Skip to main content
Log in

High-performance adder using a new XOR gate in QCA technology

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

Quantum-dot Cellular Automata is one of the new nanoscale technologies that have been offered as a viable replacement for CMOS. QCA technology has many attractive features in terms of speed, size and power consumption. These features allow the technology an opportunity to be suitable for replacing CMOS technology. In the digital system, the adder circuit is important to do all arithmetic operations such as division, multiplication and subtraction. Therefore, this work introduces a new layout of full adder in QCA technology. The proposed design is built using a novel structure of a 3-input XOR gate. Then, the suggested adder is used to build an 8-bit Ripple Carry Adder (RCA). The presented full adder in this work provided 25%, 30%, and 78% improvement in terms of cell count, area, and cost, respectively, while the suggested 8-bit RCA gives 67%, 25%, 11% and 80% improvement in terms of cell count, area, delay and cost, respectively. In terms of total power consumption, the significant advantage offered by the proposed adder is energy-saving as it reduces the total dissipated energy by 26%, 37% and 45% at three levels of tunneling energy (0.5 Ek, 1 Ek and 1.5 Ek), respectively. The QCADesigner tool v2.0.3 has been used to design and simulate all circuits in this work and QCAPro tool is used for power calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Lent CS et al (1993) Quantum cellular automata. Nanotechnology 4(1):49–57

    Article  Google Scholar 

  2. Reshadinezhad M, Moaiyeri M, Navi K (2012) An energy-efficient full adder cell using CNFET technology. IEICE Trans Electron E95.C:744–751

    Article  Google Scholar 

  3. Ebrahimi SA, Keshavarzian P (2013) Fast low-power full-adders based on bridge style minority function and multiplexer for nanoscale. International Journal of Electronics 100(6):727–745

    Article  Google Scholar 

  4. Safaei Mehrabani Y, Eshghi M (2016) Noise and process variation tolerant, low-power, high-speed, and low-energy full adders in CNFET technology. IEEE Trans Very Large Scale Integr Syst (TVLSI) 24:3268–3281

    Article  Google Scholar 

  5. Alkaldy E, Navi K, Sharifi F (2014) A novel design approach for multi-input XOR gate using multi-input majority function. Arab J Sci Eng 39(11):7923–7932

    Article  Google Scholar 

  6. Hisamoto D et al (2000) FinFET-a self-aligned double-gate MOSFET scalable to 20 nm. IEEE Trans Electron Devices 47(12):2320–2325

    Article  Google Scholar 

  7. Xuejue H et al (2001) Sub-50 nm P-channel FinFET. IEEE Trans Electron Devices 48(5):880–886

    Article  Google Scholar 

  8. Sabetzadeh F, Moaiyeri MH, Ahmadinejad M (2019) A majority-based imprecise multiplier for ultra-efficient approximate image multiplication. IEEE Trans Circ Syst I Regular Papers 66:1–9

    Google Scholar 

  9. Khan MHA (2015) "Single-electron transistor based implementation of NOT, Feynman, and Toffoli Gates," In: 2015 IEEE International Symposium on Multiple-Valued Logic, pp 66-71

  10. Tannu S, Sharma A (2012) Low power random number generator using single electron transistor. pp 1–4

  11. Ali Hussien M, Mohd Shamian Z, Esam A, Danial Md N (2020) A content-addressable memory structure using novel majority gate with 5-input in quantum-dot cellular automata. Int J Integr Eng 12(4):28–38

    Google Scholar 

  12. Majeed AH, Salih B, Bin Zainal MS, Bin Md Nor D (2019) Power efficient optimal structure CAM-cell in QCA technology. Indian J Sci Technol 12(37):1–6

    Article  Google Scholar 

  13. Walus K, Dysart TJ, Jullien GA, Budiman RA (2004) QCADesigner: a rapid design and Simulation tool for quantum-dot cellular automata. IEEE Trans Nanotechnol 3(1):26–31

    Article  Google Scholar 

  14. Alkaldy E, Navi K (2013) Reliability study of single stage multi-input majority function for QCA. Int J Comput Appl 83:2

