
Vol:.(1234567890)

The Journal of Supercomputing (2022) 78:10656–10689
https://doi.org/10.1007/s11227-022-04307-8

1 3

Toward a mixed reality domain model for time‑Sensitive
applications using IoE infrastructure and edge computing
(MRIoEF)

Mohamed Elawady1 · Amany Sarhan1 · Mahmoud A. M. Alshewimy1

Accepted: 31 December 2021 / Published online: 24 January 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature
2022

Abstract
Mixed reality (MR) is one of the technologies with many challenges in the design
and implementation phases, especially the problems associated with time-sensitive
applications. The main objective of this paper is to introduce a conceptual model
for MR application that gives MR application a new layer of interactivity by using
Internet of things/Internet of everything models, which provide an improved quality
of experience for end-users. The model supports the cloud and fog compute lay-
ers to give more functionalities that need more processing resources and reduce the
latency problems for time-sensitive applications. Validation of the proposed model
is performed via demonstrating a prototype of the model applied to a real-time case
study and discussing how to enable standard technologies of the various components
in the model. Moreover, it shows the applicability of the model, the ease of defin-
ing the roles, and the coherence of data or processes found in the most common
applications.

Keywords Mixed reality · Internet of things · Cloud computing · Fog computing ·
Domain model

1 Introduction

In light of Facebook’s founder’s presentation of the Metaverse revolution, antici-
pated massive growth in users and applications, primarily virtual reality (VR), aug-
mented reality (AR), and mixed reality (MR) applications, is expected in the next
era. As a foundation, these applications will employ cloud, fog, and edge computing
technologies, as well as the Internet of things. As a result, an organized model upon
which these applications are developed and organized should be supplied before the

 * Mohamed Elawady
 elawady5@gmail.com

1 Computer and Control Department, Faculty of Engineering, Tanta University, Tanta, Egypt

http://orcid.org/0000-0001-8786-3076
http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-022-04307-8&domain=pdf

10657

1 3

Toward a mixed reality domain model for time‑Sensitive…

problem of components and applications conflicting with each other arises. This
model should help them arrange their work with each other as well as the physical
technologies they use. Now is the moment to provide this concept, before it becomes
difficult to restructure these applications in order to organize them, which will cost
time and effort.

Furthermore, the COVID-19 pandemic presently impacts almost every country
on the planet, necessitating the availability of tools to manage and reduce pandemic
consequences. New solutions should be available and inexpensive to the majority of
users, and they should be distributed to a wide range of people from various back-
grounds. According to this epidemic, more research will focus on innovative tech-
niques of controlling and communicating objects remotely. This field will allow for
remote control of the underlying environment via a designed application, eliminat-
ing the requirement for the controlling persons to be physically present and mini-
mizing the need on high-touch surfaces.

A better understanding of the impacts of the new situation could help to improve
the prevention strategies of the spread of the virus. For this purpose, many organi-
zations and scientific communities are providing grants to enable researchers to
produce these new solutions that can be used immediately. Various researches have
been directed to several areas affected by the pandemic like economics, healthcare,
remote learning, and more. Only a few have been initiated toward the everyday
usage of devices and machines found in real life.

Among these research areas, MR is a possible solution to prevent the direct
manipulation of the devices under control. Instead, it will replace the current situ-
ation with applications that remotely access these devices through an MR applica-
tion. Among these devices are IoT devices that are widely spread across the globe.
Moreover, handling IoT devices currently based on both cloud and fog, where each
has its roles and scope of managing processes and data. Both VR and AR have the
same direction of remote controlling devices from far distances using a virtual user
interface (UI).

Moreover, MR and AR are helpful in places that are hard to be there remotely,
and it is mandatory to be physically on the site like markets, hospitals, some fac-
tories, etc. Also, MR and VR make people feel their surroundings and not live in a
separate reality like VR. In addition, MR can provide an application tracking people
and offer a colored overlay on them showing the confidence ratio if they were carry-
ing the virus or not using ML-Cloud-based algorithm.

On the other hand, the Internet of everything (IoE) [1] plays a vital role in many
applications [2] and offers promising solutions to evolving many industrial systems
[3]. IoE connects people, data, processes, and physical things, making it easier to
build applications interacting between real objects (sensors and actuators) and vir-
tual objects in MR. IoT, a subset of IoE, focuses on the communications between
physical objects, managing the devices, and most notably, data gathering.

The exponential increase in IoT devices makes cloud services scaling much faster
to manage the storage and processing power needed [4]. Still, the real challenge here
is the network that clearly appeared when the demand increased on the Internet due
to COVID-19 lockdown [5]. As a result, fog computing becomes an essential part of
decentralizing the cloud to reduce the amount of data sent on the network and the

10658 M. Elawady et al.

1 3

latency of the IoT devices’ responses. Fog computing is one of many aspects of edge
computing which is the extension of cloud computing where services are brought
closer to the end devices. Edge computing is developed to address location aware-
ness, mobility support, and high latency issues in delay-sensitive applications. Also,
edge computing was introduced to improve the performance of latency-sensitive
MR applications in some scientific articles. As a result, MR applications supported
by edge computing rely on providing more QoE and supporting more functionalities
that need more processing power [6].

Model-based systems typically use some models to describe the architecture and
the design of a system in an abstracted manner and the behavior of software items.
Building a model for a system can guide the system developers and add an improved
comprehension during maintenance, better product quality, and improved reliability.
Other benefits could also be realized, such as flexibility, productivity, and interoper-
ability. The system thus can be easily viewed as platform-independent, which facili-
tates its development using various technologies.

The previous research efforts had produced a variety of methods to build AR,
VR, and MR applications based on cloud and fog platforms. However, their work
lacks an abstracted and generalized model to cope with changes and further devel-
opment of these applications. In other words, these applications are produced in an
inefficient manner in the absence of an overall model that should be presented to
combine a view of the whole development process that may necessitate the modi-
fication of the system needs and further the interoperability with other applications
of the same or another organization. The main research motivation of our work is to
provide an overall model that combines MR, IoE, and fog computing in one com-
prehensive organized methodology rather than the one-by-one approach of handling
these technologies. The main challenge is to incorporate these technologies’ param-
eters, specifications, and criteria in this model to enable the developers and research-
ers to work correctly with this type of application.

Driven by developments made in MR, IoT, Fog computing infrastructures, the
main contribution of this paper is to present a generalized domain model of the MR
systems which rely on IoT devices and Fog computing capabilities called MRIoEF.
The model aimed to organize the design, implementation, and interactions presented
between the three technologies in an efficient manner that provided many advan-
tages, including the strength of the design, ease of testing, smooth maintenance of
the functions, defining the roles of each process, and coherence of data and pro-
cesses found in the system. This model should reflect on the execution time and
consumed power reduction of the processes of the system, which are the main con-
cerns of the real-time applications. It also gives a better understanding of the pos-
sible operations encountered by these components constituting the system. As for
our best knowledge, this is the first attempt to provide such an abstraction model for
MR systems that utilize IoT devices and fog/cloud computing platforms for general
purposes.

The rest of this paper is organized as follows: Sect. 2 presents the background
of the three pillars: IoE, MR, and fog computing. Section 3 describes the proposed
domain model and its main components in detail. A prototype for evaluating the

10659

1 3

Toward a mixed reality domain model for time‑Sensitive…

proposed MRIoEF domain model is introduced in Sect. 4. Finally, the conclusion is
presented in Sect. 5.

2 Background and related work

2.1 Internet of everything

IoE merges people, processes, data, and things [1]. To improve the industry and
people’s lives, IoE turns the environment events into data, turns information into
actions, and turns devices communication into end-application. Things are consid-
ered one of the four pillars of IoE built upon the IoT, one of the most emerging
technologies in society [7]. In addition to the machine-to-machine (M2M) protocols
covered by IoT, IoE includes machine-to-people (M2P) and technology-assisted
people-to-people (P2P) interactions, as shown in Fig. 1. Also, IoE has better and
prosperous semantic models than IoT, which delivers the correct information to the
right person or machine at the right time and makes the design of applications more
accessible, faster, and covers more scenarios.

IoE and IoT have many challenges; one of them is the scalability of the number
of devices connected to the Internet and the number of functionalities needed for
each device [4], which leads to network congestion and more latency in applications.
Another challenge is heterogeneity in communication protocols and data models
of devices [8], making M2M protocols hard to handle. Privacy and security of col-
lected data from devices and sending it to the cloud are also considered challenges
for IoE/IoT.

One solution to these challenges is edge computing, especially fog computing, an
extension of cloud computing to make computation and storage away from servers
to the edge of the devices’ networks; as a result, it is beneficial for latency reduc-
tion to support real-time applications. Also, for bandwidth control to act as a buffer
between devices and the cloud or even better act as semi-cloud to compute some
heavy computation and deliver it to devices and save more resources in the cloud to
other computations.

