Skip to main content
Log in

A survey on event-driven and query-driven hierarchical routing protocols for mobile sink-based wireless sensor networks

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

The sink mobility in wireless sensor networks (WSNs) brings new challenges specifically while designing the routing protocols. The advertisement of the mobile sink location to the sensor nodes is one of these challenges that is a core problem for any routing protocol. To deal with this issue, several hierarchical routing protocols have been developed for different mode of data transmissions, i.e., event-driven and query-driven, in mobile sink-based WSNs (MSWSNs). A routing protocol considers a particular data transmission mode depending on the application requirement. Routing protocols designed for event-driven scenarios do not ensure their efficient working in query-driven scenarios and vice versa. Thus, each application requires some specific designing of routing protocol. By considering the impact of data transmission mode on routing protocols, this paper makes the very first attempt to provide a comprehensive survey on hierarchical routing protocols designed for query-driven and event-driven data transmission scenarios. We provide a comparative study by discussing and describing their functionalities along with their advantages, disadvantages and key performance parameters. To help readers understand the evolution within each category, the relationship among different routing protocols is outlined with detailed descriptions as well as in-depth analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29

Similar content being viewed by others

References

  1. Agrawal A, Singh V, Jain S, Gupta RK (2018) Gcrp: grid-cycle routing protocol for wireless sensor network with mobile sink. AEU Int J Electron Commun 94:1–11

    Article  Google Scholar 

  2. Al-Karaki JN, Kamal AE (2004) Routing techniques in wireless sensor networks: a survey. IEEE Wirel Commun 11(6):6–28

    Article  Google Scholar 

  3. Amini M, Karimi A, Esnaashari M (2020) Energy-efficient data dissemination algorithm based on virtual hexagonal cell-based infrastructure and multi-mobile sink for wireless sensor networks. J Supercomput 76:150–173

    Article  Google Scholar 

  4. Amutha J, Sharma S, Sharma SK (2021) Strategies based on various aspects of clustering in wireless sensor networks using classical, optimization and machine learning techniques: Review, taxonomy, research findings, challenges and future directions. Comput Sci Rev. https://doi.org/10.1016/j.cosrev.2021.100376

    Article  MathSciNet  Google Scholar 

  5. Bagga N, Sharma S, Jain S, Sahoo TR (2015) A cluster-tree based data dissemination routing protocol. Procedia Comput Sci 54:7–13. https://doi.org/10.1016/j.procs.2015.06.001

    Article  Google Scholar 

  6. Bhattacharyya D, Kim TH, Pal S (2010) A comparative study of wireless sensor networks and their routing protocols. Sensors 10(12):10506–10523

    Article  Google Scholar 

  7. Bhushan B, Sahoo G (2019) \(e^{2} sr^{2}\) : An acknowledgement-based mobile sink routing protocol with rechargeable sensors for wireless sensor networks. Wirel Netw. https://doi.org/10.1007/s11276-019-01988-7

    Article  Google Scholar 

  8. Chang WL, Zeng D, Chen RC, Guo S (2015) An artificial bee colony algorithm for data collection path planning in sparse wireless sensor networks. Int J Mach Learn Cybernet 6(3):375–383

    Article  Google Scholar 

  9. Chen TS, Tsai HW, Chang YH, Chen TC (2013) Geographic convergecast using mobile sink in wireless sensor networks. Comput Commun 36(4):445–458

    Article  Google Scholar 

  10. Dey N, Ashour AS, Shi F, Fong SJ, Sherratt RS (2017) Developing residential wireless sensor networks for ecg healthcare monitoring. IEEE Trans Consum Electron 63(4):442–449

    Article  Google Scholar 

  11. Dhungana A, Bulut E (2021) Energy balancing in mobile opportunistic networks with wireless charging: single and multi-hop approaches. Ad Hoc Netw. https://doi.org/10.1016/j.adhoc.2020.102342

    Article  Google Scholar 

  12. Di Francesco M, Das SK, Anastasi G (2011) Data collection in wireless sensor networks with mobile elements: A survey. ACM Trans Sensor Netw (TOSN) 8(1):1–31. https://doi.org/10.1145/1993042.1993049