    Google Scholar 

  15. Majeed AH, Zainal MS, Alkaldy E, Nor DM (2020) Single-bit comparator in quantum-dot cellular automata (QCA) technology using novel QCA-XNOR gates. J Electron Sci Technol 19:100078

    Article  Google Scholar 

  16. Raj M, Gopalakrishnan L, Ko S-B (2021) Design and analysis of novel QCA full adder-subtractor. Int J Electron Lett 9(3):287–300

    Article  Google Scholar 

  17. Lent CS, Tougaw PD (1997) A device architecture for computing with quantum dots. Proc IEEE 85(4):541–557

    Article  Google Scholar 

  18. Majeed Ali H, Alkaldy E, Zainal Mohd S, Navi K, Nor D (2019) Optimal design of RAM cell using novel 2:1 multiplexer in QCA technology. Circ World 46(2):147–158

    Article  Google Scholar 

  19. Ahmadpour S-S, Mosleh M, Heikalabad SR (2018) A revolution in nanostructure designs by proposing a novel QCA full-adder based on optimized 3-input XOR. Physica B Condens Matter 550:383–392

    Article  Google Scholar 

  20. Zahmatkesh M, Tabrizchi S, Mohammadyan S, Navi K, Bagherzadeh N (2019) Robust coplanar full adder based on novel inverter in quantum cellular automata. Int J Theor Phys 58(2):639–655

    Article  MATH  Google Scholar 

  21. Seyedi S, Navimipour NJ (2018) An optimized design of full adder based on nanoscale quantum-dot cellular automata. Optik 158:243–256

    Article  MATH  Google Scholar 

  22. Majeed AH, Zainal MSB, Alkaldy E, Nor DM (2020) Full adder circuit design with novel lower complexity XOR gate in QCA technology. Trans Elect Electron Mater 21:198–207

    Article  Google Scholar 

  23. Ahmad F, Bhat GM, Ahmad PZ (2014) Novel adder circuits based on quantum-dot cellular automata (QCA). Circ Syst 05(06):142–152

    Article  Google Scholar 

  24. Mohammadi M, Mohammadi M, Gorgin S (2016) An efficient design of full adder in quantum-dot cellular automata (QCA) technology. Microelectron J 50:35–43

    Article  Google Scholar 

  25. Sasamal TN, Singh AK, Mohan A (2016) An optimal design of full adder based on 5-input majority gate in coplanar quantum-dot cellular automata. Opt Int J Light Electron Opt 127(20):8576–8591

    Article  Google Scholar 

  26. Tougaw PD, Lent CS (1994) Logical devices implemented using quantum cellular automata. J Appl Phys 75(3):1818–1825

    Article  Google Scholar 

  27. Rumi Z, Walus K, Wei W, Jullien GA (2004) A method of majority logic reduction for quantum cellular automata. IEEE Trans Nanotechnol 3(4):443–450

    Article  Google Scholar 

  28. Azghadi MR, Kavehei O, Navi K (2007) A novel design for quantum-dot cellular automata cells and full adders. J Appl Sci 7:3460–3468

    Article  Google Scholar 

  29. Navi K, Farazkish R, Sayedsalehi S, Rahimi Azghadi M (2010) A new quantum-dot cellular automata full-adder. Microelectron J 41(12):820–826

    Article  Google Scholar 

  30. Ahmad F, Bhat GM, Khademolhosseini H, Azimi S, Angizi S, Navi K (2016) Towards single layer quantum-dot cellular automata adders based on explicit interaction of cells. J Comput Sci 16:8–15

    Article  MathSciNet  Google Scholar 

  31. Srivastava S, Asthana A, Bhanja S, Sarkar S (2011) "QCAPro—An error-power estimation tool for QCA circuit design," In: 2011 IEEE International Symposium of Circuits and Systems (ISCAS), pp 2377-2380