2.2 Fog computing

Cisco coined the term “Fog Computing” in 2012 and has an analogy from real-life
fog closer to Earth, but the cloud is in the sky. At the same, fog computing is used
whereas closer to end devices, and it is located between end devices and the cloud. It
is used for distributed environments, especially IoT networks, to provide more secu-
rity, privacy, high mobility support, location awareness, high bandwidth, and ultra-
low latency [9].

Fog computing created a new layer that allows developers to control their data
without sending all of it to the cloud to preserve users’ privacy. Also, it can store

10660 M. Elawady et al.

1 3

some data to be analyzed for application development and operation, besides the
control of end devices to send new firmware as updates or manage them in some
events. The good architecture for applications that relies on a cloud-fog-device
schema can handle scalability in the number and the functionality of end devices
using one or multiple layers of fog computers covering segments of required area or
used as load balancers for each other. Also, architecture can handle the heterogene-
ity of end devices. It supports new devices with new models or protocols or even
new micro-architecture by using semantic data for devices.

In [10], a survey is introduced on the application layer protocols for communica-
tion and how to integrate them in some IoT applications with cloud-fog-end devices
architecture and study the main characteristics like network throughput and latency
of responses. In [11, 12], frameworks proposed for computational offloading and
resource provisioning in edge computing and cloud computing ecosystems open
the road for better implementation of MR applications offloading and the criteria of
which processes can be offloaded.

2.3 Mixed reality

On the other hand, MR is a promising technology for human interaction with data
and has a rich user experience. MR is the merge between real-world and virtual
objects illustrated in the same scene to the user. To be clear, a scene in an entirely
artificial environment got another name called VR. On the other hand, AR can merge
some virtual objects with real-world scenes [13]. The difference between AR and
MR is the interactivity between virtual objects and real objects. MR can immerse
virtual objects with real objects to make an illusion to the user, render the virtual
objects almost like real objects, and interact like them. Unlike AR, which renders
virtual objects without caring about these interactions between virtual objects and
real objects. Table 1 shows the differences between VR, AR, and MR.

Fig. 1 IoE Pillars

10661

1 3

Toward a mixed reality domain model for time‑Sensitive…

Nowadays, MR applications can be executed on high-end mobile phones or some
specific headsets like Google glasses [14] or Microsoft HoloLens [15] as in Fig. 2a
because MR needs powerful resources that can be found on the previous devices.
They have some hardware accelerators, like neural processing unit (NPU), for pro-
cessing heavy machine vision algorithms, especially surface mapping algorithms
used in these applications.

Many kinds of research focused on recognizing and tracking objects in real-time.
[16] focused on the device’s rotation by scanning multiple markers (April Tags) on
a device that gives the proper meta-data for rendered objects. This method is used
in low resources environments and, consequently, can’t use machine learning tech-
niques. Moreover, it gives the target objects a bad appearance with the presence of
these tags.

In [17], authors designed an application running on 60 frames per second with
low resources on AR devices using some techniques to reduce the latency between
tracking the object and rendering the final scene, proving the capability of develop-
ing a way to track objects and generate MR objects with low latency. Another direc-
tion was recognizing the material of the objects and using them in AR applications
as in [18], where a system was proposed to reproduce the material appearance of the
physical object with the best rotation of the rendered material, which uses AR appli-
cations to render animated materials on the physical objects. Authors in [19] also
proposed a real-time approach to estimate high-quality material appearance from a
single-color image with the illumination-consistent intersection between virtual and
real objects, which can be used in MR applications to render more realistic virtual
objects.

The current important direction of MR is to improve the interaction between
virtual objects and the physical world. Currently, the data flow between the physi-
cal and virtual worlds is unidirectional, meaning changes in the physical environ-
ment will affect the virtual objects, not vice versa. Yet, with the help of IoT, the
whole concept will change since the data flow will change into a bidirectional flow;
in other words, any change on the virtual object will reflect on the physical object
(device), which will alter the physical environment as a result.

As a result, the quality of experience of applications significantly increased by
the merge between IoT and MR, as shown in Fig. 2b, which demonstrates the light
intensity control of smart lamps using a virtual slider as an example. When the user
starts using the slider, a virtual event is triggered containing a particular value and
received by the physical device (in this case, the lamp), performing a specific physi-
cal action that changes the light intensity.

This architecture can be improved further by using IoE models and specific M2P
and P2P models. The M2P model interprets any event done by a person, triggering
multiple processes either preconfigured or predicted by a certain algorithm using
machine learning. On the other hand, the P2P model focuses on the interaction
between two or more users with a mutual virtual object sharing the same scene but
not necessarily the same angle of view. Virtual TV can be considered an excellent
example to explain the P2P relation. Many users can interact with the virtual TV
appearing in the same scene, but none can necessarily watch the virtual TV from the
same angle.

10662 M. Elawady et al.

1 3

Ta
bl

e
1

 D
iff

er
en

ce
s b

et
w

ee
n

V
R

, A
R

, a
nd

 M
R

V
irt

ua
l R

ea
lit

y
A

ug
m

en
te

d
Re

al
ity

M
ix

ed
 R

ea
lit

y

En
vi

ro
nm

en
t d

es
cr

ip
tio

n
A

n
en

tir
el

y
ge

ne
ra

te
d

sc
en

e
(im

ag
e

an
d

so
un

d)
 b

y
co

m
pu

te
r u

si
ng

 so
m

e
he

ad
se

t t
o

im
m

er
se

 in
 th

is
 v

irt
ua

l w
or

ld
 a

nd
 m

ak
e

a
fe

el
in

g
th

e
us

er
 tr

an
sp

or
t i

n
th

is
 w

or
ld

A
 m

er
ge

 b
et

w
ee

n
th

e
re

al
-w

or
ld

 o
bj

ec
ts

 a
nd

 c
om

pu
te

r g
ra

ph
ic

s o
bj

ec
ts

 in
 th

e
sa

m
e

sc
en

e
us

in
g

he
ad

se
ts

 o
r m

ob
ile

 a
pp

lic
at

io
n

A
nd

 m
ak

e
a

fe
el

 th
at

 th
e

re
al

 w
or

ld
 h

as
 n

ew
 e

le
m

en
ts

A
w

ar
en

es
s

Re
nd

er
in

g
th

e
vi

rtu
al

 w
or

ld
 m

ak
es

 it
 h

ar
d

to

di
sti

ng
ui

sh
 b

et
w

ee
n

th
e

re
al

 w
or

ld
 a

nd
 th

e
vi

rtu
al

 w
or

ld

Re
nd

er
ed

 o
bj

ec
ts

 c
an

 b
e

id
en

tifi
ed

; i
t’s

 li
ke

 a

flo
at

in
g

U
I i

n
re

al
 w

or
ld

Re
nd

er
ed

 o
bj

ec
ts

 h
ar

d
to

 b
e

id
en

tifi
ed

 fr
om

 re
al

ob

je
ct

s

In
te

ra
ct

iv
ity

It’
s u

se
rs

 a
nd

 v
irt

ua
l w

or
ld

 in
te

ra
ct

io
n

on
ly

.
Th

er
e

is
 n

o
in

te
ra

ct
iv

ity
 b

et
w

ee
n

th
e

vi
rtu

al

w
or

ld
 a

nd
 th

e
re

al
 w

or
ld

Th
e

pr
im

ar
y

in
te

ra
ct

io
n

be
tw

ee
n

us
er

s a
nd

vi

rtu
al

 o
bj

ec
ts

, b
ut

 it
 m

ay
 h

av
e

so
m

e
in

te
r-

ac
tio

n
be

tw
ee

n
th

e
re

al
-w

or
ld

 a
nd

 v
irt

ua
l

ob
je

ct
s

It
is

 m
ai

nl
y

fo
cu

si
ng

 o
n

bl
en

di
ng

 th
e

in
te

ra
ct

iv
-

ity
 b

et
w

ee
n

vi
rtu

al
 o

bj
ec

ts
, t

he
 re

al
 w

or
ld

,
an

d
us

er
 a

ct
io

ns

Re
m

ot
e

co
lla

bo
ra

tio
n

Re
m

ot
e

us
er

s c
an

 in
te

ra
ct

 w
ith

 a
pp

lic
at

io
ns

 u
si

ng
 av

at
ar

 re
pr

es
en

ta
tio

ns
It

ca
n

be
 a

ch
ie

ve
d

us
in

g
av

at
ar

 re
pr

es
en

ta
tio

ns
.

It
al

so
 a

do
pt

s r
em

ot
e

in
te

ra
ct

io
n

w
ith

 th
e

re
al

w

or
ld

 li
ke

 re
m

ot
e

su
rg

er
y

10663

1 3

Toward a mixed reality domain model for time‑Sensitive…

2.4 Related work

The obstacles for real-time MR applications are summarized in prior studies such as
[20], which include high latency responses and the need for more network bandwidth
to communicate, which is the key difficulty. Other difficulties highlighted include
reuse of prior computations, mobility, the discovery of computation resources and
service availability, and communication security.

