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Abstract
Mixed reality (MR) is one of the technologies with many challenges in the design 
and implementation phases, especially the problems associated with time-sensitive 
applications. The main objective of this paper is to introduce a conceptual model 
for MR application that gives MR application a new layer of interactivity by using 
Internet of things/Internet of everything models, which provide an improved quality 
of experience for end-users. The model supports the cloud and fog compute lay-
ers to give more functionalities that need more processing resources and reduce the 
latency problems for time-sensitive applications. Validation of the proposed model 
is performed via demonstrating a prototype of the model applied to a real-time case 
study and discussing how to enable standard technologies of the various components 
in the model. Moreover, it shows the applicability of the model, the ease of defin-
ing the roles, and the coherence of data or processes found in the most common 
applications.

Keywords Mixed reality · Internet of things · Cloud computing · Fog computing · 
Domain model

1 Introduction

In light of Facebook’s founder’s presentation of the Metaverse revolution, antici-
pated massive growth in users and applications, primarily virtual reality (VR), aug-
mented reality (AR), and mixed reality (MR) applications, is expected in the next 
era. As a foundation, these applications will employ cloud, fog, and edge computing 
technologies, as well as the Internet of things. As a result, an organized model upon 
which these applications are developed and organized should be supplied before the 
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problem of components and applications conflicting with each other arises. This 
model should help them arrange their work with each other as well as the physical 
technologies they use. Now is the moment to provide this concept, before it becomes 
difficult to restructure these applications in order to organize them, which will cost 
time and effort.

Furthermore, the COVID-19 pandemic presently impacts almost every country 
on the planet, necessitating the availability of tools to manage and reduce pandemic 
consequences. New solutions should be available and inexpensive to the majority of 
users, and they should be distributed to a wide range of people from various back-
grounds. According to this epidemic, more research will focus on innovative tech-
niques of controlling and communicating objects remotely. This field will allow for 
remote control of the underlying environment via a designed application, eliminat-
ing the requirement for the controlling persons to be physically present and mini-
mizing the need on high-touch surfaces.

A better understanding of the impacts of the new situation could help to improve 
the prevention strategies of the spread of the virus. For this purpose, many organi-
zations and scientific communities are providing grants to enable researchers to 
produce these new solutions that can be used immediately. Various researches have 
been directed to several areas affected by the pandemic like economics, healthcare, 
remote learning, and more. Only a few have been initiated toward the everyday 
usage of devices and machines found in real life.

Among these research areas, MR is a possible solution to prevent the direct 
manipulation of the devices under control. Instead, it will replace the current situ-
ation with applications that remotely access these devices through an MR applica-
tion. Among these devices are IoT devices that are widely spread across the globe. 
Moreover, handling IoT devices currently based on both cloud and fog, where each 
has its roles and scope of managing processes and data. Both VR and AR have the 
same direction of remote controlling devices from far distances using a virtual user 
interface (UI).

Moreover, MR and AR are helpful in places that are hard to be there remotely, 
and it is mandatory to be physically on the site like markets, hospitals, some fac-
tories, etc. Also, MR and VR make people feel their surroundings and not live in a 
separate reality like VR. In addition, MR can provide an application tracking people 
and offer a colored overlay on them showing the confidence ratio if they were carry-
ing the virus or not using ML-Cloud-based algorithm.

On the other hand, the Internet of everything (IoE) [1] plays a vital role in many 
applications [2] and offers promising solutions to evolving many industrial systems 
[3]. IoE connects people, data, processes, and physical things, making it easier to 
build applications interacting between real objects (sensors and actuators) and vir-
tual objects in MR. IoT, a subset of IoE, focuses on the communications between 
physical objects, managing the devices, and most notably, data gathering.

The exponential increase in IoT devices makes cloud services scaling much faster 
to manage the storage and processing power needed [4]. Still, the real challenge here 
is the network that clearly appeared when the demand increased on the Internet due 
to COVID-19 lockdown [5]. As a result, fog computing becomes an essential part of 
decentralizing the cloud to reduce the amount of data sent on the network and the 
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latency of the IoT devices’ responses. Fog computing is one of many aspects of edge 
computing which is the extension of cloud computing where services are brought 
closer to the end devices. Edge computing is developed to address location aware-
ness, mobility support, and high latency issues in delay-sensitive applications. Also, 
edge computing was introduced to improve the performance of latency-sensitive 
MR applications in some scientific articles. As a result, MR applications supported 
by edge computing rely on providing more QoE and supporting more functionalities 
that need more processing power [6].

Model-based systems typically use some models to describe the architecture and 
the design of a system in an abstracted manner and the behavior of software items. 
Building a model for a system can guide the system developers and add an improved 
comprehension during maintenance, better product quality, and improved reliability. 
Other benefits could also be realized, such as flexibility, productivity, and interoper-
ability. The system thus can be easily viewed as platform-independent, which facili-
tates its development using various technologies.

The previous research efforts had produced a variety of methods to build AR, 
VR, and MR applications based on cloud and fog platforms. However, their work 
lacks an abstracted and generalized model to cope with changes and further devel-
opment of these applications. In other words, these applications are produced in an 
inefficient manner in the absence of an overall model that should be presented to 
combine a view of the whole development process that may necessitate the modi-
fication of the system needs and further the interoperability with other applications 
of the same or another organization. The main research motivation of our work is to 
provide an overall model that combines MR, IoE, and fog computing in one com-
prehensive organized methodology rather than the one-by-one approach of handling 
these technologies. The main challenge is to incorporate these technologies’ param-
eters, specifications, and criteria in this model to enable the developers and research-
ers to work correctly with this type of application.

