks and its ai application. IEEE Internet Things J 8(13):10557–10572

    Article  Google Scholar 

  14. Hu J, Jiang M, Zhang Q, Li Q, Qin J (2019) Joint optimization of UAV position, time slot allocation, and computation task partition in multiuser aerial mobile-edge computing systems. IEEE Trans Veh Technol 68(7):7231–7235

    Article  Google Scholar 

  15. Huang PQ, Wang Y, Wang K, Liu ZZ (2020) A bilevel optimization approach for joint offloading decision and resource allocation in cooperative mobile edge computing. IEEE Trans Cybern 50(10):4228–4241

    Article  Google Scholar 

  16. Kennedy J, Eberhart R (1995) Particle swarm optimization. In: International Conference on Neural Networks (ICNN)

  17. Kwak J, Kim Y, Lee J, Chong S (2015) DREAM: dynamic resource and task allocation for energy minimization in mobile cloud systems. IEEE J Sel Areas Commun 33(12):2510–2523

    Article  Google Scholar 

  18. Li D, Zhan R, Zheng D, Li M, Kaku I (2016) A hybrid evolutionary hyper-heuristic approach for intercell scheduling considering transportation capacity. IEEE Trans Autom Sci Eng 13(2):1072–1089

    Article  Google Scholar 

  19. Liao Z, Ma Y, Huang J, Wang J, Wang J (2021) HOTSPOT: a UAV-assisted dynamic mobility-aware offloading for mobile-edge computing in 3-d space. IEEE Internet Things J 8(13):10940–10952

    Article  Google Scholar 

  20. Lin B, Wu C (2011) Mathematical modeling of the human cognitive system in two serial processing stages with its applications in adaptive workload-management systems. IEEE Trans Intell Transp Syst 12(1):221–231

    Article  Google Scholar 

  21. Lin B, Zhu F, Zhang J, Chen J, Chen X, Xiong NN, Lloret Mauri J (2019) A time-driven data placement strategy for a scientific workflow combining edge computing and cloud computing. IEEE Trans Industr Inf 15(7):4254–4265

    Article  Google Scholar 

  22. Lin B, Huang Y, Zhang J, Hu J, Chen X, Li J (2020) Cost-driven offloading for DNN-based applications over cloud, edge, and end devices. IEEE Trans Industr Inf 16(8):5456–5466

    Article  Google Scholar 

  23. Liu B, Zhang W, Chen W, Huang H, Guo S (2020) Online computation offloading and traffic routing for UAV swarms in edge-cloud computing. IEEE Trans Veh Technol 69(8):8777–8791

    Article  Google Scholar 

  24. Loh KH, Golden B, Wasil E (2009) Solving the maximum cardinality bin packing problem with a weight annealing-based algorithm. In: Operations research and cyber-infrastructure, Springer, pp 147–164

  25. Mach P, Becvar Z (2017) Mobile edge computing: a survey on architecture and computation offloading. IEEE Commun Surveys Tutor 19(3):1628–1656

    Article  Google Scholar 

  26. Matos J, Faria RP, Nogueira IB, Loureiro JM, Ribeiro AM (2019) Optimization strategies for chiral separation by true moving bed chromatography using particles swarm optimization (PSO) and new parallel PSO variant. Comput Chem Eng 123:344–356

    Article  Google Scholar 

  27. Qi Q, Wang J, Li Q, Li T, Cao Y (2016) Resource orchestration for multi-task application in home-to-home cloud. IEEE Trans Consum Electron 62(2):191–199

    Article  Google Scholar 

  28. Sardellitti S, Scutari G, Barbarossa S (2015) Joint optimization of radio and computational resources for multicell mobile-edge computing. IEEE Trans Signal Inform Process Over Netw 1(2):89–103

    Article  MathSciNet  Google Scholar 

  29. Shannon CE (1948) A mathematical theory of communication. Bell Syst Techn J 1(1):623–656

    Article  MathSciNet  Google Scholar 

  30. Shi Y, Obaiahnahatti B (1998) A modified particle swarm optimizer. In: IEEE Conference on Evolutionary Computation (ICEC)

  31. Snyder A (1986) Encapsulation and inheritance in object-oriented programming languages. In: Conference Proceedings on Object-Oriented Programming Systems, Languages and Applications, pp 38–45

  32. Tao X, Ota K, Dong M, Qi H, Li K (2017) Performance guaranteed computation offloading for mobile-edge cloud computing. IEEE Wireless Commun Letter 6(6):774–777

    Article  Google Scholar 

  33. Wu H, Wei Z, Hou Y, Zhang N, Tao X (2020) Cell-edge user offloading via flying UAV in non-uniform heterogeneous cellular networks. IEEE Trans Wireless Commun 19(4):2411–2426

    Article  Google Scholar 

  34. Xian C, Lu Y, Li Z (2007) Adaptive computation offloading for energy conservation on battery-powered systems. In: International Conference on Parallel and Distributed Systems (ICPDS)

  35. Xu A, Tang Y (2009) Bayesian analysis of pareto reliability with dependent masked data. IEEE Trans Reliab 58(4):583–588

    Article  Google Scholar 

  36. Xu Z, Liang W, Jia M, Huang M, Mao G (2019) Task offloading with network function requirements in a mobile edge-cloud network. IEEE Trans Mob Comput 18(11):2672–2685

    Article  Google Scholar 

  37. Zhang J (2021) Taskhub. [EB/OL], https://github.com/JamesZJS/ApplicationHub.git

  38. Zhang J, Zhou L, Zhou F, Seet B, Zhang H, Cai Z, Wei J (2020) Computation-efficient offloading and trajectory scheduling for multi-UAV assisted mobile edge computing. IEEE Trans Veh Technol 69(2):2114–2125

    Article  Google Scholar 

  39. Zhang T, Xu Y, Loo J, Yang D, Xiao L (2020) Joint computation and communication design for UAV-assisted mobile edge computing in IoT. IEEE Trans Industr Inf 16(8):5505–5516

    Article  Google Scholar 

  40. Zhang X, Zhang J, Xiong J, Zhou L, Wei J (2020) Energy-efficient multi-UAV-enabled multiaccess edge computing incorporating NOMA. IEEE Internet Things J 7(6):5613–5627

    Article  Google Scholar 

  41. Zhao L, Yang K, Tan Z, Li X, Sharma S, Liu Z (2021) A novel cost optimization strategy for SDN-enabled UAV-assisted vehicular computation offloading. IEEE Trans Intell Transp Syst 22(6):3664–3674

    Article  Google Scholar 

  42. Zhou F, Wu Y, Hu RQ, Yi Q (2018) Computation rate maximization in UAV-enabled wireless-powered mobile-edge computing systems. IEEE J Sel Areas Commun 36(9):1927–1941

    Article  Google Scholar 

Download references

Acknowledgements

This work is partly supported by the National Natural Science Foundation of China No. 62072108, the Natural Science Foundation of Fujian Province for Distinguished Young Scholars No. 2020J06014, the Natural Science Foundation of Fujian Province for Distinguished Young Scholar, the Natural Science Foundation of Fujian Province under Grant No. 2019J01286, and the Young and Middle-aged Teacher Education Foundation of Fujian Province under Grant No. JT180098.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bing Lin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Li, M., Chen, Z. et al. Computation offloading for object-oriented applications in a UAV-based edge-cloud environment. J Supercomput 78, 10829–10853 (2022). https://doi.org/10.1007/s11227-021-04288-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-021-04288-0

Keywords

Navigation