Therefore, fog computing and IoT edge can host time-sensitive MR services to
speed up the system response. It can also be used as a storage area for some pre-
rendered virtual objects. As shown in Fig. 3, fog computing serves two categories
of devices: IoT and MR devices. It should be mentioned that fog computing not only
helps MRIoE applications alone but can be used for MR applications that use virtual
objects without physical interactions.

This new direction will open new opportunities for High QoE in MR applications
and change the style of the user interface from a graphical user interface (GUI) to an
entirely natural user interface (NUI) [21]. The market and industry focus on building
smart devices containing more advanced features, so it’s normal to use a futuristic
user interface with rich and interactive information with users; it can be used on any
IoT device to add more value. To summarize the current contributions related to our
work, Table 2 is given.

Also, some research can complement ours, like [22], which utilizes edge computing
to improve manufacturing systems by proposing a systematic solution for Industrial IoT
(IIoT) data-driven solutions; it’s focused on three domains: manufacturing, data ana-
lytics, and edge computing. Moreover, MR is mentioned as the key for the interface
design phase to raise awareness and enhance accessibility.

2.5 Problem formulation and plan of solution

The conclusion drawn from the study of the previous work [22, 24–27] is that they
have focused only on one or two of the main three pillars of the work considered in
this paper (IoE/IoT, AR, fog/cloud computing), ignoring the third one with its benefits
to improve the overall performance of the applications. In [23, 28], models for MR
applications were built in real-time. Still, they handled the application as a case-by-case

Fig. 2 Example of the merge between IoT and MR

10664 M. Elawady et al.

1 3

development without further consideration of in-depth possible future development
of similar applications. There was no discussion on how to couple between MR, IoT
devices, and fog/cloud computing platforms for any similar applications.

As a result, this motivated us to develop a general domain model that can help
integrate all the three pillars (i.e., MR, IoT devices, and fog/cloud), illustrate the
benefits of their integration, and clarify how each one has its advantages and how
they complement each other. This paper also presents the domain model as a con-
crete layered model that considers the different issues on each layer and their inter-
actions. In addition, the model ensures that the layers are designed in a decoupled
manner to give the applications more interoperability in the future and the extensi-
bility for new futuristic technologies.

3 The proposed MRIoEF domain model

This paper defines a domain model of MR coupled with the IoE Infrastructure
using fog computing to build MR applications MRIoEF. The IoT domain concepts
and MR domain concepts are analyzed and identified to correlate them and further
engage them into the Fog domain concepts as one model. This model will enable the
interaction with IoT devices through fog computing and provide the applicability of
real-time MR applications with low latency between MR actions and IoT events.

The central architecture of the proposed MR domain model is based on IoE and
fog/cloud computing platforms. As shown in Fig. 4, the model consists of three main
layers: IoT, MR, and fog/cloud. The MRIoEF domain model is designed to be as
generic as possible by developing it as a methodology-independent model to facili-
tate its reusability in different environments. MRIoEF main layers are described in
brief before going into the details of each of them:

1- The IoT layer includes the components representing both the physical hardware
and resources of the IoT device.

Fig. 3 MRIoE and MR supported by fog computing

10665

1 3

Toward a mixed reality domain model for time‑Sensitive…

Ta
bl

e
2

 S
um

m
ar

y
of

 R
ec

en
t A

R
/M

R
 w

or
k

ba
se

d
on

 Io
T,

 F
og

, a
nd

 C
lo

ud

Pa
pe

r
A

R
/M

R
Io

T
Fo

g
C

lo
ud

C
on

tri
bu

tio
n

Fe
rn

án
de

z
et

 a
l.

[2
3]

, 2
01

8
A

R
√

√
√

D
es

cr
ib

e
N

av
an

tia
’s

 In
du

str
ia

l A
R

 (I
A

R
) a

rc
hi

te
ct

ur
e

in
 sh

ip
ya

rd
s w

hi
ch

 u
se

s c
lo

ud
le

ts
 a

nd
 fo

g
co

m
pu

t-
in

g
to

 re
du

ce
 la

te
nc

y
It

w
as

 c
om

pa
re

d
w

ith
 th

e
tra

di
tio

na
l c

lo
ud

-b
as

ed
 sy

ste
m

, a
nd

 th
e

cl
ou

dl
et

s a
nd

 fo
g

co
m

pu
tin

g
w

er
e

al
so

 c
om

pa
re

d
w

he
n

se
nd

in
g

di
ffe

re
nt

 si
ze

s o
f p

ay
lo

ad
 a

nd
 m

en
tio

ne
d

th
at

 th
er

e
is

 a
n

In
du

str
ia

l I
oT

fr

am
ew

or
k

(I
Io

T)
 th

at
 c

an
 b

e
in

te
gr

at
ed

 w
ith

 In
du

str
ia

l A
R

 (I
A

R
) a

t t
he

 sa
m

e
le

ve
l o

f c
lo

ud
le

ts
 o

r f
og

co

m
pu

te
rs

Ph
up

at
ta

na
si

lp
 e

t a
l.

[2
4]

, 2
01

9
A

R
√

X
X

D
es

ig
n

an
 A

R
 a

pp
lic

at
io

n
us

in
g

A
R-

U
I t

o
vi

su
al

iz
e

th
e

da
ta

 g
en

er
at

ed
 fr

om
 Io

T
de

vi
ce

s
Zi

et
sc

h
et

 a
l.

[2
2]

, 2
01

9
M

R
√

√
X

Pr
op

os
e

a
fr

am
ew

or
k

to
 a

dd
 M

R
 v

is
ua

liz
at

io
n

to
 II

oT
 a

nd
 e

dg
e

co
m

pu
tin

g
in

fr
as

tru
ct

ur
e

to
 im

pr
ov

e
m

an
uf

ac
tu

rin
g

by
 in

cr
ea

si
ng

 w
or

ke
rs

 re
ac

tio
n

sp
ee

d
B

la
nc

o-
N

ov
oa

 e
t a

l.
[2

5]
, 2

02
0

A
R

/M
R

√
X

X
D

es
ig

n
a

fr
am

ew
or

k
to

 re
du

ce
 d

iffi
cu

lti
es

 to
 in

te
rc

on
ne

ct
in

g
of

 h
et

er
og

en
eo

us
 Io

T
de

vi
ce

s a
nd

 A
R

/M
R

de

vi
ce

s
S.

 B
uc

sa
i e

t a
l.

[2
6]

, 2
02

0
M

R
√

X
X

B
ui

ld
 a

n
ap

pl
ic

at
io

n
bi

nd
in

g
Io

T
da

ta
 w

ith
 M

R
 m

od
el

s u
si

ng
 U

ni
ty

 a
nd

 A
nd

ro
id

 A
R-

C
or

e/
A

pp
le

 A
R-

K
it

A
. M

or
ris

 e
t a

l.
[2

7]
, 2

02
0

M
R

√
X

X
D

es
ig

n
a

fr
am

ew
or

k
fo

r M
R

 w
ith

 Io
T

an
d

ad
d

a
bi

di
re

ct
io

na
l i

nt
er

ac
tio

n
be

tw
ee

n
Io

T
vi

rtu
al

 av
at

ar
s a

nd

Io
T

de
vi

ce
s

V
id

al
-B

al
ea

 e
t a

l.
[2

8]
, 2

02
0

A
R

/M
R

√
√

√
B

ui
ld

 a
n

A
R

/M
R

 a
pp

lic
at

io
n

fo
r t

ea
ch

in
g

sy
ste

m
 b

as
ed

 o
n

M
ic

ro
so

ft
H

ol
oL

en
s [

15
],

ed
ge

 c
om

pu
tin

g
de

vi
ce

s,
an

d
Io

T
de

vi
ce

s

10666 M. Elawady et al.

1 3

2- The MR layer includes the components representing the MR components, its
resources, the scene, and the object related to the MR entity.

3- The fog/Cloud Computing layer includes the fog computing components as
the various profiles of the user, services, processes, and data entered the system
through IoT devices and the connection to the cloud.

The relationships between the layers of those main layers are shown in Fig. 4,
which complete the connection concepts between the components and indicate how
they could interact with each other in an organized way. A human interacts with the
system through the MR device, not with the IoT device directly, which will increase
the system’s reliability and provide protection of the IoT device. IoT devices reveal
their capabilities to the human user via the interaction designed in the MR applica-
tion. According to the developed application, connections to the fog component are
performed either by the IoT virtual entity or MR entity. Also, the fog component is
responsible for connecting to the cloud if needed.

3.1 IoT layer

Figure 5 shows the components of the IoT layer of the proposed MRIoEF domain
model, which represents all the aspects of the IoT device found in the system. It is
organized into four components: IoT device, virtual entity, physical resources, and
virtual resources.