Driven by developments made in MR, IoT, Fog computing infrastructures, the 
main contribution of this paper is to present a generalized domain model of the MR 
systems which rely on IoT devices and Fog computing capabilities called MRIoEF. 
The model aimed to organize the design, implementation, and interactions presented 
between the three technologies in an efficient manner that provided many advan-
tages, including the strength of the design, ease of testing, smooth maintenance of 
the functions, defining the roles of each process, and coherence of data and pro-
cesses found in the system. This model should reflect on the execution time and 
consumed power reduction of the processes of the system, which are the main con-
cerns of the real-time applications. It also gives a better understanding of the pos-
sible operations encountered by these components constituting the system. As for 
our best knowledge, this is the first attempt to provide such an abstraction model for 
MR systems that utilize IoT devices and fog/cloud computing platforms for general 
purposes.

The rest of this paper is organized as follows: Sect.  2 presents the background 
of the three pillars: IoE, MR, and fog computing. Section 3 describes the proposed 
domain model and its main components in detail. A prototype for evaluating the 
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proposed MRIoEF domain model is introduced in Sect. 4. Finally, the conclusion is 
presented in Sect. 5.

2  Background and related work

2.1  Internet of everything

IoE merges people, processes, data, and things [1]. To improve the industry and 
people’s lives, IoE turns the environment events into data, turns information into 
actions, and turns devices communication into end-application. Things are consid-
ered one of the four pillars of IoE built upon the IoT, one of the most emerging 
technologies in society [7]. In addition to the machine-to-machine (M2M) protocols 
covered by IoT, IoE includes machine-to-people (M2P) and technology-assisted 
people-to-people (P2P) interactions, as shown in Fig.  1. Also, IoE has better and 
prosperous semantic models than IoT, which delivers the correct information to the 
right person or machine at the right time and makes the design of applications more 
accessible, faster, and covers more scenarios.

IoE and IoT have many challenges; one of them is the scalability of the number 
of devices connected to the Internet and the number of functionalities needed for 
each device [4], which leads to network congestion and more latency in applications. 
Another challenge is heterogeneity in communication protocols and data models 
of devices [8], making M2M protocols hard to handle. Privacy and security of col-
lected data from devices and sending it to the cloud are also considered challenges 
for IoE/IoT.

One solution to these challenges is edge computing, especially fog computing, an 
extension of cloud computing to make computation and storage away from servers 
to the edge of the devices’ networks; as a result, it is beneficial for latency reduc-
tion to support real-time applications. Also, for bandwidth control to act as a buffer 
between devices and the cloud or even better act as semi-cloud to compute some 
heavy computation and deliver it to devices and save more resources in the cloud to 
other computations.

2.2  Fog computing

Cisco coined the term “Fog Computing” in 2012 and has an analogy from real-life 
fog closer to Earth, but the cloud is in the sky. At the same, fog computing is used 
whereas closer to end devices, and it is located between end devices and the cloud. It 
is used for distributed environments, especially IoT networks, to provide more secu-
rity, privacy, high mobility support, location awareness, high bandwidth, and ultra-
low latency [9].

Fog computing created a new layer that allows developers to control their data 
without sending all of it to the cloud to preserve users’ privacy. Also, it can store 
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some data to be analyzed for application development and operation, besides the 
control of end devices to send new firmware as updates or manage them in some 
events. The good architecture for applications that relies on a cloud-fog-device 
schema can handle scalability in the number and the functionality of end devices 
using one or multiple layers of fog computers covering segments of required area or 
used as load balancers for each other. Also, architecture can handle the heterogene-
ity of end devices. It supports new devices with new models or protocols or even 
new micro-architecture by using semantic data for devices.

In [10], a survey is introduced on the application layer protocols for communica-
tion and how to integrate them in some IoT applications with cloud-fog-end devices 
architecture and study the main characteristics like network throughput and latency 
of responses. In [11, 12], frameworks proposed for computational offloading and 
resource provisioning in edge computing and cloud computing ecosystems open 
the road for better implementation of MR applications offloading and the criteria of 
which processes can be offloaded.

2.3  Mixed reality

On the other hand, MR is a promising technology for human interaction with data 
and has a rich user experience. MR is the merge between real-world and virtual 
objects illustrated in the same scene to the user. To be clear, a scene in an entirely 
artificial environment got another name called VR. On the other hand, AR can merge 
some virtual objects with real-world scenes [13]. The difference between AR and 
MR is the interactivity between virtual objects and real objects. MR can immerse 
virtual objects with real objects to make an illusion to the user, render the virtual 
objects almost like real objects, and interact like them. Unlike AR, which renders 
virtual objects without caring about these interactions between virtual objects and 
real objects. Table 1 shows the differences between VR, AR, and MR.

Fig. 1  IoE Pillars
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Nowadays, MR applications can be executed on high-end mobile phones or some 
specific headsets like Google glasses [14] or Microsoft HoloLens [15] as in Fig. 2a 
because MR needs powerful resources that can be found on the previous devices. 
They have some hardware accelerators, like neural processing unit (NPU), for pro-
cessing heavy machine vision algorithms, especially surface mapping algorithms 
used in these applications.

Many kinds of research focused on recognizing and tracking objects in real-time. 
[16] focused on the device’s rotation by scanning multiple markers (April Tags) on 
a device that gives the proper meta-data for rendered objects. This method is used 
in low resources environments and, consequently, can’t use machine learning tech-
niques. Moreover, it gives the target objects a bad appearance with the presence of 
these tags.

In [17], authors designed an application running on 60 frames per second with 
low resources on AR devices using some techniques to reduce the latency between 
tracking the object and rendering the final scene, proving the capability of develop-
ing a way to track objects and generate MR objects with low latency. Another direc-
tion was recognizing the material of the objects and using them in AR applications 
as in [18], where a system was proposed to reproduce the material appearance of the 
physical object with the best rotation of the rendered material, which uses AR appli-
cations to render animated materials on the physical objects. Authors in [19] also 
proposed a real-time approach to estimate high-quality material appearance from a 
single-color image with the illumination-consistent intersection between virtual and 
real objects, which can be used in MR applications to render more realistic virtual 
objects.

