Skip to main content
Log in

An analytical modelling and QoS evaluation of fault-tolerant load balancer and web servers in fog computing

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

Recently, fog computing has become popular due to its high degree of storage and processing capabilities. Thus, very large data can be processed by the users through the fog computing servers. However, the fog computing servers are likely to suffer from failures and need analytical models to predict their behaviour to deliver desired QoS. This paper proposes an analytical model and the solution approach for QoS evaluation of fault-tolerant load balancer and web servers with mobility issues in fog computing. The proposed solution approach combines the Spectral expansion solution and the system of balance equations with the Markov reward model approach to obtain more realistic QoS measurements. The proposed model is compared and contrasted with the existing models to show the effectiveness and accuracy of the proposed work. The results showed that the proposed analytical model and the solution approach are efficient and compatible in the evaluation of such system QoS measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Durao F, Carvalho JFS, Fonseka A (2014) A systematic review on cloud computing. J Supercomput 68:1321–1346. https://doi.org/10.1007/s11227-014-1089-x

    Article  Google Scholar 

  2. Munir A, Kansakar P, Khan S (2017) IFCIoT: integrated fog cloud IoT: a novel architectural paradigm for the future internet of things. IEEE Consum Electron Mag 6(3):74–82

    Article  Google Scholar 

  3. Pereira P, Melo C, Araujo J et al (2021) Availability model for edge-fog-cloud continuum: an evaluation of an end-to-end infrastructure of intelligent traffic management service. J Supercomput. https://doi.org/10.1007/s11227-021-04033-7

    Article  Google Scholar 

  4. Pereira P, Araujo J, Melo C, Santos V, Maciel P (2021) Analytical models for availability evaluation of edge and fog computing nodes. J Supercomput. https://doi.org/10.1007/s11227-021-03672-0

    Article  Google Scholar 

  5. Bi Y, Han G, Lin C, Deng Q, Guo L, Li F (2018) Mobility support for fog computing: an SDN approach. IEEE Commun Mag 56:53–59

    Article  Google Scholar 

  6. Gia TN, Rahmani AM, Westerlund T, Liljeberg P, Tenhunen H (2018) Fog computing approach for mobility support in internet-of-things systems. IEEE Access 6:36064–36082

    Article  Google Scholar 

  7. Chang C, Hadachi A, Mass J, Srirama SN (2020) Mobile Fog Computing. Fog Computing: theory and practice. Wiley, pp 3–42. https://doi.org/10.1002/9781119551713.ch1

    Chapter  Google Scholar 

  8. Santos L, Cunha B, Fé I (2021) Data processing on edge and cloud: a performability evaluation and sensitivity analysis. J Netw Syst Manag. https://doi.org/10.1007/s10922-021-09592-x

    Article  Google Scholar 

  9. Wang D, Liu Z, Wang X, Lan Y (2019) Mobility-aware task offloading and migration schemes in fog computing networks. IEEE Access 7(8):43356–43368

    Article  Google Scholar 

  10. Pereira P, Araujo J, Torquato M (2020) Stochastic performance model for web server capacity planning in fog computing. J Supercomput 76:9533–9557

    Article  Google Scholar 

  11. Verma M, Bhardawaj N, Yadav AK (2015) An architecture for load balancing techniques for fog computing environment. Int J Comput Sci Commun 8(2):43–49

    Google Scholar 

  12. Singh SP, Kumar R, Sharma A, Nayyar A (2020) Leveraging energy-efficient load balancing algorithms in fog computing. Concurr Comput Pract Exp. https://doi.org/10.1002/cpe.5913

    Article  Google Scholar 

  13. Jouini H, Escheikh M (2016) Mobility load balancing based adaptive handover in downlink LTE self- organizing networks. Int J Wirel Mob Netw (IJWMN) 8(4):89–105

    Article  Google Scholar 

  14. Beraldi R, Canali C, Lancellotti R, Mattia GP (2020) A random walk based load balancing algorithm for fog computing. In: Fifth International Conference on Fog and Mobile Edge Computing (FMEC) pp. 46–53

  15. Buccafurri F, Lax G, Russo A (2019) Exploiting digital identity for mobility in fog computing. In: 2019 Fourth International Conference on Fog and Mobile Edge Computing (FMEC) pp. 155-160

  16. Agarwal S, Yadav S, Yadav AK (2015) An architecture for elastic resource allocation in fog computing. Int J Comput Sci Commun 6(2):201–207

    Google Scholar 

  17. Das SK, Palo HK (2020) Internet of things (IoT) application in green computing: an overview. In: Bhoi A, Sherpa K, Kalam A, Chae GS (eds) Advances in greener energy technologies. Green energy and technology. Springer, Singapore. https://doi.org/10.1007/978-981-15-4246-6_4

    Chapter  Google Scholar 

  18. Al-Khafajiy M, Baker T, Al-Libawy H, Maamar Z, Aloqaily M, Jararweh Y (2019) Improving fog computing performance via fog-2-fog collaboration. Future Gener Comput Syst 100:266–280

    Article  Google Scholar 

  19. Shafik W, Matinkhah SM, Ghasemazade M (2019) Fog-mobile edge performance evaluation and analysis on internet of things. J Adv Res Mob Comput 1(3):1–17