  32. Bahrepour D, Maroufi N (2018) “A 2-bit full comparator design with minimum quantum cost function in quantum-dot cellular automata,” (in English). J Inf Syst Telecommun (Jist) 6(4):197–203

    Google Scholar 

  33. Taherkhani E, Moaiyeri MH, Angizi S (2017) Design of an ultra-efficient reversible full adder-subtractor in quantum-dot cellular automata. Opt Int J Light Electron Opt 142:557–563

    Article  Google Scholar 

  34. Lakshmi SK, Athisha G (2011) Design and analysis of adders using nanotechnology based quantum dot cellular automata. J Comput Sci 7(7):1072–1079

    Article  Google Scholar 

  35. Teja VC, Polisetti S, Kasavajjala S (2008), "QCA based multiplexing of 16 arithmetic & logical subsystems-A paradigm for nano computing," In 2008 3rd IEEE International Conference on Nano/Micro Engineered and Molecular Systems, pp 758–763

  36. Ahmad F, Ahmed S, Kakkar V, Bhat GM, Bahar AN, Wani S (2018) Modular design of ultra-efficient reversible full adder-subtractor in QCA with power dissipation analysis. Int J Theor Phys 57(9):2863–2880

    Article  MATH  Google Scholar 

  37. Ajitha D, Ramanaiah KV, Sumalatha V (2015) An efficient design of XOR gate and its applications using QCA. I-Manager’s J Electron Eng 5(3):22–29

    Google Scholar 

  38. Mohammadyan S, Angizi S, Navi K (2015) New fully single layer QCA full-adder cell based on feedback model. Int J High Perform Syst Architect 5:202–208

    Article  Google Scholar 

  39. Sarvaghad-Moghaddam M, Orouji AA (2018) New symmetric and planar designs of reversible full-adders/subtractors in quantum-dot cellular automata. CoRR 1803:11016

    Google Scholar 

  40. Barughi YZ, Heikalabad SR (2017) A three-layer full adder/subtractor structure in quantum-dot cellular automata. Int J Theor Phys 56(9):2848–2858

    Article  MATH  Google Scholar 

  41. Zoka S, Gholami M (2019) A novel efficient full adder–subtractor in QCA nanotechnology. Int Nano Lett 9(1):51–54

    Article  Google Scholar 

  42. Heikalabad SR, Asfestani MN, Hosseinzadeh M (2018) A full adder structure without cross-wiring in quantum-dot cellular automata with energy dissipation analysis. J Supercomput 74(5):1994–2005

    Article  Google Scholar 

  43. Safavi A, Mosleh M (2016) “Presenting a New Efficient QCA Full Adder Based on Suggested MV32 Gate,” (in en). Int J Nanosci Nanotechnol 12(1):55–69

    Google Scholar 

  44. Seyedi S, Navimipour N (2017) An optimized design of full adder based on Nanoscale quantum-dot cellular automata. Opt Int J Light Electron Opt 158:243–256

    Article  Google Scholar 

  45. Hashemi S, Navi K (2015) A novel robust QCA full-adder. Procedia Mater Sci 11:376–380

    Article  Google Scholar 

  46. Hashemi S, Tehrani M, Navi K (2012) An efficient quantum-dot cellular automata full-adder. Sci Res Essays 7:177–189

    Google Scholar 

  47. Sen B, Rajoria A, Sikdar BK (2013) Design of efficient full adder in quantum-dot cellular automata. Sci World J 2013:250802

    Article  Google Scholar 

  48. Sayedsalehi S, Moaiyeri MH, Navi K (2011) Novel efficient adder circuits for quantum-dot cellular automata. J Comput Theor Nanosci 8(9):1769–1775

    Article  Google Scholar 

  49. Wang L, Xie G (2018) Novel designs of full adder in quantum-dot cellular automata technology. J Supercomput 74(9):4798–4816

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Majeed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Majeed, A., Alkaldy, E. High-performance adder using a new XOR gate in QCA technology. J Supercomput 78, 11564–11579 (2022). https://doi.org/10.1007/s11227-022-04339-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-022-04339-0

Keywords

Navigation