The current important direction of MR is to improve the interaction between 
virtual objects and the physical world. Currently, the data flow between the physi-
cal and virtual worlds is unidirectional, meaning changes in the physical environ-
ment will affect the virtual objects, not vice versa. Yet, with the help of IoT, the 
whole concept will change since the data flow will change into a bidirectional flow; 
in other words, any change on the virtual object will reflect on the physical object 
(device), which will alter the physical environment as a result.

As a result, the quality of experience of applications significantly increased by 
the merge between IoT and MR, as shown in Fig. 2b, which demonstrates the light 
intensity control of smart lamps using a virtual slider as an example. When the user 
starts using the slider, a virtual event is triggered containing a particular value and 
received by the physical device (in this case, the lamp), performing a specific physi-
cal action that changes the light intensity.

This architecture can be improved further by using IoE models and specific M2P 
and P2P models. The M2P model interprets any event done by a person, triggering 
multiple processes either preconfigured or predicted by a certain algorithm using 
machine learning. On the other hand, the P2P model focuses on the interaction 
between two or more users with a mutual virtual object sharing the same scene but 
not necessarily the same angle of view. Virtual TV can be considered an excellent 
example to explain the P2P relation. Many users can interact with the virtual TV 
appearing in the same scene, but none can necessarily watch the virtual TV from the 
same angle.
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2.4  Related work

The obstacles for real-time MR applications are summarized in prior studies such as 
[20], which include high latency responses and the need for more network bandwidth 
to communicate, which is the key difficulty. Other difficulties highlighted include 
reuse of prior computations, mobility, the discovery of computation resources and 
service availability, and communication security.

Therefore, fog computing and IoT edge can host time-sensitive MR services to 
speed up the system response. It can also be used as a storage area for some pre-
rendered virtual objects. As shown in Fig. 3, fog computing serves two categories 
of devices: IoT and MR devices. It should be mentioned that fog computing not only 
helps MRIoE applications alone but can be used for MR applications that use virtual 
objects without physical interactions.

This new direction will open new opportunities for High QoE in MR applications 
and change the style of the user interface from a graphical user interface (GUI) to an 
entirely natural user interface (NUI) [21]. The market and industry focus on building 
smart devices containing more advanced features, so it’s normal to use a futuristic 
user interface with rich and interactive information with users; it can be used on any 
IoT device to add more value. To summarize the current contributions related to our 
work, Table 2 is given.

Also, some research can complement ours, like [22], which utilizes edge computing 
to improve manufacturing systems by proposing a systematic solution for Industrial IoT 
(IIoT) data-driven solutions; it’s focused on three domains: manufacturing, data ana-
lytics, and edge computing. Moreover, MR is mentioned as the key for the interface 
design phase to raise awareness and enhance accessibility.

2.5  Problem formulation and plan of solution

The conclusion drawn from the study of the previous work [22, 24–27] is that they 
have focused only on one or two of the main three pillars of the work considered in 
this paper (IoE/IoT, AR, fog/cloud computing), ignoring the third one with its benefits 
to improve the overall performance of the applications. In [23, 28], models for MR 
applications were built in real-time. Still, they handled the application as a case-by-case 

Fig. 2  Example of the merge between IoT and MR
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development without further consideration of in-depth possible future development 
of similar applications. There was no discussion on how to couple between MR, IoT 
devices, and fog/cloud computing platforms for any similar applications.

As a result, this motivated us to develop a general domain model that can help 
integrate all the three pillars (i.e., MR, IoT devices, and fog/cloud), illustrate the 
benefits of their integration, and clarify how each one has its advantages and how 
they complement each other. This paper also presents the domain model as a con-
crete layered model that considers the different issues on each layer and their inter-
actions. In addition, the model ensures that the layers are designed in a decoupled 
manner to give the applications more interoperability in the future and the extensi-
bility for new futuristic technologies.

3  The proposed MRIoEF domain model

This paper defines a domain model of MR coupled with the IoE Infrastructure 
using fog computing to build MR applications MRIoEF. The IoT domain concepts 
and MR domain concepts are analyzed and identified to correlate them and further 
engage them into the Fog domain concepts as one model. This model will enable the 
interaction with IoT devices through fog computing and provide the applicability of 
real-time MR applications with low latency between MR actions and IoT events.

The central architecture of the proposed MR domain model is based on IoE and 
fog/cloud computing platforms. As shown in Fig. 4, the model consists of three main 
layers: IoT, MR, and fog/cloud. The MRIoEF domain model is designed to be as 
generic as possible by developing it as a methodology-independent model to facili-
tate its reusability in different environments. MRIoEF main layers are described in 
brief before going into the details of each of them:

1- The IoT layer includes the components representing both the physical hardware 
and resources of the IoT device.

Fig. 3  MRIoE and MR supported by fog computing
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2- The MR layer includes the components representing the MR components, its 
resources, the scene, and the object related to the MR entity.

3- The fog/Cloud Computing layer includes the fog computing components as 
the various profiles of the user, services, processes, and data entered the system 
through IoT devices and the connection to the cloud.

The relationships between the layers of those main layers are shown in Fig.  4, 
which complete the connection concepts between the components and indicate how 
they could interact with each other in an organized way. A human interacts with the 
system through the MR device, not with the IoT device directly, which will increase 
the system’s reliability and provide protection of the IoT device. IoT devices reveal 
their capabilities to the human user via the interaction designed in the MR applica-
tion. According to the developed application, connections to the fog component are 
performed either by the IoT virtual entity or MR entity. Also, the fog component is 
responsible for connecting to the cloud if needed.

3.1  IoT layer

Figure 5 shows the components of the IoT layer of the proposed MRIoEF domain 
model, which represents all the aspects of the IoT device found in the system. It is 
organized into four components: IoT device, virtual entity, physical resources, and 
virtual resources.