    Article  Google Scholar 

  13. Dominguez-Morales JP, Rios-Navarro A, Dominguez-Morales M, Tapiador-Morales R, Gutierrez-Galan D, Cascado-Caballero D, Jimenez-Fernandez A, Linares-Barranco A (2016) Wireless sensor network for wildlife tracking and behavior classification of animals in doñana. IEEE Commun Lett 20(12):2534–2537

    Article  Google Scholar 

  14. Donta PK, Amgoth T, Annavarapu CSR (2020) An extended aco-based mobile sink path determination in wireless sensor networks. J Ambient Intell Human Comput 12(10):8991–9006

    Article  Google Scholar 

  15. Donta PK, Rao BSP, Amgoth T, Annavarapu CSR, Swain S (2020) Data collection and path determination strategies for mobile sink in 3d wsns. IEEE Sensors J 20(4):2224–2233. https://doi.org/10.1109/JSEN.2019.2949146

    Article  Google Scholar 

  16. Erman AT, Dilo A, Havinga P (2012) A virtual infrastructure based on honeycomb tessellation for data dissemination in multi-sink mobile wireless sensor networks. EURASIP J Wirel Commun Netw 2012(1):1–27

    Article  Google Scholar 

  17. Galmés S (2018) Optimal routing for time-driven eh-wsn under regular energy sources. Sensors 18(11):4072

    Article  Google Scholar 

  18. Gharaei N, Bakar KA, Hashim SZM, Pourasl AH (2019) Inter- and intra-cluster movement of mobile sink algorithms for cluster-based networks to enhance the network lifetime. Ad Hoc Netw 85:60–70

    Article  Google Scholar 

  19. Ghosh N, Sett R, Banerjee I (2017) An efficient trajectory based routing scheme for delay-sensitive data in wireless sensor network. Comput Electr Eng 64:288–304

    Article  Google Scholar 

  20. Gu Y, Ren F, Ji Y, Li J (2016) The evolution of sink mobility management in wireless sensor networks: A survey. IEEE Commun Surv Tutor 18(1):507–524

    Article  Google Scholar 

  21. Guerroumi M, Pathan ASK (2018) Hybrid data dissemination protocol (hddp) for wireless sensor networks. Wirel Netw 24(5):1739–1754

    Article  Google Scholar 

  22. Gutam B, Donta PK, Sekhar C, Hu YC (2021) Optimal rendezvous points selection and mobile sink trajectory construction for data collection in wsns. J Ambient Intell Human Comput. https://doi.org/10.1007/s12652-021-03566-2

    Article  Google Scholar 

  23. Ha I, Djuraev M, Ahn B (2017) An optimal data gathering method for mobile sinks in wsns. Wirel Pers Commun 97:1–17. https://doi.org/10.1007/s11277-017-4579-3

    Article  Google Scholar 

  24. Habib MA, Saha S, Razzaque MA, Mamun-or-Rashid M, Fortino G, Hassan MM (2018) Starfish routing for sensor networks with mobile sink. J Netw Comput Appl 123:11–22. https://doi.org/10.1016/j.jnca.2018.08.016

    Article  Google Scholar 

  25. Hamida EB, Chelius G (2008) A line-based data dissemination protocol for wireless sensor networks with mobile sink. In: Communications, In: 2008. ICC’08. IEEE International Conference on, pp 2201–2205. IEEE

  26. Hammoudeh M, Al-Fayez F, Lloyd H, Newman R, Adebisi B, Bounceur A, Abuarqoub A (2017) A wireless sensor network border monitoring system: deployment issues and routing protocols. IEEE Sens J 17(8):2572–2582. https://doi.org/10.1109/JSEN.2017.2672501

    Article  Google Scholar 

  27. Hawbani A, Wang X, Kuhlani H, Karmoshi S, Ghoul R, Sharabi Y, Torbosh E (2018) Sink-oriented tree based data dissemination protocol for mobile sinks wireless sensor networks. Wirel Netw 24(7):2723–2734

    Article  Google Scholar 

  28. Jain S, Pattanaik K, Shukla A (2019) Qwrp: Query-driven virtual wheel based routing protocol for wireless sensor networks with mobile sink. J Netw Comput Appl. https://doi.org/10.1016/j.jnca.2019.102430