Fig. 4 MRIoEF Domain Model Layers

10667

1 3

Toward a mixed reality domain model for time‑Sensitive…

3.1.1 IoT device component

Some physical objects may contain an embedded system and are called smart
devices in the industry. If this embedded system architecture follows an IoT schema,
it is the first component of IoT components and is described as an “IoT Device.” It
represents the physical part of the IoT device, which is the central part of the whole
layer. The IoT device may vary according to the application at hand, especially when
working with MR applications. Unlike previous work, we have separated the IoT
device’s physical parts from the processes attached to it, as we have assigned it to
the fog components. As shown later in the model layers discussion, this separation
yields better control of the processes.

3.1.2 Physical resources component

This component represents the IoT device’s physical resources, including network
& location resources, sensor, actuator, storage, and process node. Some IoT devices
have a simple data model and have constraints on bandwidth, memory, processing,
and power. While other IoT devices, the big things, have complex data models and
may include smaller IoT devices inside them. Examples of types of IoT devices are
shown in Fig. 6. In this sense, the IoT device component is represented as a complex
entity that may contain other IoT devices for more abstraction and simplicity in the
design.

Each IoT device has main attributes that describe it semantically, like serial num-
ber, manufacture, uniform resource identifier (URI), firmware version, application
programming interface (API) hyperlink, etc. The most critical attribute would be the
“Physical Resource” described in the domain model as a separate component. The
physical resource component uses the inheritance concept in object-oriented pro-
gramming (OOP). Inheritance in OOP allows children classes to inherit attributes
from parent classes; similarly, physical resource components can be considered as
parent classes, and all the other components inherit attributes from it. “Sensors” and
“Actuators” are considered the essential resource components as they represent the
input/output (IO) in embedded systems.

Fig. 5 IoT layer of the MRIoEF domain model

10668 M. Elawady et al.

1 3

Another important resource in IoT devices is network resources that may support
TCP/IP stack or not. Regardless of its type, it must contain all the attributes that
describe supported protocols in any layer of the OSI network model and the capabil-
ity of bridging between two different protocols.

The IoT devices may contain other types of resources it wants to expose, like
“processing” and “storage” resources to provide extra resources to the system in
some situations. For example, the storage of IoT devices can be used as a backup
in any failure in the network. The processing power of the IoT device can be used
as an extra processing resource for some remote execution for some applications
as a service. For example, a heavy processing application needs to be executed on
a smartphone; the smartphone will use the extra processing resources exposed by
nearby devices in a distributed manner.

3.1.3 “Virtual entity” component and “virtual resources” component

Each IoT device and its resources components have “Virtual Entity” and “Virtual
Resources,” respectively. These components, having the information of the physical
entities, expose the functionalities of the IoT device and the resources as an API that
can easily connect. In addition to that, the API description identifies its input and
output semantically and the supported technologies by this API like SOAP, REST,
GraphQL, OData, etc.

The separation of the IoT device component and its virtual entity, also, the sepa-
ration of a resource component and its virtual resource results from using the IoE
schema [29]. And this separation facilitates adding more application coverage and
gives an abstraction level in the proposed solution model. Some applications can use
an entirely virtual device as if it was a real one. For example, a virtual TV, which
has a lot of functions in its APIs, can be used as an actual TV with a subscription on
cable channels or any other subscription application, as shown in Fig. 7.

Fig. 6 Categories of IoT devices based on data model complexity

10669

1 3

Toward a mixed reality domain model for time‑Sensitive…

3.2 MR layer

This layer represents the MR concepts, including the scene, the object(s), the entity,
the marker, the recognizer, and the renderer (Fig. 8). The MR entity represents the
MR device it points to. Each MR device has a component called the “MR Entity”
component used to register and manage two main components of mixed reality,
which are: “Recognizer/Tracker” and “Renderer.” These are the input and output of
the MR device.

Like any device that contains an embedded system with network resources and
can be classified as an IoT device, the mixed reality device is an IoT device, and its
resources could be used in IoT networks. However, for more clarity, simplicity, and
focusing on the proposed domain’s target, this connection is not shown explicitly.

The MR entity has an operating system (OS) that manages its resources and con-
nects with the fog or cloud layer to serve the MR applications installed on this OS. It
could connect with IoT devices directly when satisfying two conditions: They both
have the same communication protocol. The IoT device is categorized as a com-
plex model because the complex IoT model can handle more than one connection
asynchronously.

The MR applications that depend on the IoT/IoE devices (called MRIoE applica-
tions) are typically handled as processes on the operating system of the MR device.
However, some of these applications can follow distributed processing architecture
supported by our proposed model. The application processing is handled through
this architecture as two main processes; one is executed on the MR entity while the
other is executed on the fog. These processes are communicated through remote pro-
cedure call (RPC) protocols.

The “MR process” component is responsible for mapping the real-world objects
into the proper virtual object, and it is executed into four main steps. Figure 9 shows
these steps applied to an example which calls four different MRIoE applications in
one scene: a light bulb control [in blue shade], a toaster control [in yellow shade],
a smart water faucet control [in green shade], and a coffee machine control [in red

Fig. 7 A virtual TV having a subscription to Netflix

10670 M. Elawady et al.

1 3

shade]. In this example, the MR scene adds four different virtual objects, where each
object is generated from various applications selected and executed by the MR enti-
ty’s OS. The MR scene is ready for user gestures to trigger any action on IoT devices
like toggling lights or preparing some coffee. The main steps of the MR process are
performed as follows:

3.2.1 Step 1: Markers recognition

This step is responsible for recognizing the current scene and determining which
application is meant to be opened and which object(s) inside this application to be
rendered. This step is handled using the “Recognizer/Tracker” component by recog-
nizing the “Markers” components in this scene.

A “Marker” in MR could be one of the physical scene parts or an external part
used to trigger some visual actions. In other words, it could be a frame, image, QR
code, location, face, object, or another future marker. To initiate any recognizer
installed on the MR entity and generate actions that affect the final MR scene. A dif-
ferent “Marker” component recognizes objects like shape, material, tags, and loca-
tion. The word “Marker” is known in object and surface recognizers. Still, different
markers can be merged with other recognizers like a material marker and gradient
color marker merged with a face recognizer in an application of virtual makeup
from Dior [30], as shown in Fig. 10.

There are many categories of “Recognizer/Tracker,” such as object recognizer and
face recognizer, which can execute sub-algorithms using the “Marker” recognizer
components. This separation between recognizers and markers helps to improve the
algorithms used separately and adds modularity to recognizers and markers that act
as background services in the MR device’s OS. Another category of recognizers
is surface recognizers, which accurately detect surfaces like floor, wall, and other
flat surfaces. It also gives the depth of each physical object and the scene’s lighting
conditions, which leads to a more accurate intersection between virtual objects and
real objects. The last category of recognizers supported by our framework is gesture

Fig. 8 MR layer of the MRIoEF domain model

10671

1 3

Toward a mixed reality domain model for time‑Sensitive…

Fig. 9 Steps of MR process with an example

10672 M. Elawady et al.

1 3

recognizer which enables the virtual objects to interact with the user in front of the
MR device (unlike tapping on a touch screen in the AR applications).

3.2.2 Step 2: Extract MR meta‑objects

We want to discuss the “Recognizer/Tracker” component in more detail as it is criti-
cal to MR applications. The “Recognizer/Tracker” component extracts the mark-
ers from the scenes as meta-objects that describe the coordinates of the objects in
the scene and the output properties of each marker, if found, to detect which MR/
MRIoE application is the target, as shown in Algorithm (1). The MRMetaObject
contains the coordinates of the object and a list of registered attributes extracted by
each marker recognizer. It should be noted that a variable d was used to solve the
slight difference in output coordinates of each recognizer which may generate dupli-
cation of the same object in the following stages.

Fig. 10 Virtual Makeup merging material and gradient color markers with a face recognizer

10673

1 3

Toward a mixed reality domain model for time‑Sensitive…

3.2.3 Step 3: Executing MR/MRIoE application(s)

After determining the marker found in the scene, the targeted MR/MRIoE
application(s) is executed. These applications are installed on the “MR Entity” com-
ponent and accomplished by filtering all access points of all installed applications
with the list of MRMetaObject returned from the “Recognizer/ Tracker” component.

It is possible to run multiple applications at the same time on the same scene.
Each application executes its logic and generates a 3D-MRObject that is ready to be
rendered; however, some activities in the MR applications may need the previous
state of the 3D-MRObject generated before and sent inside the MRMetaObject by
the “Recognizer/ Tracker” component. The 3D-MRObjects are represented as XML
or JSON files with other extra files like texture files sent to the MR process’s next
step, the “Renderer” component, to finalize the rendering of generated objects into
“MR Scene.”