Fig. 4  MRIoEF Domain Model Layers
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3.1.1  IoT device component

Some physical objects may contain an embedded system and are called smart 
devices in the industry. If this embedded system architecture follows an IoT schema, 
it is the first component of IoT components and is described as an “IoT Device.” It 
represents the physical part of the IoT device, which is the central part of the whole 
layer. The IoT device may vary according to the application at hand, especially when 
working with MR applications. Unlike previous work, we have separated the IoT 
device’s physical parts from the processes attached to it, as we have assigned it to 
the fog components. As shown later in the model layers discussion, this separation 
yields better control of the processes.

3.1.2  Physical resources component

This component represents the IoT device’s physical resources, including network 
& location resources, sensor, actuator, storage, and process node. Some IoT devices 
have a simple data model and have constraints on bandwidth, memory, processing, 
and power. While other IoT devices, the big things, have complex data models and 
may include smaller IoT devices inside them. Examples of types of IoT devices are 
shown in Fig. 6. In this sense, the IoT device component is represented as a complex 
entity that may contain other IoT devices for more abstraction and simplicity in the 
design.

Each IoT device has main attributes that describe it semantically, like serial num-
ber, manufacture, uniform resource identifier (URI), firmware version, application 
programming interface (API) hyperlink, etc. The most critical attribute would be the 
“Physical Resource” described in the domain model as a separate component. The 
physical resource component uses the inheritance concept in object-oriented pro-
gramming (OOP). Inheritance in OOP allows children classes to inherit attributes 
from parent classes; similarly, physical resource components can be considered as 
parent classes, and all the other components inherit attributes from it. “Sensors” and 
“Actuators” are considered the essential resource components as they represent the 
input/output (IO) in embedded systems.

Fig. 5  IoT layer of the MRIoEF domain model
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Another important resource in IoT devices is network resources that may support 
TCP/IP stack or not. Regardless of its type, it must contain all the attributes that 
describe supported protocols in any layer of the OSI network model and the capabil-
ity of bridging between two different protocols.

The IoT devices may contain other types of resources it wants to expose, like 
“processing” and “storage” resources to provide extra resources to the system in 
some situations. For example, the storage of IoT devices can be used as a backup 
in any failure in the network. The processing power of the IoT device can be used 
as an extra processing resource for some remote execution for some applications 
as a service. For example, a heavy processing application needs to be executed on 
a smartphone; the smartphone will use the extra processing resources exposed by 
nearby devices in a distributed manner.

3.1.3  “Virtual entity” component and “virtual resources” component

Each IoT device and its resources components have “Virtual Entity” and “Virtual 
Resources,” respectively. These components, having the information of the physical 
entities, expose the functionalities of the IoT device and the resources as an API that 
can easily connect. In addition to that, the API description identifies its input and 
output semantically and the supported technologies by this API like SOAP, REST, 
GraphQL, OData, etc.

The separation of the IoT device component and its virtual entity, also, the sepa-
ration of a resource component and its virtual resource results from using the IoE 
schema [29]. And this separation facilitates adding more application coverage and 
gives an abstraction level in the proposed solution model. Some applications can use 
an entirely virtual device as if it was a real one. For example, a virtual TV, which 
has a lot of functions in its APIs, can be used as an actual TV with a subscription on 
cable channels or any other subscription application, as shown in Fig. 7.

Fig. 6  Categories of IoT devices based on data model complexity
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3.2  MR layer

This layer represents the MR concepts, including the scene, the object(s), the entity, 
the marker, the recognizer, and the renderer (Fig. 8). The MR entity represents the 
MR device it points to. Each MR device has a component called the “MR Entity” 
component used to register and manage two main components of mixed reality, 
which are: “Recognizer/Tracker” and “Renderer.” These are the input and output of 
the MR device.

Like any device that contains an embedded system with network resources and 
can be classified as an IoT device, the mixed reality device is an IoT device, and its 
resources could be used in IoT networks. However, for more clarity, simplicity, and 
focusing on the proposed domain’s target, this connection is not shown explicitly.

The MR entity has an operating system (OS) that manages its resources and con-
nects with the fog or cloud layer to serve the MR applications installed on this OS. It 
could connect with IoT devices directly when satisfying two conditions: They both 
have the same communication protocol. The IoT device is categorized as a com-
plex model because the complex IoT model can handle more than one connection 
asynchronously.

The MR applications that depend on the IoT/IoE devices (called MRIoE applica-
tions) are typically handled as processes on the operating system of the MR device. 
However, some of these applications can follow distributed processing architecture 
supported by our proposed model. The application processing is handled through 
this architecture as two main processes; one is executed on the MR entity while the 
other is executed on the fog. These processes are communicated through remote pro-
cedure call (RPC) protocols.

The “MR process” component is responsible for mapping the real-world objects 
into the proper virtual object, and it is executed into four main steps. Figure 9 shows 
these steps applied to an example which calls four different MRIoE applications in 
one scene: a light bulb control [in blue shade], a toaster control [in yellow shade], 
a smart water faucet control [in green shade], and a coffee machine control [in red 

Fig. 7  A virtual TV having a subscription to Netflix
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shade]. In this example, the MR scene adds four different virtual objects, where each 
object is generated from various applications selected and executed by the MR enti-
ty’s OS. The MR scene is ready for user gestures to trigger any action on IoT devices 
like toggling lights or preparing some coffee. The main steps of the MR process are 
performed as follows:

3.2.1  Step 1: Markers recognition

This step is responsible for recognizing the current scene and determining which 
application is meant to be opened and which object(s) inside this application to be 
rendered. This step is handled using the “Recognizer/Tracker” component by recog-
nizing the “Markers” components in this scene.

A “Marker” in MR could be one of the physical scene parts or an external part 
used to trigger some visual actions. In other words, it could be a frame, image, QR 
code, location, face, object, or another future marker. To initiate any recognizer 
installed on the MR entity and generate actions that affect the final MR scene. A dif-
ferent “Marker” component recognizes objects like shape, material, tags, and loca-
tion. The word “Marker” is known in object and surface recognizers. Still, different 
markers can be merged with other recognizers like a material marker and gradient 
color marker merged with a face recognizer in an application of virtual makeup 
from Dior [30], as shown in Fig. 10.