    Article  Google Scholar 

  29. Jain S, Pattanaik KK, Verma RK, Bharti S, Shukla A (2021) Delay-aware green routing for mobile-sink-based wireless sensor networks. IEEE Internet Things J 8(6):4882–4892. https://doi.org/10.1109/JIOT.2020.3030120

    Article  Google Scholar 

  30. Jain S, Pattanaik KK, Verma RK, Shukla A (2019) Qrrp: A query-driven ring routing protocol for mobile sink based wireless sensor networks. In: TENCON 2019 - 2019 IEEE Region 10 Conference (TENCON), pp 1986–1991. https://doi.org/10.1109/TENCON.2019.8929714

  31. Jain S, Pattanaik KK, Verma RK, Shukla A (2021) Edvwdd: Event-driven virtual wheel-based data dissemination for mobile sink-enabled wireless sensor networks. J Supercomput. https://doi.org/10.1007/s11227-021-03714-7

    Article  Google Scholar 

  32. Jain S, Sharma S, Bagga N (2016) A vertical and horizontal segregation based data dissemination protocol. In: Emerging research in computing, information, communication and applications, pp 401–412. Springer

  33. Jain S, Venkatadari M, Shrivastava N, Jain S, Verma RK (2021) NHCDRA: a non-uniform hierarchical clustering with dynamic route adjustment for mobile sink based heterogeneous wireless sensor networks. Wireless Netw 27:2451–2467. https://doi.org/10.1007/s11276-021-02585-3

    Article  Google Scholar 

  34. Kafi MA, Djenouri D, Ben-Othman J, Badache N (2014) Congestion control protocols in wireless sensor networks: a survey. IEEE communi Surv Tutor 16(3):1369–1390

    Article  Google Scholar 

  35. Karimi A, Amini M (2019) Reduction of energy consumption in wireless sensor networks based on predictable routes for multi-mobile sink. J Supercomput. https://doi.org/10.1007/s11227-019-02938-y

    Article  Google Scholar 

  36. Karp B, Kung HT (2000) Gpsr: Greedy perimeter stateless routing for wireless networks. In: Proceedings of the 6th Annual International Conference on Mobile Computing and Networking, MobiCom ’00, pp 243–254. ACM, New York, NY, USA. https://doi.org/10.1145/345910.345953

  37. Khan AW, Abdullah AH, Anisi MH, Bangash JI (2014) A comprehensive study of data collection schemes using mobile sinks in wireless sensor networks. Sensors 14(2):2510–2548. https://doi.org/10.3390/s140202510

    Article  Google Scholar 

  38. Khan AW, Abdullah AH, Razzaque MA, Bangash JI (2015) Vgdra: a virtual grid-based dynamic routes adjustment scheme for mobile sink-based wireless sensor networks. IEEE Sens J 15(1):526–534

    Article  Google Scholar 

  39. Khan AW, Bangash JI, Ahmed A, Abdullah AH (2019) Qdvgdd: Query-driven virtual grid based data dissemination for wireless sensor networks using single mobile sink. Wirel Netw 25(1):241–253

    Article  Google Scholar 

  40. Khedr AM, Aziz A, Osamy W (2021) Successors of pegasis protocol: a comprehensive survey. Comput Sci Rev 39:100368

    Article  MathSciNet  Google Scholar 

  41. Kheroua L, Moussaoui S, Guerroumi M, Pathan ASK (2019) Two energy and time-efficient data dissemination protocols for large-scale wireless sensor networks. Telecommun Syst 70(1):81–96

    Article  Google Scholar 

  42. Konstantopoulos C, Pantziou G, Gavalas D, Mpitziopoulos A, Mamalis B (2012) A rendezvous-based approach enabling energy-efficient sensory data collection with mobile sinks. IEEE Trans Parallel Distrib Syst 23(5):809–817. https://doi.org/10.1109/TPDS.2011.237

    Article  Google Scholar 

  43. Kulik J, Heinzelman W, Balakrishnan H (2002) Negotiation-based protocols for disseminating information in wireless sensor networks. Wirel Netw 8(2/3):169–185

    Article  MATH  Google Scholar 

  44. Kumar DP, Amgoth T, Annavarapu CSR (2019) Machine learning algorithms for wireless sensor networks: A survey. Inf Fusion 49:1–25