Like any modern OS running multiple applications, each application has per-
missions to access the resources and APIs provided by this OS. The “MR Entity”
provides the essential resource in the framework, which is the communication with
the fog that gives a bunch of new APIs to MR/MRIoE applications which will be
described in detail in the next section.

3.2.4 Step 4: Rendering the objects

The “Renderer” component includes two stages, as shown in Fig. 11, which are used
to render the 3D-MR objects and merge them with the physical object to polish the
MR scene and make the rendered objects look like real ones. The first stage is get-
ting 3D-MR objects generated by the MR/MRIoE applications and adding attributes
to the objects based on the model profile to change the colors, contrast, color satura-
tion, texture filters, general graphics settings, and animation settings. According to
the current user identified, all model profiles are stored on the fog, and the renderer
uses only the selected profile based on this user. The “Renderer” starts rendering the
objects from the different applications in one virtual scene after preparing all the
data needed.

The second stage is merging the virtual objects with the real world using the sur-
face recognizer’s meta-data. It also hides from the virtual objects the parts inter-
sected with the physical objects, giving the user the best illusion and making it hard
to discriminate between virtual and physical objects. Finally, it adds the virtual
objects’ proper rotation, lighting, and shadows according to the attributes extracted
by the surface recognizer and lighting estimation algorithms executed.

3.3 Fog/cloud computing layer

The Fog/Cloud computing components are responsible for executing the MR and
IoT processes related to the application and storing the various user profiles. The
Fog components are responsible for handling all the communications with the cloud

10674 M. Elawady et al.

1 3

and sending the proper data reports to be held on the cloud. Figure 12 shows the fog/
cloud layer components in the domain model. It comprises the following compo-
nents: the profile, service, process, data report, raw data entity, and cloud connector.

Fig. 11 Stages of the renderer component

Fig. 12 Fog/Cloud layer of the MRIoEF domain model

10675

1 3

Toward a mixed reality domain model for time‑Sensitive…

3.3.1 Privacy & security profile component

This component represents the various user profiles. Each user using the MR devices
has a profile stored on the fog storage area. The user profile is organized into three
different profiles according to the information and functions intended by these pro-
files: Models Profile, Performance Profile, and Privacy & Security Profile. A sepa-
rate component is developed for each profile as follows:

• The “Models Profile” component helps the “Renderer” components to get color
schema, text language, graphic settings, and other settings that can change the
models during rendering.

• The “Performance Profile” component helps the “Renderer” cache the first stage
of rendering to reduce the overall time of the rendering process. It also helps the
“Recognizer/ Tracker” component by using the powerful processing resources in
the fog instead of the MR device and allows the recognizers to perform faster by
reducing the number of targets that can be recognized using a real-time location
updater.

• The “Privacy & Security Profile” component filters all the data in/out from the
fog with user restrictions using the meta-data of each record. It also has the
encryption keys, the authentication database, and the authorization schema.

Other profiles can be added to this component. Each user profile data affects the
attributes of the Fog components and the MR components depending on the current
user preferences. This profile, however, can be synchronized with the cloud to be
imported on other authorized fog computers.

3.3.2 Raw data entity component

Each “Virtual Entity” component in the IoT layer has a driver on the fog that com-
municates with the virtual entity using the proper protocols that fit the network
resources of the IoT device and with the current communication channel properties
between the IoT device and the fog. The driver can be downloaded automatically
from the cloud to the fog after reading the properties of the “Virtual Entity” com-
ponent. This driver adds a container, called the “Raw Data Entity” component, to
collect all data from/goes to the IoT virtual entity. It also acts as a translator between
the “Raw Data Entity” and the “Virtual Entity” components using a powerful exten-
sion for programming languages called the reactive extension (Rx) [31–33].

The “Raw Data Entity” component has a template in the fog, based on the type of
the IoT “Virtual Entity” component, to bind it with the suitable “IoT Process” com-
ponent, which adds a variety of functionalities based on the features supported by
the “Virtual Entity” component. The driver of the virtual entity can bring new fea-
tures not supported by the “IoT Process” component, and therefore, the IoT process
exposes it as RPC.

10676 M. Elawady et al.

1 3

3.3.3 Data report component

The “Data Report” component generates reports using filters of the “Privacy &
Security Profile” component. These reports can be sent to the cloud for synchro-
nization between the fog and the cloud. It also generates logs for system tracking,
and it can be used to re-train some algorithms for system improvement. Finally, the
“Cloud Connector” component is used to connect different cloud vendors for dif-
ferent usages. It saves the credentials of each cloud and the relation between each
application and each registered cloud.

3.3.4 MR processes distributed computation

As mentioned before, the MR application can follow a distributed architecture that
distributes the execution into two parts; one on the “MR Entity” and the other on
the fog as an “MR Process” component connected using RPC. The MR process is
downloaded from the cloud to the fog storage the first time the MR entity requests it
to the fog; otherwise, the MR process is loaded from the local storage of the fog if
the exact timestamp and version of the requested process are stored on the fog.

The applications following this architecture are designed for scenarios when the
resources of the MR entity are insufficient or may consume the power of the MR
device faster than usual. In that manner, the light part of the process will be exe-
cuted on the MR entity while the heavy part executed on the fog. For example, a rich
MR simulation application performed on an MR entity that follows this architecture
could be divided. The simulation algorithms are executed on the fog while the other
parts are executed on the MR entity because simulation consumes a lot of process-
ing power and memory on the MR entity. These parts running on the MR entity
could focus on rendering the simulated objects produced from the fog execution of
the simulation algorithms when requested by RPC with targeted parameters.

The “MR Process” components pose the greatest danger on the fog if it has mali-
cious code, so each process should run in a sandbox to avoid memory corruption or
other execution attacks. It also should be given limited resources via permissions
requested by the application and filtered by the cloud and the “Privacy & Secu-
rity profile” component. The process manager in the fog component has an API
that checks the request’s authorization which can spawn or terminate any process,
whether it is an IoT process or an MR process. Each process can communicate with
other processes using Inter-process communication (IPC) like named pipes or mes-
sage queuing [34].

3.3.5 MR communicating IoT through fog components

Another possible architecture of the fog components is when the MR application
executes totally on the “MR Entity” component; however, it requests the data from
the fog without executing the “MR Process” on the fog. This architecture will pre-
sent some IoT processes as a service. The fog computer has a service broker to ease
the real-time data flow between the IoT device and the MR device to cover such
architecture.

10677

1 3

Toward a mixed reality domain model for time‑Sensitive…

Each IoT service publishes its data on a topic that allows subscribers to follow
multiple services simultaneously. For example, as shown in Fig. 13, if an MR appli-
cation called “app1” controls one model of smart bulbs, it could be on the topic
“ light.model1. ∗ ”. Another application called “app2” that controls all smart bulbs
could be on the topic “ light. ∗ . ∗ ”; while to control a bulb without knowing its
model could be on the topic “ light. ∗ .ID ”. Also, the fog computer has a service
orchestrator to compose multiple services as one service to add more functions sup-
ported by fog and save the processing power of MR devices.

3.4 Model layers integration

Figure 14 shows the overall model layers integrated as a single model. The interac-
tion between the layers is shown as directed edges between them. It should be men-
tioned that red components describe the physical elements, “human” who uses “MR
device” and directing the device to see a “physical object” in reality which is called
in the domain model “Physical scene.” Each physical scene the human saw through
the MR device will be processed to extract the physical objects that have an applica-
tion on the MR device’s OS, whether it is an MR application or an MRIoE applica-
tion. For MR applications, the physical object will be recognized using marker-less
recognizers or marker recognizers. Then, the proper MR object is rendered in “MR
scene,” which is associated with the physical object. While in MRIoEF applications,
the connection with the IoT device is added inside this object which means adding
the targeted functionalities of the system. The following sections will explain the
three main layers of the domain model in more detail.

3.5 Functional model

Figure 15 summarizes the functional model of the proposed domain model and how
the data flows from a layer to another. The functional model adds a layer not men-
tioned before in the domain model, “Network hub.” The fog computer can be used

Fig. 13 Example of publisher–subscriber architecture in fog computer

10678 M. Elawady et al.

1 3

as a bridge between the different communication protocols. For example, a car, clas-
sified as a complex IoT device, can be a host for itself without the need for fog. Still,
it has a LoRa connection only; to connect it with a Wi-Fi MR device, we must use
the fog computer as a Wi-Fi–LoRa bridge.

The “Network Hub” also has a location updater to update the location of each
device connected with the fog using indoor positioning system helpers or using a
reference location. The work in [35] uses a relational localization between MR and
IoT devices using 3D coordinates and rotation of devices.

Fig. 14 The Proposed MRIoEF Domain model

Fig. 15 Functional Model of the MRIoEF Domain Model

10679

1 3

Toward a mixed reality domain model for time‑Sensitive…

3.6 Extensibility

Many different applications can benefit from the proposed MRIoEF domain model
or at least some of its various components that cover the application requirements.
But the target is not to use some components and leave some; on the contrary, the
target is to use all the components to give the applications more interoperability in
the future and the extensibility for new futuristic technologies. Some components
are inspired by [36], and IoE models are the main secret behind implementing this
framework due to the powerful abstraction of everything and their interaction.