There are many categories of “Recognizer/Tracker,” such as object recognizer and 
face recognizer, which can execute sub-algorithms using the “Marker” recognizer 
components. This separation between recognizers and markers helps to improve the 
algorithms used separately and adds modularity to recognizers and markers that act 
as background services in the MR device’s OS. Another category of recognizers 
is surface recognizers, which accurately detect surfaces like floor, wall, and other 
flat surfaces. It also gives the depth of each physical object and the scene’s lighting 
conditions, which leads to a more accurate intersection between virtual objects and 
real objects. The last category of recognizers supported by our framework is gesture 

Fig. 8  MR layer of the MRIoEF domain model



10671

1 3

Toward a mixed reality domain model for time‑Sensitive…

Fig. 9  Steps of MR process with an example
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recognizer which enables the virtual objects to interact with the user in front of the 
MR device (unlike tapping on a touch screen in the AR applications).

3.2.2  Step 2: Extract MR meta‑objects

We want to discuss the “Recognizer/Tracker” component in more detail as it is criti-
cal to MR applications. The “Recognizer/Tracker” component extracts the mark-
ers from the scenes as meta-objects that describe the coordinates of the objects in 
the scene and the output properties of each marker, if found, to detect which MR/
MRIoE application is the target, as shown in Algorithm (1). The MRMetaObject 
contains the coordinates of the object and a list of registered attributes extracted by 
each marker recognizer. It should be noted that a variable d was used to solve the 
slight difference in output coordinates of each recognizer which may generate dupli-
cation of the same object in the following stages.

Fig. 10  Virtual Makeup merging material and gradient color markers with a face recognizer
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3.2.3  Step 3: Executing MR/MRIoE application(s)

After determining the marker found in the scene, the targeted MR/MRIoE 
application(s) is executed. These applications are installed on the “MR Entity” com-
ponent and accomplished by filtering all access points of all installed applications 
with the list of MRMetaObject returned from the “Recognizer/ Tracker” component.

It is possible to run multiple applications at the same time on the same scene. 
Each application executes its logic and generates a 3D-MRObject that is ready to be 
rendered; however, some activities in the MR applications may need the previous 
state of the 3D-MRObject generated before and sent inside the MRMetaObject by 
the “Recognizer/ Tracker” component. The 3D-MRObjects are represented as XML 
or JSON files with other extra files like texture files sent to the MR process’s next 
step, the “Renderer” component, to finalize the rendering of generated objects into 
“MR Scene.”

Like any modern OS running multiple applications, each application has per-
missions to access the resources and APIs provided by this OS. The “MR Entity” 
provides the essential resource in the framework, which is the communication with 
the fog that gives a bunch of new APIs to MR/MRIoE applications which will be 
described in detail in the next section.

3.2.4  Step 4: Rendering the objects

The “Renderer” component includes two stages, as shown in Fig. 11, which are used 
to render the 3D-MR objects and merge them with the physical object to polish the 
MR scene and make the rendered objects look like real ones. The first stage is get-
ting 3D-MR objects generated by the MR/MRIoE applications and adding attributes 
to the objects based on the model profile to change the colors, contrast, color satura-
tion, texture filters, general graphics settings, and animation settings. According to 
the current user identified, all model profiles are stored on the fog, and the renderer 
uses only the selected profile based on this user. The “Renderer” starts rendering the 
objects from the different applications in one virtual scene after preparing all the 
data needed.

The second stage is merging the virtual objects with the real world using the sur-
face recognizer’s meta-data. It also hides from the virtual objects the parts inter-
sected with the physical objects, giving the user the best illusion and making it hard 
to discriminate between virtual and physical objects. Finally, it adds the virtual 
objects’ proper rotation, lighting, and shadows according to the attributes extracted 
by the surface recognizer and lighting estimation algorithms executed.

3.3  Fog/cloud computing layer

The Fog/Cloud computing components are responsible for executing the MR and 
IoT processes related to the application and storing the various user profiles. The 
Fog components are responsible for handling all the communications with the cloud 
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and sending the proper data reports to be held on the cloud. Figure 12 shows the fog/
cloud layer components in the domain model. It comprises the following compo-
nents: the profile, service, process, data report, raw data entity, and cloud connector.

Fig. 11  Stages of the renderer component

Fig. 12  Fog/Cloud layer of the MRIoEF domain model



10675

1 3

Toward a mixed reality domain model for time‑Sensitive…

3.3.1  Privacy & security profile component

This component represents the various user profiles. Each user using the MR devices 
has a profile stored on the fog storage area. The user profile is organized into three 
different profiles according to the information and functions intended by these pro-
files: Models Profile, Performance Profile, and Privacy & Security Profile. A sepa-
rate component is developed for each profile as follows:

• The “Models Profile” component helps the “Renderer” components to get color 
schema, text language, graphic settings, and other settings that can change the 
models during rendering.

• The “Performance Profile” component helps the “Renderer” cache the first stage 
of rendering to reduce the overall time of the rendering process. It also helps the 
“Recognizer/ Tracker” component by using the powerful processing resources in 
the fog instead of the MR device and allows the recognizers to perform faster by 
reducing the number of targets that can be recognized using a real-time location 
updater.

• The “Privacy & Security Profile” component filters all the data in/out from the 
fog with user restrictions using the meta-data of each record. It also has the 
encryption keys, the authentication database, and the authorization schema.

Other profiles can be added to this component. Each user profile data affects the 
attributes of the Fog components and the MR components depending on the current 
user preferences. This profile, however, can be synchronized with the cloud to be 
imported on other authorized fog computers.