    Article  Google Scholar 

  45. Kumar M, Pattanaik KK, Yadav B, Verma RK (2015) Optimization of wireless sensor networks inspired by small world phenomenon. In: 2015 IEEE 10th International Conference on Industrial and Information Systems (ICIIS), pp 66–70. https://doi.org/10.1109/ICIINFS.2015.7398987

  46. Kumar P, Amgoth T, Annavarapu CSR (2018) Aco-based mobile sink path determination for wireless sensor networks under non-uniform data constraints. Appl Soft Comput 69:528–540

    Article  Google Scholar 

  47. Kumar P, Chaturvedi A (2018) Fuzzy-interval based probabilistic query generation models and fusion strategy for energy efficient wireless sensor networks. Comput Commun 117:46–57

    Article  Google Scholar 

  48. Kumar V, Kumar A (2019) Improving reporting delay and lifetime of a wsn using controlled mobile sinks. J Ambient Intell Human Comput 10(4):1433–1441. https://doi.org/10.1007/s12652-018-0901-5

    Article  Google Scholar 

  49. Lee E, Park S, Oh S, Kim SH (2014) Rendezvous-based data dissemination for supporting mobile sinks in multi-hop clustered wireless sensor networks. Wirel Netw 20(8):2319–2336

    Article  Google Scholar 

  50. Lee J, Oh S, Park S, Yim Y, Kim SH, Lee E (2018) Active data dissemination for mobile sink groups in wireless sensor networks. Ad Hoc Netw 72:56–67

    Article  Google Scholar 

  51. Lee J, Teng C (2017) An enhanced hierarchical clustering approach for mobile sensor networks using fuzzy inference systems. IEEE Internet Things J 4(4):1095–1103

    Article  Google Scholar 

  52. Li B, Park S (2015) Maximizing the lifetime of wireless sensor networks using multiple sets of rendezvous. Mobile Information Systems 2015

  53. Liu X (2012) A survey on clustering routing protocols in wireless sensor networks. Sensors 12(8):11113–11153

    Article  Google Scholar 

  54. Liu X (2015) Atypical hierarchical routing protocols for wireless sensor networks: A review. IEEE Sens J 15(10):5372–5383

    Article  Google Scholar 

  55. Luo H, Ye F, Cheng J, Lu S, Zhang L (2005) Ttdd: Two-tier data dissemination in large-scale wireless sensor networks. Wirel Netw 11(1–2):161–175

    Article  Google Scholar 

  56. Mazumdar N, Nag A, Nandi S (2021) Hdds: Hierarchical data dissemination strategy for energy optimization in dynamic wireless sensor network under harsh environments. Ad Hoc Netw. https://doi.org/10.1016/j.adhoc.2020.102348

    Article  Google Scholar 

  57. Mazumdar N, Roy S, Nag A, Nandi S (2021) An adaptive hierarchical data dissemination mechanism for mobile data collector enabled dynamic wireless sensor network. J Netw Comput Appl 186:103097

    Article  Google Scholar 

  58. Mehto A, Tapaswi S, Pattanaik K (2021) Optimal rendezvous points selection to reliably acquire data from wireless sensor networks using mobile sink. Computing. https://doi.org/10.1007/s00607-021-00917-x

    Article  MathSciNet  MATH  Google Scholar 

  59. Mehto A, Tapaswi S, Pattanaik KK (2019) A review on rendezvous based data acquisition methods in wireless sensor networks with mobile sink. Wireless Networks pp 1–25

  60. Mir ZH, Ko YB (2007) A quadtree-based hierarchical data dissemination for mobile sensor networks. Telecommun Syst 36(1):117–128

    Article  Google Scholar 

  61. Mishra R, Jha V, Tripathi RK, Sharma AK (2020) Corona based node distribution scheme targeting energy balancing in wireless sensor networks for the sensors having limited sensing range. Wirel Netw 26(2):1–18. https://doi.org/10.1007/s11276-018-1834-9

    Article  Google Scholar 

  62. Muduli L, Mishra DP, Jana PK (2018) Application of wireless sensor network for environmental monitoring in underground coal mines: A systematic review. J Netw Comput Appl 106:48–67. https://doi.org/10.1016/j.jnca.2017.12.022

