Skip to main content
Log in

Taylor polynomials as an estimator for certain toeplitz matrices

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

We present an inherently parallel method using a Taylor polynomial as an estimator for several numerical examples of strictly diagonally dominant and banded triangular Toeplitz systems. We demonstrate the effectiveness of the method using multiple precisions for each of four test cases, and compare the results versus classical Jacobi and Newton methods. We also show that the residual norms can be driven down to any arbitrary precision with less hardware requirements than existing methods. Finally, we use truncated Taylor series as initial estimates for the Newton, and in each case, we obtain equal or better accuracy than the Newton method alone, while using less vector computations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Notes

  1. An FFT is not required. The result of this operation is a column of 1's.

  2. An FFT is not required. The result of this operation is a column of 1's.

  3. An FFT is not required. The result of this operation is a column of 1's.

  4. An FFT is not required. The result of this operation is a column of 1's.

  5. An FFT is not required. The result of this operation is a column of 1's.

References

  1. Advanpix L Multiprecision computing toolbox for matlab, yokohama, japan, 2008–2020

  2. Belhaj S, Dridi M (2014) A note on computing the inverse of a triangular toeplitz matrix. Appl Math Comput 236:512–523

    MathSciNet  MATH  Google Scholar 

  3. Bini D (1984) Parallel solution of certain Toeplitz linear systems. SIAM J Comput 13(2):268–276

    Article  MathSciNet  Google Scholar 

  4. Bini D, Pan V (1986) Polynomial division and its computational complexity. J Complex 2(3):179–203. https://doi.org/10.1016/0885-064X(86)90001-4

    Article  MathSciNet  MATH  Google Scholar 

  5. Bini D, Pan V (1993) Improved parallel polynomial division. SIAM J Comput 22(3):617–626

    Article  MathSciNet  Google Scholar 

  6. Bini D, Pan V (1993) Parallel computations with toeplitz-like and hankel-like matrices. In: Proceedings of the 1993 International Symposium on Symbolic and Algebraic Computation, pp 193–200. ACM (1993)

  7. Bini D, Pan VY (1994) Polynomial and matrix computations. Volume 1: Fundamental algorithms. Progress in Theoretical Computer Science. Birkhäuser Verlag, Boston-Basel-Berlin-Stuttgart

  8. Bini DA, Codevico G, Van Barel M (2003) Solving toeplitz least squares problems by means of newton’s iteration. Numerical Algorithms 33(1–4):93–103

  9. Bini DA, Meini B (1999) Effective methods for solving banded toeplitz systems. SIAM J Matrix Anal Appl 20(3):700–719

    Article  MathSciNet  Google Scholar 

  10. Bini DA, Meini B (2001) Approximate displacement rank and applications. Contemp Math 281:215–232

    Article  MathSciNet  Google Scholar 

  11. Bini DA, Meini B (2009) The cyclic reduction algorithm: from poisson equation to stochastic processes and beyond. Numer Algorithms 51(1):23–60

    Article  MathSciNet  Google Scholar 

  12. Böttcher A, Halwass M (2013) Wiener-hopf and spectral factorization of real polynomials by newton’s method. Linear Algebra Appl 438(12):4760–4805

    Article  MathSciNet  Google Scholar 

  13. Chow E, Anzt H, Scott J, Dongarra J (2018) Using jacobi iterations and blocking for solving sparse triangular systems in incomplete factorization preconditioning. J Parallel Distrib Comput 119:219–230

    Article  Google Scholar 

  14. Commenges D, Monsion M (1984) Fast inversion of triangular toeplitz matrices. IEEE Trans Autom Control 29:250–251

    Article  MathSciNet  Google Scholar 

  15. Cooley JW, Tukey JW (1965) An algorithm for the machine calculation of complex fourier series. Math Comput 19(90):297–301

    Article  MathSciNet  Google Scholar 

  16. Grcar J, Sameh A (1981) On certain parallel toeplitz linear system solvers. SIAM J Sci Stat Comput 2(2):238–256

    Article  MathSciNet  Google Scholar 

  17. van der Hoeven J (2010) Newton’s method and fft trading. J Symb Comput 45(8):857–878

  18. Huang J, Huang TZ, Belhaj S (2013) Scaling bini’s algorithm for fast inversion of triangular toeplitz matrices. J Comput Anal Appl 15(5):858–867