3.3.2  Raw data entity component

Each “Virtual Entity” component in the IoT layer has a driver on the fog that com-
municates with the virtual entity using the proper protocols that fit the network 
resources of the IoT device and with the current communication channel properties 
between the IoT device and the fog. The driver can be downloaded automatically 
from the cloud to the fog after reading the properties of the “Virtual Entity” com-
ponent. This driver adds a container, called the “Raw Data Entity” component, to 
collect all data from/goes to the IoT virtual entity. It also acts as a translator between 
the “Raw Data Entity” and the “Virtual Entity” components using a powerful exten-
sion for programming languages called the reactive extension (Rx) [31–33].

The “Raw Data Entity” component has a template in the fog, based on the type of 
the IoT “Virtual Entity” component, to bind it with the suitable “IoT Process” com-
ponent, which adds a variety of functionalities based on the features supported by 
the “Virtual Entity” component. The driver of the virtual entity can bring new fea-
tures not supported by the “IoT Process” component, and therefore, the IoT process 
exposes it as RPC.
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3.3.3  Data report component

The “Data Report” component generates reports using filters of the “Privacy & 
Security Profile” component. These reports can be sent to the cloud for synchro-
nization between the fog and the cloud. It also generates logs for system tracking, 
and it can be used to re-train some algorithms for system improvement. Finally, the 
“Cloud Connector” component is used to connect different cloud vendors for dif-
ferent usages. It saves the credentials of each cloud and the relation between each 
application and each registered cloud.

3.3.4  MR processes distributed computation

As mentioned before, the MR application can follow a distributed architecture that 
distributes the execution into two parts; one on the “MR Entity” and the other on 
the fog as an “MR Process” component connected using RPC. The MR process is 
downloaded from the cloud to the fog storage the first time the MR entity requests it 
to the fog; otherwise, the MR process is loaded from the local storage of the fog if 
the exact timestamp and version of the requested process are stored on the fog.

The applications following this architecture are designed for scenarios when the 
resources of the MR entity are insufficient or may consume the power of the MR 
device faster than usual. In that manner, the light part of the process will be exe-
cuted on the MR entity while the heavy part executed on the fog. For example, a rich 
MR simulation application performed on an MR entity that follows this architecture 
could be divided. The simulation algorithms are executed on the fog while the other 
parts are executed on the MR entity because simulation consumes a lot of process-
ing power and memory on the MR entity. These parts running on the MR entity 
could focus on rendering the simulated objects produced from the fog execution of 
the simulation algorithms when requested by RPC with targeted parameters.

The “MR Process” components pose the greatest danger on the fog if it has mali-
cious code, so each process should run in a sandbox to avoid memory corruption or 
other execution attacks. It also should be given limited resources via permissions 
requested by the application and filtered by the cloud and the “Privacy & Secu-
rity profile” component. The process manager in the fog component has an API 
that checks the request’s authorization which can spawn or terminate any process, 
whether it is an IoT process or an MR process. Each process can communicate with 
other processes using Inter-process communication (IPC) like named pipes or mes-
sage queuing [34].

3.3.5  MR communicating IoT through fog components

Another possible architecture of the fog components is when the MR application 
executes totally on the “MR Entity” component; however, it requests the data from 
the fog without executing the “MR Process” on the fog. This architecture will pre-
sent some IoT processes as a service. The fog computer has a service broker to ease 
the real-time data flow between the IoT device and the MR device to cover such 
architecture.
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Each IoT service publishes its data on a topic that allows subscribers to follow 
multiple services simultaneously. For example, as shown in Fig. 13, if an MR appli-
cation called “app1” controls one model of smart bulbs, it could be on the topic 
“ light.model1. ∗ ”. Another application called “app2” that controls all smart bulbs 
could be on the topic “ light. ∗ . ∗ ”; while to control a bulb without knowing its 
model could be on the topic “ light. ∗ .ID ”. Also, the fog computer has a service 
orchestrator to compose multiple services as one service to add more functions sup-
ported by fog and save the processing power of MR devices.

3.4  Model layers integration

Figure 14 shows the overall model layers integrated as a single model. The interac-
tion between the layers is shown as directed edges between them. It should be men-
tioned that red components describe the physical elements, “human” who uses “MR 
device” and directing the device to see a “physical object” in reality which is called 
in the domain model “Physical scene.” Each physical scene the human saw through 
the MR device will be processed to extract the physical objects that have an applica-
tion on the MR device’s OS, whether it is an MR application or an MRIoE applica-
tion. For MR applications, the physical object will be recognized using marker-less 
recognizers or marker recognizers. Then, the proper MR object is rendered in “MR 
scene,” which is associated with the physical object. While in MRIoEF applications, 
the connection with the IoT device is added inside this object which means adding 
the targeted functionalities of the system. The following sections will explain the 
three main layers of the domain model in more detail.

3.5  Functional model

Figure 15 summarizes the functional model of the proposed domain model and how 
the data flows from a layer to another. The functional model adds a layer not men-
tioned before in the domain model, “Network hub.” The fog computer can be used 

Fig. 13  Example of publisher–subscriber architecture in fog computer
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as a bridge between the different communication protocols. For example, a car, clas-
sified as a complex IoT device, can be a host for itself without the need for fog. Still, 
it has a LoRa connection only; to connect it with a Wi-Fi MR device, we must use 
the fog computer as a Wi-Fi–LoRa bridge.

The “Network Hub” also has a location updater to update the location of each 
device connected with the fog using indoor positioning system helpers or using a 
reference location. The work in [35] uses a relational localization between MR and 
IoT devices using 3D coordinates and rotation of devices.

Fig. 14  The Proposed MRIoEF Domain model

Fig. 15  Functional Model of the MRIoEF Domain Model
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3.6  Extensibility

Many different applications can benefit from the proposed MRIoEF domain model 
or at least some of its various components that cover the application requirements. 
But the target is not to use some components and leave some; on the contrary, the 
target is to use all the components to give the applications more interoperability in 
the future and the extensibility for new futuristic technologies. Some components 
are inspired by [36], and IoE models are the main secret behind implementing this 
framework due to the powerful abstraction of everything and their interaction.