    Article  Google Scholar 

  63. Muzafarov F, Abdujapparova M, Davletova K, Sa’dullayev B (2020) Development of energy-efficient leach protocol for wireless sensor networks. In: 2020 International Conference on Information Science and Communications Technologies (ICISCT), pp 1–6. IEEE

  64. Nayak P, Devulapalli A (2015) A fuzzy logic-based clustering algorithm for wsn to extend the network lifetime. IEEE Sens J 16(1):137–144

    Article  Google Scholar 

  65. Pantazis NA, Nikolidakis SA, Vergados DD (2013) Energy-efficient routing protocols in wireless sensor networks: A survey. IEEE Commun Surv Tutor 15(2):551–591. https://doi.org/10.1109/SURV.2012.062612.00084

    Article  Google Scholar 

  66. Rahman AU, Alharby A, Hasbullah H, Almuzaini K (2016) Corona based deployment strategies in wireless sensor network: a survey. J Netw Comput Appl 64:176–193. https://doi.org/10.1016/j.jnca.2016.02.003

    Article  Google Scholar 

  67. Rawat P, Chauhan S (2021) Clustering protocols in wireless sensor network: a survey, classification, issues, and future directions. Comput Sci Rev 40:100396

    Article  MathSciNet  Google Scholar 

  68. Redhu S, Hegde RM (2020) Cooperative network model for joint mobile sink scheduling and dynamic buffer management using q-learning. IEEE Trans Netw Serv Manag 17(3):1853–1864. https://doi.org/10.1109/TNSM.2020.3002828

    Article  Google Scholar 

  69. Reyana A, Vijayalakshmi P (2021) Multisensor data fusion technique for energy conservation in the wireless sensor network application condition-based environment monitoring. J Ambient Intell Human Comput. https://doi.org/10.1007/s12652-020-02687-4

    Article  Google Scholar 

  70. Roy S, Mazumdar N, Pamula R (2021) An energy and coverage sensitive approach to hierarchical data collection for mobile sink based wireless sensor networks. J Amb Intell Human Comput. https://doi.org/10.1007/s12652-020-02176-8

    Article  Google Scholar 

  71. Roy S, Mazumdar N, Pamula R (2021) An optimal mobile sink sojourn location discovery approach for the energy-constrained and delay-sensitive wireless sensor network. J Ambient Intell Human Comput. https://doi.org/10.1007/s12652-020-02886-z

    Article  Google Scholar 

  72. Sabor N, Sasaki S, Abo-Zahhad M, Ahmed S (2017) A comprehensive survey on hierarchical-based routing protocols for mobile wireless sensor networks: Review, taxonomy, and future directions. Wirel Commun Mobile Comput 2017:1–23

    Article  Google Scholar 

  73. Saeed K, Khalil W, Ahmed S, Ahmad I, Khattak MNK (2020) Seecr: secure energy efficient and cooperative routing protocol for underwater wireless sensor networks. IEEE Access 8:107419–107433. https://doi.org/10.1109/ACCESS.2020.3000863

    Article  Google Scholar 

  74. Sahar G, Bakar KA, Rahim S, Khani NAKK, Bibi T (2021) Recent advancement of data-driven models in wireless sensor networks: a survey. Technologies 9(4):76

    Article  Google Scholar 

  75. Saleh AI, Abo-Al-Ez KM, Abdullah AA (2017) A multi-aware query driven (maqd) routing protocol for mobile wireless sensor networks based on neuro-fuzzy inference. J Netw Comput Appl 88:72–98

    Article  Google Scholar 

  76. Sapna, Pattanaik K, Trivedi A (2020) A dynamic distributed boundary node detection algorithm for management zone delineation in precision agriculture. J Netw Comput Appl 167, 102712. https://doi.org/10.1016/j.jnca.2020.102712

  77. Shah RC, Roy S, Jain S, Brunette W (2003) Data mules: modeling and analysis of a three-tier architecture for sparse sensor networks. Ad Hoc Netw 1(2–3):215–233

    Article  Google Scholar 

  78. Shin JH, Kim J, Park K, Park D (2005) Railroad: virtual infrastructure for data dissemination in wireless sensor networks. In: Proceedings of the 2nd ACM international workshop on Performance evaluation of wireless ad hoc, sensor, and ubiquitous networks, pp 168–174. ACM

  79. Singh A, Sharma S, Singh J (2021) Nature-inspired algorithms for wireless sensor networks: a comprehensive survey. Comput Sci Rev 39:100342