4 Model implementation and evaluation

The MRIoEF domain model is designed to be generic; by developing it as a meth-
odology-independent model to facilitate its reusability in different environments.
To illustrate the value of the proposed domain model, we have built a real-time
prototype using this model called “My Hives.” The objective is to implement the
model and its components in a real environment and describe their interaction.
The application is a part of the R&D department in GaMP [37] to test the MRI-
oEF domain model and ensure the capability of using the model in future projects.
Another objective of this project is to develop the internal GaMP services to follow
this domain model for fast delivery and ease of development of IoT projects that
require fog computing. This project is also used to ensure the applicability to extend
the applications with MR technologies quickly and smoothly when this technology
becomes a part of our life in the near future.

4.1 Prototype description

The system used as a prototype of the proposed model in this paper is a monitoring
system for a beehive as part of the company’s current project called “My Hives”
[38]. This project aims to prevent any problems causing bees’ death and reduce the
probabilities of bees’ extinction. This project is supported by the Financial Instru-
ment for the Environment (LIFE) program by the European Union (EU) [39]. Fig-
ure 16 shows the system overview of the investigated application, which collects
the necessary data from hives using custom-designed IoT devices. This data is sent
using LoRa protocol to a fog computer. To prove that the fog computer can serve
more than one application, we have added another application that helps an old
glasshouse system. This second application uses a programmable logic controller
(PLC) connected to the fog computer using a 2.4 GHz 802.11n Wi-Fi access point.
The MR device is connected to the fog computer using 5 GHz 802.11ac Wi-Fi. The
fog computer is connected to the Internet with Ethernet as a primary connection and
LTE as a backup connection.

10680 M. Elawady et al.

1 3

4.2 Hardware components

The hardware components used in the case study are composed of various IoT
devices, the fog computer, and the MR device with their interconnections and con-
nections to the external world. The IoT layer uses the LoPy4 board [40] by Pycom
[41], connected to many hardware devices like temperature and humidity sensors,
weight sensors, small microphones, GPS, Gyroscope, and accelerometer. One
advantage of Pycom boards is that the primary development programming language
is micro-python, which supports different programming paradigms. Moreover, it has
rich built-in libraries like experimental thread library, various data structures, and
networking libraries.

The fog layer consists of two parts, as shown in Fig. 17. The first part uses the
FiPy board [42] by Pycom as the network hub of the fog computer because it sup-
ports five types of networks: Wi-Fi, Bluetooth, LoRa, Sigfox, and LTE-M. The
FiPy board is connected using SPI protocol with Jetson Nano Developer Kit [43] by
Nvidia [44], which has Quad-core ARM A57, 4 GB DDR4 RAM, and 128 CUDA
cores used for heavy processing ML algorithms and other layers discussed in the
fog components. A gigabit Ethernet interface is the primary interface for Internet
connection.

Today’s MR experience requires an expensive headset with the needed sensors
and cameras like Microsoft HoloLens, as shown in (Fig. 2a) and Magic Leap [45].
We have used a custom MR device built as a prototype to test the domain model to
avoid such a cost. This device has three main parts, as shown in Fig. 18. The first
part is a laptop 2-in-1 Dell XPS 13 inch with CPU Intel Core i7-1065G7 Quad-core
1.3 GHz, 16 GB DDR4, and 512 GB PCIe-NVMe × 4 SSD. The second part is a
Razer Core X external GPU platform with GPU Nvidia RTX 2060 Super, connected

Fig. 16 “My Hives” system overview

10681

1 3

Toward a mixed reality domain model for time‑Sensitive…

with the laptop using Thunderbolt 3. The third part is a Microsoft Kinect for Win-
dows connected to the laptop using USB 3.

4.3 Domain model implementation

To demonstrate the domain model components implemented in this project, it
should be mentioned that Figs. (19, 20, and 21) are color-coded with the same color
used in the domain model to show how to map a generic domain model to a real
implementation with different technologies used for each layer.

It is better to start with the IoT layer to illustrate how IoT devices interact with
the framework. In this project, we have two different IoT devices; the main device
is a new device (supporting the IoE scheme in the framework) which is the beehive
node, while the other one is an old IoT device that follows its own scheme but has an
application on the fog that handles the integration with the framework. In this man-
ner, we will focus on implementing the first device only.

The “Virtual Entity” component, representing one of the beehive nodes, is
described as a JSON response where all functionalities and virtual resources are
exposed as a REST API. To test the request on the device without a gateway, we
can use the Wi-Fi and HTTP server on the device, and the request will be like

Fig. 17 Hardware used in the case study—Fog Layer

Fig. 18 Hardware used in the case study—MR layer

10682 M. Elawady et al.

1 3

“http:// < IP-Address > /Hive/” or “http:// < IP-Address > /IoT/”. When the device
is requested on the endpoint “Hive,” the response has readings of each “Virtual
Resource” on the device. Each connected sensor and network resource is exposed as
a “Virtual Resource” and has a universally unique identifier (UUID) to help the fog
and the cloud register new resources dynamically in data logs.

Figure 19 shows how the IoT devices follow the framework by building the
resource manager to translate physical resources to virtual resources. Also, it shows
the network manager for additional functions needed to communicate with other
devices. On top of them, embedded OS, which reads, writes, controls them by the
endpoints controlling the virtual entity like REST API, LoRa broadcast API, and
Bluetooth serial commands for initial configuration by the user.

Fig. 19 IoT node abstraction

Fig. 20 Fog computer abstraction for My Hives application

10683

1 3

Toward a mixed reality domain model for time‑Sensitive…

The fog computer collects data from IoT devices and stores the data for an entire
month in a time-series database (the “Raw Data Entity” in the framework), giving
less latency to the most frequent queries requested from end-users. After that, data is
distributed to three processes: one predicts the behavior of bees by their sound using
an ML algorithm, one prepares a data report that will be sent to the cloud using the
cloud connector, and one handles other applications’ logic. All data sent to the cloud
are afterward filtered by the user privacy profile, which blocks the location of IoT
devices by default. The MR devices connect with the fog computer using a gRPC
service, which connects to other services internally. Figure 20 shows the fog com-
puter abstraction to show how it follows the framework.

This application currently has a single user for which it collects data from many
IoT devices it owns. In other words, it’s a single application serving a single user on
multiple devices, which is one type of many applications that can be performed by
the fog computer, not the only one. However, as proof that the fog can serve multiple
users, we have added another beehive that belongs to another user and traced how
the fog computer behaves on multiple-user applications. We have also implemented
another application that controls and monitors a glasshouse to check for multiple
applications on one fog. We have also added a simple application that follows the
distributed architecture of dividing the application to MR entity—fog layers as men-
tioned in Sect. 3.3.4, playing some virtual butterflies and saving the last position for
each butterfly.

The OS used on our custom MR device is Microsoft Windows 10 × 64. On top,
we use Microsoft Kinect SDK 2.0 and Interactive Virtual Object Engine (IVO) by
Zugara [46], which is a gesture recognizer used in AR/VR environments to interact
with 3D virtual objects using Microsoft Kinect, also we used a facial recognizer
built with OpenBR [47] and object recognizer built with Detectron2 [48] by Face-
book. Each recognizer is called and handled by a separate thread using the.Net core
framework by C# programming language and Task Parallel Library (TPL) to extract
MR Meta-objects in a concurrent list. The app selector is used to call the proper
application with suitable parameters. The MR application uses other components

Fig. 21 MR device abstraction

10684 M. Elawady et al.

1 3

such as the network manager to communicate with the fog computer, the profile
manager to get authorized resources from the fog, and the application settings. It
may be using the MR model cache for more performance and less latency. Figure 21
shows the MR device construction.

4.4 MyHives System Results

In this section, we will describe an important feature of MyHives system, which
is identifying a beehive using a QR code, as shown in Fig. 22. Using a QR code to
identify an object is the fastest way to identify similar objects as each object has a
different QR code. Each beehive has its own IoT device that will be used to monitor
it. The beehive will be our test subject in this scene, and the IoT device will provide
us with some data about the status of the beehive as the data shows a different MR
response each time. Figure 23 shows the test beehive in different states with simu-
lated data from its IoT device.

The experiment scenario consists in changing the data in our test subject using
some python scripts on its IoT device to simulate different states in a specific time—
range between 5 and 20 s—then measure the end-to-end (E2E) latency when the
data in the IoT device is sent, and the MR device renders the scene; this is called
the time to virtual element (T2VE), as is described in [49, 50]. The performance
evaluation compares three different configurations that can use this scenario. The
first configuration uses Microsoft Azure cloud instance, and the second configura-
tion uses a fog computer to transmit IoT devices data to MR devices only, while the

Fig. 22 MyHives MR application test scene

10685

1 3

Toward a mixed reality domain model for time‑Sensitive…

third configuration uses a fog computer like the second one but in addition to MR
scene rendering profiles shown in Sect. 3.2.