    Google Scholar 

  20. Margariti SV, Dimakopoulos VV, Tsoumanis G (2020) Modeling and simulation tools for fog computing-a comprehensive survey from a cost perspective. Future Internet 12(5):89–109

    Article  Google Scholar 

  21. Lera I, Guerrero C, Juiz C (2019) YAFS: a simulator for IoT scenarios in fog computing. IEEE Access 7:91745–91758. https://doi.org/10.1109/ACCESS.2019.2927895

    Article  Google Scholar 

  22. Puliafito C, Gonçalves DM et al (2020) MobFogSim: simulation of mobility and migration for fog computing. Simul Model Pract Theory 101:102062–102087

    Article  Google Scholar 

  23. Mohan N, Kangasharju J (2016) Edge-Fog cloud: a distributed cloud for internet of things computations. In: Proceedings of the 2016 Cloudification of the Internet of Things (CIoT) pp. 1–6

  24. Gupta H, Dastjerdi V, Ghosh A, Buyya SK (2017) iFogSim: a toolkit for modeling and simulation of resource management techniques in the Internet of Things Edge and Fog computing environments. Softw Pract Exp 47(9):1275–1296

    Article  Google Scholar 

  25. Kirsal Y, Kirsal Ever Y, Mapp GE, Raza M (2021) 3D analytical modelling and iterative solution for high performance computing clusters. IEEE Trans Cloud Comput. https://doi.org/10.1109/TCC.2021.3055119

    Article  Google Scholar 

  26. Kirsal Y (2018) Analytical modelling and optimization analysis of large-scale communication systems and networks with repairmen policy. Computing 100(5):503–527

    Article  MathSciNet  Google Scholar 

  27. Verma M, Bhardawaj N, Yadav AK (2015) An architecture for load balancing techniques for fog computing environment. Int J Comput Sci Commun 6(2):269–274

    Google Scholar 

  28. Divya V, Sri RL (2019) ReTra: reinforcement based traffic load balancer in fog based network. In: 2019 10th International Conference on Computing, Communication and Networking Technologies (ICCCNT) pp. 1–6

  29. Girma ST, Abebe AG (2017) Mobility load balancing in cellular system with multicriteria handoff algorithm. Adv Fuzzy Syst 2017:2795905. https://doi.org/10.1155/2017/2795905

    Article  Google Scholar 

  30. Tang Z, Zhou X, Zhang F, Jia W, Zhao W (2019) Migration modeling and learning algorithms for containers in fog computing. IEEE Trans Serv Comput 12(5):712–725

    Article  Google Scholar 

  31. Chen YA, Walters JP, Crago SP (2017) Load balancing for minimizing deadline misses and total runtime for connected car systems in fog computing. In: 2017 IEEE International Symposium on Parallel and Distributed Processing with Applications and 2017 IEEE International Conference on Ubiquitous Computing and Communications (ISPA/IUCC) pp. 683–690

  32. Pereira J, Ricardo L, Luís M, Senna C, Sargento S (2019) Assessing the reliability of fog computing for smart mobility applications in VANETs. Future Gener Comput Syst 94:317–332

    Article  Google Scholar 

  33. Chen Z, Yao H, Gu L, Zeng D, Zheng K (2018) Dynamic service migration via approximate markov decision process in mobile edge-clouds. In: International Conference on Internet and Distributed Computing Systems, pp. 13–24

  34. Mounnan O, El Mouatasim A, Manad O, Hidar T, El Kalam AA, Idboufker N (2020) Privacy-aware and authentication based on blockchain with fault tolerance for IoT enabled fog computing. In: 2020 Fifth International Conference on Fog and Mobile Edge Computing (FMEC), pp. 347–352

  35. Liu B, Chang X, Liu B, Chen Z (2017) Performance analysis model for fog services under multiple resource types. In: 2017 International Conference on Dependable Systems and Their Applications (DSA), pp. 110–117

  36. Battula SK, O’Reilly MM, Garg S, Montgomery J (2020) A generic stochastic model for resource availability in fog computing environments. IEEE Trans Parallel Distrib Syst 32(4):960–974

    Article  Google Scholar 

  37. Chekired DA, Khoukhi L, Mouftah HT (2018) Industrial IoT data scheduling based on hierarchical fog computing: a key for enabling smart factory. IEEE Trans Ind Inform 14(10):4590–4602

    Article  Google Scholar 

  38. Cao J, Hwang K, Li K, Zomaya AY (2013) Optimal multi-server configuration for profit maximization in cloud computing. IEEE Trans Parallel Distrib Syst 24(6):1087–1096

    Article  Google Scholar 

  39. Vilaplana J, Solsona F, Teixid I, Mateo J, Abella F, Rius J (2014) A queuing theory model for cloud computing. J Supercomput 69(1):492–507

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yönal Kırsal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aldağ, M., Kırsal, Y. & Ülker, S. An analytical modelling and QoS evaluation of fault-tolerant load balancer and web servers in fog computing. J Supercomput 78, 12136–12158 (2022). https://doi.org/10.1007/s11227-022-04345-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-022-04345-2

Keywords

Navigation