    Article  MathSciNet  Google Scholar 

  80. Srinivas M, Donta PK, Amgoth T (2020) Finding the minimum number of mobile sinks for data collection in wireless sensor networks. In: 2020 IEEE International Conference on Communication, Networks and Satellite (Comnetsat), pp 256–260. https://doi.org/10.1109/Comnetsat50391.2020.9328947

  81. Tang B, Wang J, Geng X, Zheng Y, Kim JU (2012) A novel data retrieving mechanism in wireless sensor networks with path-limited mobile sink. Int J Grid Distrib Comput 5:133–140

    Google Scholar 

  82. Tang T, Liu H, Song H, Peng B (2016) Support vector machine based range-free localization algorithm in wireless sensor network. In: International Conference on Machine Learning and Intelligent Communications, pp 150–158. Springer

  83. Tashtarian F, Yaghmaee MH, Sohraby K, Effati S (2015) Odt: optimal deadline-based trajectory for mobile sinks in wsn: a decision tree and dynamic programming approach. Comput Netw. https://doi.org/10.1016/j.comnet.2014.12.003

    Article  Google Scholar 

  84. Tashtarian F, Yaghmaee Moghaddam MH, Sohraby K, Effati S (2015) On maximizing the lifetime of wireless sensor networks in event-driven applications with mobile sinks. IEEE Trans Veh Technol 64(7):3177–3189. https://doi.org/10.1109/TVT.2014.2354338

    Article  Google Scholar 

  85. Tunca C, Isik S, Donmez MY, Ersoy C (2015) Ring routing: An energy-efficient routing protocol for wireless sensor networks with a mobile sink. IEEE Trans Mob Comput 14(9):1947–1960

    Article  Google Scholar 

  86. Vahabi S, Mojab SP, Eslaminejad M, Dashti SE (2021) Eam: energy aware method for chain-based routing in wireless sensor network. J Ambient Intell Humaniz Comput pp 1–13

  87. Verma RK, Bharti S, Pattanaik KK (2018) Gda: gravitational data aggregation mechanism for periodic wireless sensor networks. IEEE Sens. https://doi.org/10.1109/ICSENS.2018.8589586

    Article  Google Scholar 

  88. Verma RK, Pattanaik K, Bharti S (2015) An adaptive mechanism for improving resiliency in wireless sensor networks. In: 2015 IEEE 10th International Conference on Industrial and Information Systems (ICIIS), pp 525–530. IEEE

  89. Verma RK, Pattanaik K, Bharti S (2020) Query similarity index based query preprocessing mechanism for multiapplication sharing wireless sensor networks. Telecommun Syst 74(4):477–485

    Article  Google Scholar 

  90. Verma RK, Pattanaik K, Bharti S, Saxena D (2019) In-network context inference in iot sensory environment for efficient network resource utilization. J Netw Comput Appl 130:89–103. https://doi.org/10.1016/j.jnca.2019.01.013

    Article  Google Scholar 

  91. Verma RK, Pattanaik KK, Bharti S, Saxena D, Cao J (2020) A query processing framework for efficient network resource utilization in shared sensor networks. ACM Trans Sen Netw. https://doi.org/10.1145/3397809

    Article  Google Scholar 

  92. Verma RK, Pattanaik KK, Dissanayake PBR, Dammika AJ, Buddika HADS, Kaloop MR (2020) Damage detection in bridge structures: an edge computing approach

  93. Wang J, Cao J, Ji S, Park JH (2017) Energy-efficient cluster-based dynamic routes adjustment approach for wireless sensor networks with mobile sinks. J Supercomput 73(7):3277–3290. https://doi.org/10.1007/s11227-016-1947-9

    Article  Google Scholar 

  94. Wang Y, Chen K (2019) Efficient path planning for a mobile sink to reliably gather data from sensors with diverse sensing rates and limited buffers. IEEE Trans Mobile Comput 18(7):1527–1540

    Article  Google Scholar 

  95. Wang Z, Liu H, Xu S, Bu X, An J (2017) Bayesian device-free localization and tracking in a binary RF sensor network. Sensors (Switzerland). https://doi.org/10.3390/s17050969