  19. Isaacson E, Keller HB (1966) Analysis of numerical methods. Wiley, United States

    MATH  Google Scholar 

  20. Kapralos (2021) Estimator. Internet Website, Last accessed 10/21/2021. Https://github.com/BDDTT/Estimator

  21. Kapralos M, Wolinetz A, Murphy BJ (2016) Parallel solution of diagonally dominant banded triangular toeplitz systems using taylor polynomials. In: 18th IEEE International Conference on High Performance Computing and Communications; 14th IEEE International Conference on Smart City; 2nd IEEE International Conference on Data Science and Systems, HPCC/SmartCity/DSS 2016, Sydney, Australia, December 12-14, 2016, pp 601–607

  22. Larriba-Pey JL, Navarro JJ, Jorba A, Roig O (1996) Review of general and toeplitz vector bidiagonal solvers. Parallel Comput 22(8):1091–1126

    Article  MathSciNet  Google Scholar 

  23. Lin FR, Ching WK, Ng MK (2004) Fast inversion of triangular toeplitz matrices. Theoret Comput Sci 315(2):511–523

    Article  MathSciNet  Google Scholar 

  24. Lv XG, Huang TZ, Le J (2008) A note on computing the inverse and the determinant of a pentadiagonal toeplitz matrix. Appl Math Comput 206(1):327–331

    MathSciNet  MATH  Google Scholar 

  25. Malyshev A, Sadkane M (2014) Fast solution of unsymmetric banded toeplitz systems by means of spectral factorizations and woodbury’s formula. Numer Linear Algebra Appl 21(1):13–23

  26. McNally JM, Garey L, Shaw R (2008) A communication-less parallel algorithm for tridiagonal toeplitz systems. J Comput Appl Math 212(2):260–271

    Article  MathSciNet  Google Scholar 

  27. Murphy BJ (2011) Acceleration of the inversion of triangular toeplitz matrices and polynomial division. Comput Algebra Sci Comput: Lect Notes Comput Sci 6885:321–332

    MATH  Google Scholar 

  28. Pan VY, Branham S, Rosholt RE, Zheng AL (1999) Newton’s iteration for structured matrices. In: Fast reliable algorithms for matrices with structure, pp. 189–210. SIAM

  29. Pan VY, Rami Y, Wang X (2002) Structured matrices and newton’s iteration: unified approach. Linear Algebra Appl 343:233–265

  30. Schönhage A (2000) Variations on computing reciprocals of power series. Inf Process Lett 74:41–46

    Article  MathSciNet  Google Scholar 

  31. Sieveking M (1972) An algorithm for division of power series. Computing 10(1–2):153–156

    Article  MathSciNet  Google Scholar 

  32. Stpiczyński P (2015) Fast solver for toeplitz bidiagonal systems of linear equations. Ann Univ Mariae Curie-Sklodowska, sectio AI-Inform 1(1):1–7

    MathSciNet  Google Scholar 

  33. Sun XH, Moitra S (1996) A fast parallel tridiagonal algorithm for a class of CFD applications. NASA Langley Technical Report Server

  34. Trench WF (1964) An algorithm for the inversion of finite toeplitz matrices. J Soc Ind Appl Math 12(3):515–522

    Article  MathSciNet  Google Scholar 

  35. Trench WF (1974) Inversion of toeplitz band matrices. Math Comput 28(128):1089–1095

    Article  MathSciNet  Google Scholar 

  36. Trench WF (1985) Explicit inversion formulas for toeplitz band matrices. SIAM J Algebr Discrete Methods 6(4):546–554

    Article  MathSciNet  Google Scholar 

  37. Trench WF (1987) A note on solving nearly triangular toeplitz systems. Linear Algebra Appl 93:57–65

    Article  MathSciNet  Google Scholar 

  38. Wang X, Huang Y (2012) A fast algorithm for inversion of real lower triangular toeplitz matrices. J Comput Anal Appl 14(1)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Kapralos.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kapralos, M. Taylor polynomials as an estimator for certain toeplitz matrices. J Supercomput 78, 13245–13275 (2022). https://doi.org/10.1007/s11227-022-04373-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-022-04373-y

Keywords

Navigation