Every experiment was tested for two hours on the same configuration in order
to avoid any network congestion. Figure 24 shows the T2VE in the test scene with
three different configurations: using cloud only, using cloud and fog, and using fog
for rendering the MR object. From the figure, we can see that using the third con-
figuration, which performs the MR object rendering on the fog instead of the cloud,
gives the minimum latency value which is less than the other two configurations. It
also solves the jitter problem produced when using the cloud only, which is shown
as the sparks in the latency values, explained as the fetching time for the correct

Fig. 23 Different states of the test subject in MyHives MR application

Fig. 24 T2VE for the test scene

10686 M. Elawady et al.

1 3

object in the background every time we change the state of the object. These sparks
totally disappear when using the fog to help MR for rendering and caching.

Another experiment scenario targets measuring the performance metrics when
many MR objects are available in the scene. We use the script on another 25 bee-
hives simultaneously and a 4G router used to monitor the total bandwidth required
by devices. Figure 25 shows that each virtual object will take its own share from the
bandwidth, but when using the rendering profiles, the bandwidth is reduced and, at
some point, changed to constant because the heavy part of the scene was rendered
in the fog. This part directly affects the processing usage in the MR device, and the
frame rate dropping in the scene does not exist due to the CPU bottleneck solved.

It should be mentioned that the framework provides a better abstraction for each
layer and decoupling the code for more business logic was easy, also the ease of
changing any component with different technologies. We have also performed a
quick survey on number of volunteer users that are required to use the model to
build their application and report their experience with the model. One test user
said: “It’s nice to provide tools control which data I want to send to the cloud,” this
was a benefit of using fog computer and not losing any QoE in the application. The
problems faced in development are the debugging, testing, benchmarking tools that
are still not mature enough with the framework and need some improvements, espe-
cially for the applications using test-driven development (TDD) approaches.

Fig. 25 Performance metrics in the second test scenario

10687

1 3

Toward a mixed reality domain model for time‑Sensitive…

5 Conclusion

This paper has introduced a general domain model capable of dealing with the
design of various applications based on IoT, MR, and fog computing technologies
and gaining the benefits of each one. The domain model can cover many different
IoE applications, even with physical devices (IoT devices) or with virtual ones. It
also supports changing the recognition algorithms used at the MR level and using
them as a component for more generic respect. Finally, the fog layer is used as a
host for heavy resource-intensive applications and preserves user data privacy.
Based on the real-time experiment that applied this domain model, the fast deliv-
ery of system responses to user actions. It also showed the ease of development
for the IoT-based applications (as stated by the application developers) requiring
fog computing. The project also clearly illustrates the capability to extend the
applications with MR technologies in a short time and smooth way.

Many different adaptations, tests, and experiments have been left for the future
due to the diversity of applications covered by this framework. Also, the framework
still needs better tools for component tests, integration tests, and benchmarking.

Declarations

Conflict of interest The authors declare the following financial interests/personal relationships which may
be considered as potential competing interests.

References

 1. Miraz MH, Ali M, Excell PS, Picking R (2015) A review on internet of things (IoT), internet of eve-
rything (IoE) and internet of nano things (IoNT). Int Technol Appl (ITA) 2015:219–224. https:// doi.
org/ 10. 1109/ ITechA. 2015. 73173 98

 2. Langley DJ, van Doorn J, Ng ICL, Stieglitz S, Lazovik A, Boonstra A (2021) The internet of every-
thing: smart things and their impact on business models. J Bus Res 122:853–863. https:// doi. org/ 10.
1016/j. jbusr es. 2019. 12. 035

 3. Di Martino B, Li KC, Yang LT, Esposito A (2018) Trends and Strategic Researches in Internet of
Everything. In: Di Martino B, Li KC, Yang L, Esposito A (eds) Internet of Everything. Internet
of Things(Technology, Communications, and Computing), Springer, Singapore. https:// doi. org/ 10.
1007/ 978- 981- 10- 5861-5_1

 4. Čolaković A, Hadžialić M (2018) Internet of things (IoT): a review of enabling technologies, chal-
lenges, and open research issues. Comp Net. 144:17–39. https:// doi. org/ 10. 1016/j. comnet. 2018. 07.
017

 5. A. Feldmann et al. (2021) Implications of the COVID-19 Pandemic on the Internet Traffic, Broad-
band Coverage in Germany; 15th ITG-Symposium, p. 1–5.

 6. Khan WZ, Ahmed E, Hakak S, Yaqoob I, Ahmed A (2019) Edge computing: a survey. Fut Gen
Comp Syst. 97:219–235. https:// doi. org/ 10. 1016/j. future. 2019. 02. 050

 7. Nicolescu R, Huth M, Radanliev P et al (2018) Mapping the values of IoT. J Inf Technol 33:345–
360. https:// doi. org/ 10. 1057/ s41265- 018- 0054-1

 8. Kazmi A, Jan Z, Zappa, A, Serrano M (2016). Overcoming the heterogeneity in the Internet of
things for smart cities. In International workshop on interoperability and open-source solutions.
Springer, Cham, p. 20–35

https://doi.org/10.1109/ITechA.2015.7317398
https://doi.org/10.1109/ITechA.2015.7317398
https://doi.org/10.1016/j.jbusres.2019.12.035
https://doi.org/10.1016/j.jbusres.2019.12.035
https://doi.org/10.1007/978-981-10-5861-5_1
https://doi.org/10.1007/978-981-10-5861-5_1
https://doi.org/10.1016/j.comnet.2018.07.017
https://doi.org/10.1016/j.comnet.2018.07.017
https://doi.org/10.1016/j.future.2019.02.050
https://doi.org/10.1057/s41265-018-0054-1

10688 M. Elawady et al.

1 3

 9. Bilal K, Khalid O, Erbad A, Khan SU (2018) Potentials, trends, and prospects in edge technolo-
gies: fog, cloudlet, mobile edge, and micro data centers. Comp Netw. 130:94–120. https:// doi.
org/ 10. 1016/j. comnet. 2017. 10. 002

 10. Dizdarevic J, Carpio F, Jukan A, Masip X (2018) A survey of communication protocols for inter-
net of things and related challenges of fog and cloud computing integration. ACM Comp Surv.
https:// doi. org/ 10. 1145/ 32926 74

 11. Khorsand R, Ghobaei-Arani M, Ramezanpour M (2018) FAHP approach for autonomic resource
provisioning of multitier applications in cloud computing environments. Softw Pract Exper
48:2147–2173. https:// doi. org/ 10. 1002/ spe. 2627

 12. Shahidinejad A, Ghobaei Arani M (2020) Joint computation offloading and resource provision-
ing for edge cloud computing environment: a machine learning based approach. Softw Pract
Exper. 50:2212–2230

 13. Milgram P, Kishino F (1994) A taxonomy of mixed reality visual displays. IEICE Trans. Inform
Syst. E77-D(12):1321–1329

 14. https:// www. google. com/ glass/ start/. Accessed 1 Jan 2022
 15. https:// www. micro soft. com/ en- us/ holol ens. Accessed 1 Jan 2022
 16. Cao A, Dhanaliwala A, Shi J, Gade T, Park B (2019) Image based marker tracking and regis-

tration for intraoperative image guided interventions using augmented reality. Int Soc Opt Phot
11318:1131802

 17. Luyang Liu, Hongyu L, Marco G. (2019). Edge assisted real-time object detection for mobile
augmented reality. In: The 25th Annual International Conference on Mobile Computing and Net-
working (MobiCom ’19). Association for Computing Machinery, New York, NY, USA, Article
25, 1–16. https:// doi. org/ 10. 1145/ 33000 61. 33001 16

 18. Tsunezaki S, Nomura R, Komuro T, Yamamoto S, Tsumura N (2018) Reproducing material
appearance of real objects using mobile augmented reality. In: IEEE International Symposium
on Mixed and Augmented Reality Adjunct (ISMAR-Adjunct) Munich, Germany 196 197 https://
doi. org/ 10. 1109/ ISMAR- Adjun ct. 2018. 00065

 19. A. Meka et al., "LIME: Live Intrinsic Material Estimation (2018) IEEE/CVF Conference on
Computer Vision and Pattern Recognition, Salt Lake City, UT, p. 6315–6324. https:// doi. org/ 10.
1109/ CVPR. 2018. 00661.