    Article  Google Scholar 

  96. Wen W, Zhao S, Shang C, Chang CY (2017) Eapc: energy-aware path construction for data collection using mobile sink in wireless sensor networks. IEEE Sens J 18(2):890–901

    Article  Google Scholar 

  97. Wu F, Li X, Sangaiah AK, Xu L, Kumari S, Wu L, Shen J (2018) A lightweight and robust two-factor authentication scheme for personalized healthcare systems using wireless medical sensor networks. Future Gener Comput Syst 82:727–737. https://doi.org/10.1016/j.future.2017.08.042

    Article  Google Scholar 

  98. Wu S, Austin A, Ivoghlian A, Bisht A, Wang K (2020) Long range wide area network for agricultural wireless underground sensor networks. J Ambient Intell Humaniz Comput. https://doi.org/10.1007/s12652-020-02137-1

    Article  Google Scholar 

  99. Yang G, Xu H, He X, Gao L, Geng Y, Wu C (2016) A clue based data collection routing protocol for mobile sensor networks. IEEE Access 4:8476–8486. https://doi.org/10.1109/ACCESS.2016.2635697

    Article  Google Scholar 

  100. Yarinezhad R (2019) Reducing delay and prolonging the lifetime of wireless sensor network using efficient routing protocol based on mobile sink and virtual infrastructure. Ad Hoc Netw 84:42–55

    Article  Google Scholar 

  101. Yarinezhad R, Hashemi SN (2019) An efficient data dissemination model for wireless sensor networks. Wirel Netw 25(6):3419–3439

    Article  Google Scholar 

  102. Yarinezhad R, Sarabi A (2018) Reducing delay and energy consumption in wireless sensor networks by making virtual grid infrastructure and using mobile sink. AEU Int J Electron Commun 84:144–152. https://doi.org/10.1016/j.aeue.2017.11.026

    Article  Google Scholar 

  103. Yi D, Yang H (2016) Heer-a delay-aware and energy-efficient routing protocol for wireless sensor networks. Comput Netw 104:155–173

    Article  Google Scholar 

  104. Yogarajan G, Revathi T (2018) Nature inspired discrete firefly algorithm for optimal mobile data gathering in wireless sensor networks. Wirel Netw 24(8):2993–3007

    Article  Google Scholar 

  105. Yu X, Zhang F, Zhou L, Liu Q (2018) Novel data fusion algorithm based on event-driven and dempster shafer evidence theory. Wirel Pers Commun 100(4):1377–1391

    Article  Google Scholar 

  106. Yue YG, He P (2018) A comprehensive survey on the reliability of mobile wireless sensor networks: taxonomy, challenges, and future directions. Inf Fus 44:188–204

    Article  Google Scholar 

  107. Zhu C, Han G, Zhang H (2017) A honeycomb structure based data gathering scheme with a mobile sink for wireless sensor networks. Peer-to-Peer Netw Appl 10(3):484–499

    Article  Google Scholar 

  108. Zhu C, Long X, Han G, Jiang J, Zhang S (2018) A virtual grid-based real-time data collection algorithm for industrial wireless sensor networks. EURASIP J Wirel Commun Netw 2018(1):1–20

    Article  Google Scholar 

  109. Zhu C, Wu S, Han G, Shu L, Wu H (2015) A tree-cluster-based data-gathering algorithm for industrial wsns with a mobile sink. IEEE Access 3:381–396. https://doi.org/10.1109/ACCESS.2015.2424452

    Article  Google Scholar 

  110. Zhu F, Wei J (2016) Localization algorithm for large-scale wireless sensor networks based on fcmtsr-support vector machine. Int J Distrib Sensor Netw. https://doi.org/10.1177/1550147716674010

    Article  Google Scholar 

  111. Zin SM, Anuar NB, Kiah MLM, Pathan ASK (2014) Routing protocol design for secure wsn: review and open research issues. J Netw Comput Appl 41:517–530. https://doi.org/10.1016/j.jnca.2014.02.008

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shubhra Jain.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jain, S., Verma, R.K., Pattanaik, K.K. et al. A survey on event-driven and query-driven hierarchical routing protocols for mobile sink-based wireless sensor networks. J Supercomput 78, 11492–11538 (2022). https://doi.org/10.1007/s11227-022-04327-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-022-04327-4

Keywords

Navigation