4  Model implementation and evaluation

The MRIoEF domain model is designed to be generic; by developing it as a meth-
odology-independent model to facilitate its reusability in different environments. 
To illustrate the value of the proposed domain model, we have built a real-time 
prototype using this model called “My Hives.” The objective is to implement the 
model and its components in a real environment and describe their interaction. 
The application is a part of the R&D department in GaMP [37] to test the MRI-
oEF domain model and ensure the capability of using the model in future projects. 
Another objective of this project is to develop the internal GaMP services to follow 
this domain model for fast delivery and ease of development of IoT projects that 
require fog computing. This project is also used to ensure the applicability to extend 
the applications with MR technologies quickly and smoothly when this technology 
becomes a part of our life in the near future.

4.1  Prototype description

The system used as a prototype of the proposed model in this paper is a monitoring 
system for a beehive as part of the company’s current project called “My Hives” 
[38]. This project aims to prevent any problems causing bees’ death and reduce the 
probabilities of bees’ extinction. This project is supported by the Financial Instru-
ment for the Environment (LIFE) program by the European Union (EU) [39]. Fig-
ure  16 shows the system overview of the investigated application, which collects 
the necessary data from hives using custom-designed IoT devices. This data is sent 
using LoRa protocol to a fog computer. To prove that the fog computer can serve 
more than one application, we have added another application that helps an old 
glasshouse system. This second application uses a programmable logic controller 
(PLC) connected to the fog computer using a 2.4 GHz 802.11n Wi-Fi access point. 
The MR device is connected to the fog computer using 5 GHz 802.11ac Wi-Fi. The 
fog computer is connected to the Internet with Ethernet as a primary connection and 
LTE as a backup connection.
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4.2  Hardware components

The hardware components used in the case study are composed of various IoT 
devices, the fog computer, and the MR device with their interconnections and con-
nections to the external world. The IoT layer uses the LoPy4 board [40] by Pycom 
[41], connected to many hardware devices like temperature and humidity sensors, 
weight sensors, small microphones, GPS, Gyroscope, and accelerometer. One 
advantage of Pycom boards is that the primary development programming language 
is micro-python, which supports different programming paradigms. Moreover, it has 
rich built-in libraries like experimental thread library, various data structures, and 
networking libraries.

The fog layer consists of two parts, as shown in Fig. 17. The first part uses the 
FiPy board [42] by Pycom as the network hub of the fog computer because it sup-
ports five types of networks: Wi-Fi, Bluetooth, LoRa, Sigfox, and LTE-M. The 
FiPy board is connected using SPI protocol with Jetson Nano Developer Kit [43] by 
Nvidia [44], which has Quad-core ARM A57, 4 GB DDR4 RAM, and 128 CUDA 
cores used for heavy processing ML algorithms and other layers discussed in the 
fog components. A gigabit Ethernet interface is the primary interface for Internet 
connection.

Today’s MR experience requires an expensive headset with the needed sensors 
and cameras like Microsoft HoloLens, as shown in (Fig. 2a) and Magic Leap [45]. 
We have used a custom MR device built as a prototype to test the domain model to 
avoid such a cost. This device has three main parts, as shown in Fig. 18. The first 
part is a laptop 2-in-1 Dell XPS 13 inch with CPU Intel Core i7-1065G7 Quad-core 
1.3 GHz, 16 GB DDR4, and 512 GB PCIe-NVMe × 4 SSD. The second part is a 
Razer Core X external GPU platform with GPU Nvidia RTX 2060 Super, connected 

Fig. 16  “My Hives” system overview
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with the laptop using Thunderbolt 3. The third part is a Microsoft Kinect for Win-
dows connected to the laptop using USB 3.

4.3  Domain model implementation

To demonstrate the domain model components implemented in this project, it 
should be mentioned that Figs. (19, 20, and 21) are color-coded with the same color 
used in the domain model to show how to map a generic domain model to a real 
implementation with different technologies used for each layer.

It is better to start with the IoT layer to illustrate how IoT devices interact with 
the framework. In this project, we have two different IoT devices; the main device 
is a new device (supporting the IoE scheme in the framework) which is the beehive 
node, while the other one is an old IoT device that follows its own scheme but has an 
application on the fog that handles the integration with the framework. In this man-
ner, we will focus on implementing the first device only.

The “Virtual Entity” component, representing one of the beehive nodes, is 
described as a JSON response where all functionalities and virtual resources are 
exposed as a REST API. To test the request on the device without a gateway, we 
can use the Wi-Fi and HTTP server on the device, and the request will be like 

Fig. 17  Hardware used in the case study—Fog Layer

Fig. 18  Hardware used in the case study—MR layer
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“http:// < IP-Address > /Hive/” or “http:// < IP-Address > /IoT/”. When the device 
is requested on the endpoint “Hive,” the response has readings of each “Virtual 
Resource” on the device. Each connected sensor and network resource is exposed as 
a “Virtual Resource” and has a universally unique identifier (UUID) to help the fog 
and the cloud register new resources dynamically in data logs.

Figure  19 shows how the IoT devices follow the framework by building the 
resource manager to translate physical resources to virtual resources. Also, it shows 
the network manager for additional functions needed to communicate with other 
devices. On top of them, embedded OS, which reads, writes, controls them by the 
endpoints controlling the virtual entity like REST API, LoRa broadcast API, and 
Bluetooth serial commands for initial configuration by the user.

Fig. 19  IoT node abstraction

Fig. 20  Fog computer abstraction for My Hives application
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The fog computer collects data from IoT devices and stores the data for an entire 
month in a time-series database (the “Raw Data Entity” in the framework), giving 
less latency to the most frequent queries requested from end-users. After that, data is 
distributed to three processes: one predicts the behavior of bees by their sound using 
an ML algorithm, one prepares a data report that will be sent to the cloud using the 
cloud connector, and one handles other applications’ logic. All data sent to the cloud 
are afterward filtered by the user privacy profile, which blocks the location of IoT 
devices by default. The MR devices connect with the fog computer using a gRPC 
service, which connects to other services internally. Figure 20 shows the fog com-
puter abstraction to show how it follows the framework.