 20. Shannigrahi S, Mastorakis S, Ortega FR (2020) Next-generation networking and edge computing
for mixed reality real-time interactive systems. In: IEEE International Conference on Commu-
nications Workshops (ICC Workshops) 1 6 https:// doi. org/ 10. 1109/ ICCWo rksho ps490 05. 2020.
91450 75

 21. Fu L, Landay J, Nebeling M, Xu Y-Q, Zhao C. (2018). Redefining Natural User Interface. 1–3.
https:// doi. org/ 10. 1145/ 31704 27. 31906 49

 22. Zietsch J, Büth L, Juraschek M, Weinert N, Thiede S, Herrmann C (2019) Identifying the poten-
tial of edge computing in factories through mixed reality. Procedia CIRP. 81:1095–1100. https://
doi. org/ 10. 1016/j. procir. 2019. 03. 259

 23. Fernández Caramés TM, Fraga Lamas P, Suárez Albela M, Vilar Montesinos M. A fog comput-
ing and cloudlet based augmented reality system for the industry shipyard. Sensors. 18, 1798.
https:// doi. org/ 10. 3390/ s1806 1798

 24. Phupattanasilp P, Tong S-R (2019) Augmented reality in the integrative internet of things (AR-
IoT): application for precision farming. Sustainability 11:2658. https:// doi. org/ 10. 3390/ su110
92658

 25. Blanco-Novoa Ó, Fraga-Lamas PA, Vilar-Montesinos M, Fernández-Caramés TM (2020) Creating
the internet of augmented things: an open-source framework to make IoT devices and augmented
and mixed reality systems talk to each other. Sensors 20:3328. https:// doi. org/ 10. 3390/ s2011 3328

 26. Bucsai S, Kučera E, Haffner O, Drahoš P (2020) Control and monitoring of IoT devices using mixed
reality developed by unity engine. Cybern Inform (K&I) Velke Karlovice, Czech Rep. https:// doi.
org/ 10. 1109/ KI483 06. 2020. 90399 01

 27. Morris A, Guan J, Lessio N, Shao Y (2020) Toward mixed reality hybrid objects with IoT avatar
agents. In: 2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Toronto,
ON, Canada p. 766–773. https:// doi. org/ 10. 1109/ SMC42 975. 2020. 92829 14

 28. Vidal-Balea A, Blanco-Novoa O, Picallo-Guembe I, Celaya-Echarri M, Fraga-Lamas P, Lopez-
Iturri P, Azpilicueta L, Falcone F, Fernández-Caramés TM (2020) Analysis, design and practical
validation of an augmented reality teaching system based on microsoft hololens 2 and edge comput-
ing. Eng Proc 2:52. https:// doi. org/ 10. 3390/ ecsa-7- 08210

https://doi.org/10.1016/j.comnet.2017.10.002
https://doi.org/10.1016/j.comnet.2017.10.002
https://doi.org/10.1145/3292674
https://doi.org/10.1002/spe.2627
https://www.google.com/glass/start/
https://www.microsoft.com/en-us/hololens
https://doi.org/10.1145/3300061.3300116
https://doi.org/10.1109/ISMAR-Adjunct.2018.00065
https://doi.org/10.1109/ISMAR-Adjunct.2018.00065
https://doi.org/10.1109/CVPR.2018.00661
https://doi.org/10.1109/CVPR.2018.00661
https://doi.org/10.1109/ICCWorkshops49005.2020.9145075
https://doi.org/10.1109/ICCWorkshops49005.2020.9145075
https://doi.org/10.1145/3170427.3190649
https://doi.org/10.1016/j.procir.2019.03.259
https://doi.org/10.1016/j.procir.2019.03.259
https://doi.org/10.3390/s18061798
https://doi.org/10.3390/su11092658
https://doi.org/10.3390/su11092658
https://doi.org/10.3390/s20113328
https://doi.org/10.1109/KI48306.2020.9039901
https://doi.org/10.1109/KI48306.2020.9039901
https://doi.org/10.1109/SMC42975.2020.9282914
https://doi.org/10.3390/ecsa-7-08210

10689

1 3

Toward a mixed reality domain model for time‑Sensitive…

 29. Miraz MH, Ali M, Excell PS, Picking R (2015) A review on Internet of things (IoT), internet of eve-
rything (IoE) and internet of nano things (IoNT.) Int Technol Appl (ITA) Wrexham. https:// doi. org/
10. 1109/ ITechA. 2015. 73173 98

 30. https:// tej. ie/ diors- insta gram- ar- virtu al- makeup- exper ience/. Accessed 1 Jan 2022
 31. Bainomugisha Engineer L, Carreton C, Van Andoni S, Tom W, de olfgang M (2012) A survey on

reactive programming. ACM Comput Surv. https:// doi. org/ 10. 1145/ 25016 54250 1666
 32. https:// github. com/ dotnet/ react ive. Accessed 1 Jan 2022
 33. https:// rxjs- dev. fireb aseapp. com/ api. Accessed 1 Jan 2022
 34. Weisshaar BP, Kolnick FC, Kun AI, Mansfield BM. (1987) Computer X Inc,. Method of inter-pro-

cess communication in a distributed data processing system. U.S. Patent. 4 694–396
 35. Baskaran S, Nagabushanam HK (2018) Relational localization based Augmented reality Interface

for IoT applications. In: 2018 International Conference on Information and Communication Tech-
nology Convergence (ICTC), Jeju p. 103–106. https:// doi. org/ 10. 1109/ ICTC. 2018. 85394 69.

 36. Smith NM, Heldt-Sheller N (2020) Intel Corp. Internet of things (iot) network domain resource
model. U.S. Patent Application 16/609,711

 37. https:// gampl td. com/. Accessed 1 Jan 2022
 38. https:// myhiv es. eu/. Accessed 1 Jan 2022
 39. https:// ec. europa. eu/ easme/ en/ life. Accessed 1 Jan 2022
 40. https:// pycom. io/ produ ct/ lopy4/. Accessed 1 Jan 2022
 41. https:// pycom. io/. Accessed 1 Jan 2022
 42. https:// pycom. io/ produ ct/ fipy/. Accessed 1 Jan 2022
 43. https:// devel oper. nvidia. com/ embed ded/ jetson- nano- devel oper- kit. Accessed 1 Jan 2022
 44. https:// www. nvidia. com/. Accessed 1 Jan 2022
 45. https:// www. magic leap. com/ en- us. Accessed 1 Jan 2022
 46. http:// zugara. com/. Accessed 1 Jan 2022
 47. http:// openb iomet rics. org/. Accessed 1 Jan 2022
 48. https:// github. com/ faceb ookre search/ detec tron2. Accessed 1 Jan 2022
 49. Toczé K, Lindqvist J, Nadjm-Tehrani S (2020) Characterization and modeling of an edge computing

mixed reality workload. J Cloud Comp 9(1):1–24
 50. Toczé K, Lindqvist J, Nadjm Tehrani S. (2019). Performance study of mixed reality for edge com-

puting. In: Proceedings of the 12th IEEE/ACM International Conference on Utility and Cloud Com-
puting p. 285–294

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

https://doi.org/10.1109/ITechA.2015.7317398
https://doi.org/10.1109/ITechA.2015.7317398
https://tej.ie/diors-instagram-ar-virtual-makeup-experience/
https://doi.org/10.1145/25016542501666
https://github.com/dotnet/reactive
https://rxjs-dev.firebaseapp.com/api
https://doi.org/10.1109/ICTC.2018.8539469
https://gampltd.com/
https://myhives.eu/
https://ec.europa.eu/easme/en/life
https://pycom.io/product/lopy4/
https://pycom.io/
https://pycom.io/product/fipy/
https://developer.nvidia.com/embedded/jetson-nano-developer-kit
https://www.nvidia.com/
https://www.magicleap.com/en-us
http://zugara.com/
http://openbiometrics.org/
https://github.com/facebookresearch/detectron2

	Toward a mixed reality domain model for time-Sensitive applications using IoE infrastructure and edge computing (MRIoEF)
	Abstract
	1 Introduction
	2 Background and related work
	2.1 Internet of everything
	2.2 Fog computing
	2.3 Mixed reality
	2.4 Related work
	2.5 Problem formulation and plan of solution

	3 The proposed MRIoEF domain model
	3.1 IoT layer
	3.1.1 IoT device component
	3.1.2 Physical resources component
	3.1.3 “Virtual entity” component and “virtual resources” component

	3.2 MR layer
	3.2.1 Step 1: Markers recognition
	3.2.2 Step 2: Extract MR meta-objects
	3.2.3 Step 3: Executing MRMRIoE application(s)
	3.2.4 Step 4: Rendering the objects

	3.3 Fogcloud computing layer
	3.3.1 Privacy & security profile component
	3.3.2 Raw data entity component
	3.3.3 Data report component
	3.3.4 MR processes distributed computation
	3.3.5 MR communicating IoT through fog components

	3.4 Model layers integration
	3.5 Functional model
	3.6 Extensibility

	4 Model implementation and evaluation
	4.1 Prototype description
	4.2 Hardware components
	4.3 Domain model implementation
	4.4 MyHives System Results

	5 Conclusion
	References