This application currently has a single user for which it collects data from many 
IoT devices it owns. In other words, it’s a single application serving a single user on 
multiple devices, which is one type of many applications that can be performed by 
the fog computer, not the only one. However, as proof that the fog can serve multiple 
users, we have added another beehive that belongs to another user and traced how 
the fog computer behaves on multiple-user applications. We have also implemented 
another application that controls and monitors a glasshouse to check for multiple 
applications on one fog. We have also added a simple application that follows the 
distributed architecture of dividing the application to MR entity—fog layers as men-
tioned in Sect. 3.3.4, playing some virtual butterflies and saving the last position for 
each butterfly.

The OS used on our custom MR device is Microsoft Windows 10 × 64. On top, 
we use Microsoft Kinect SDK 2.0 and Interactive Virtual Object Engine (IVO) by 
Zugara [46], which is a gesture recognizer used in AR/VR environments to interact 
with 3D virtual objects using Microsoft Kinect, also we used a facial recognizer 
built with OpenBR [47] and object recognizer built with Detectron2 [48] by Face-
book. Each recognizer is called and handled by a separate thread using the.Net core 
framework by C# programming language and Task Parallel Library (TPL) to extract 
MR Meta-objects in a concurrent list. The app selector is used to call the proper 
application with suitable parameters. The MR application uses other components 

Fig. 21  MR device abstraction
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such as the network manager to communicate with the fog computer, the profile 
manager to get authorized resources from the fog, and the application settings. It 
may be using the MR model cache for more performance and less latency. Figure 21 
shows the MR device construction.

4.4  MyHives System Results

In this section, we will describe an important feature of MyHives system, which 
is identifying a beehive using a QR code, as shown in Fig. 22. Using a QR code to 
identify an object is the fastest way to identify similar objects as each object has a 
different QR code. Each beehive has its own IoT device that will be used to monitor 
it. The beehive will be our test subject in this scene, and the IoT device will provide 
us with some data about the status of the beehive as the data shows a different MR 
response each time. Figure 23 shows the test beehive in different states with simu-
lated data from its IoT device.

The experiment scenario consists in changing the data in our test subject using 
some python scripts on its IoT device to simulate different states in a specific time—
range between 5 and 20  s—then measure the end-to-end (E2E) latency when the 
data in the IoT device is sent, and the MR device renders the scene; this is called 
the time to virtual element (T2VE), as is described in [49, 50]. The performance 
evaluation compares three different configurations that can use this scenario. The 
first configuration uses Microsoft Azure cloud instance, and the second configura-
tion uses a fog computer to transmit IoT devices data to MR devices only, while the 

Fig. 22  MyHives MR application test scene
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third configuration uses a fog computer like the second one but in addition to MR 
scene rendering profiles shown in Sect. 3.2.

Every experiment was tested for two hours on the same configuration in order 
to avoid any network congestion. Figure 24 shows the T2VE in the test scene with 
three different configurations: using cloud only, using cloud and fog, and using fog 
for rendering the MR object. From the figure, we can see that using the third con-
figuration, which performs the MR object rendering on the fog instead of the cloud, 
gives the minimum latency value which is less than the other two configurations. It 
also solves the jitter problem produced when using the cloud only, which is shown 
as the sparks in the latency values, explained as the fetching time for the correct 

Fig. 23  Different states of the test subject in MyHives MR application

Fig. 24  T2VE for the test scene
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object in the background every time we change the state of the object. These sparks 
totally disappear when using the fog to help MR for rendering and caching.

Another experiment scenario targets measuring the performance metrics when 
many MR objects are available in the scene. We use the script on another 25 bee-
hives simultaneously and a 4G router used to monitor the total bandwidth required 
by devices. Figure 25 shows that each virtual object will take its own share from the 
bandwidth, but when using the rendering profiles, the bandwidth is reduced and, at 
some point, changed to constant because the heavy part of the scene was rendered 
in the fog. This part directly affects the processing usage in the MR device, and the 
frame rate dropping in the scene does not exist due to the CPU bottleneck solved.

It should be mentioned that the framework provides a better abstraction for each 
layer and decoupling the code for more business logic was easy, also the ease of 
changing any component with different technologies. We have also performed a 
quick survey on number of volunteer users that are required to use the model to 
build their application and report their experience with the model. One test user 
said: “It’s nice to provide tools control which data I want to send to the cloud,” this 
was a benefit of using fog computer and not losing any QoE in the application. The 
problems faced in development are the debugging, testing, benchmarking tools that 
are still not mature enough with the framework and need some improvements, espe-
cially for the applications using test-driven development (TDD) approaches.

Fig. 25  Performance metrics in the second test scenario
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5  Conclusion

This paper has introduced a general domain model capable of dealing with the 
design of various applications based on IoT, MR, and fog computing technologies 
and gaining the benefits of each one. The domain model can cover many different 
IoE applications, even with physical devices (IoT devices) or with virtual ones. It 
also supports changing the recognition algorithms used at the MR level and using 
them as a component for more generic respect. Finally, the fog layer is used as a 
host for heavy resource-intensive applications and preserves user data privacy. 
Based on the real-time experiment that applied this domain model, the fast deliv-
ery of system responses to user actions. It also showed the ease of development 
for the IoT-based applications (as stated by the application developers) requiring 
fog computing. The project also clearly illustrates the capability to extend the 
applications with MR technologies in a short time and smooth way.

Many different adaptations, tests, and experiments have been left for the future 
due to the diversity of applications covered by this framework. Also, the framework 
still needs better tools for component tests, integration tests, and benchmarking.
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