Skip to main content
Log in

Classification of brain MR images using Modified version of Simplified Pulse-Coupled Neural Network and Linear Programming Twin Support Vector Machines

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

The automated and accurate detection of brain tumors is challenging for classifying brain Magnetic Resonance (MR) images. The conventional techniques for diagnosing the images are tedious and inefficient in decision making. Therefore, this work proposes an adaptive and non-invasive method for accurately classifying images into pathological and normal brain MR images to overcome these drawbacks. This system uses the Skull Stripping algorithm for removing the non-cerebral tissues. We have developed the Modified version of Simplified Pulse-Coupled Neural Network for segmenting the Region of Interest. The Stationary Wavelet Transform is employed for transforming the image to extract the multiresolution data from the segmented images. The dimensionality of the transformed images is high. Thus, texture- and intensity-based features are extracted from transformed images, and the features of least entropy are selected to make a set of prominent features. Finally, Probabilistic Neural Network and Linear Programming Twin Support Vector Machines with Newton-Armijo algorithm are applied for the classification of images. The validation of the experiments is carried out on the three databases, viz., DB-66, DB-160, and DB-255. The experimental results show that the suggested scheme is robust and effective as compared to other state-of-the-art schemes. The suggested method can assist the radiologists in treatment planning. Hence, the proposed method can effectively classify the brain MR images and be installed on medical machines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Kaur T, Saini BS, Gupta S (2018) A joint intensity and edge magnitude-based multilevel thresholding algorithm for the automatic segmentation of pathological MR brain images. Neural Comput Appl 30(4):1317–1340

    Article  Google Scholar 

  2. Allioui H, Sadgal M, Elfazziki A (2020) Utilization of a convolutional method for Alzheimer disease diagnosis. Mach Vis Appl 31(4):25

    Article  Google Scholar 

  3. Moraru L, Moldovanu S, Dimitrievici LT, Ashour AS, Dey N (2018) Texture anisotropy technique in brain degenerative diseases. Neural Comput Appl 30(5):1667–1677

    Article  Google Scholar 

  4. Polat Ö, Güngen C (2021) Classification of brain tumors from MR images using deep transfer learning. J Supercomput 4:1–7

    Google Scholar 

  5. Rundo L, Tangherloni A, Cazzaniga P, Mistri M, Galimberti S, Woitek R, Sala E, Mauri G, Nobile MS (2021) A CUDA-powered method for the feature extraction and unsupervised analysis of medical images. J Supercomput 21:1–8

    Google Scholar 

  6. Singh M, Nagpal S, Singh R, Vatsa M (2021) DeriveNet for (very) low resolution image classification. IEEE Trans Pattern Anal Mach Intell

  7. Kuntimad G, Ranganath HS (1999) Perfect image segmentation using pulse coupled neural networks. IEEE Trans Neural Networks 10(3):591–598

    Article  Google Scholar 

  8. Johnson JL, Padgett ML (1999) PCNN models and applications. IEEE Trans Neural Networks 10(3):480–498

    Article  Google Scholar 

  9. Stewart RD, Fermin I, Opper M (2002) Region growing with pulse-coupled neural networks: an alternative to seeded region growing. IEEE Trans Neural Networks 13(6):1557–1562

    Article  Google Scholar 

  10. Wang Z, Ma Y, Cheng F, Yang L (2010) Review of pulse-coupled neural networks. Image Vis Comput 28(1):5–13

    Article  Google Scholar 

  11. Chen Y, Park SK, Ma Y, Ala R (2011) A new automatic parameter setting method of a simplified PCNN for image segmentation. IEEE Trans Neural Networks 22(6):880–892

    Article  Google Scholar 

  12. Zhong Y, Liu W, Zhao J, Zhang L (2015) Change detection based on pulse-coupled neural networks and the NMI feature for high spatial resolution remote sensing imagery. IEEE Geosci Remote Sens Lett 12(3):537–541

    Article  Google Scholar 

  13. Wei S, Hong Q, Hou M (2011) Automatic image segmentation based on PCNN with adaptive threshold time constant. Neurocomputing 74(9):1485–1491

    Article  Google Scholar 

  14. Liu X, Li Z, Zhang Z, Zhang G (2021) Coal and gas outbursts prediction based on combination of hybrid feature extraction DWT+ FICA-LDA and optimized QPSO-DELM classifier. J Supercomput 13:1–28

    Google Scholar 

  15. Deng JM, Yue HZ, Zhuo ZZ, Yan HG, Liu D, Li HY (2014) A stationary wavelet transform based approach to registration of planning CT and setup cone beam-CT images in radiotherapy. J Med Syst 38(5):40

    Article  Google Scholar 

  16. Aymaz S, Köse C (2019) A novel image decomposition-based hybrid technique with super-resolution method for multi-focus image fusion. Inf Fusion 45:113–127

    Article  Google Scholar 

  17. Al Jumah A (2013) Denoising of an image using discrete stationary wavelet transform and various thresholding techniques. J Signal Inf Process 4(01):33

    Google Scholar 

  18. Kayvanrad MH, McLeod AJ, Baxter JS, McKenzie CA, Peters TM (2014) Stationary wavelet transform for under-sampled MRI reconstruction. Magn Reson Imaging 32(10):1353–1364

    Article  Google Scholar 

  19. Specht DF (1990) Probabilistic neural networks. Neural Netw 3(1):109–118

    Article  Google Scholar 

  20. Demirhan A, Törü M, Güler İ (2015) Segmentation of tumor and edema along with healthy tissues of brain using wavelets and neural networks. IEEE J Biomed Health Inform 19(4):1451–1458

    Article  Google Scholar 

  21. Mao KZ, Tan KC, Ser W (2000) Probabilistic neural-network structure determination for pattern classification. IEEE Trans Neural Networks 11(4):1009–1016

    Article  Google Scholar 

  22. Saritha M, Joseph KP, Mathew AT (2013) Classification of MRI brain images using combined wavelet entropy based spider web plots and probabilistic neural network. Pattern Recogn Lett 34(16):2151–2156

    Article  Google Scholar 

  23. Kuo BC, Ho HH, Li CH, Hung CC, Taur JS (2014) A kernel-based feature selection method for SVM with RBF kernel for hyperspectral image classification. IEEE J Sel Topics Appl Earth Obs Remote Sens 7(1):317–326

    Article  Google Scholar 

  24. Chaplot S, Patnaik LM, Jagannathan NR (2006) Classification of magnetic resonance brain images using wavelets as input to support vector machine and neural network. Biomed Signal Process Control 1(1):86–92

    Article  Google Scholar 

  25. El-Dahshan ESA, Hosny T, Salem ABM (2010) Hybrid intelligent techniques for MRI brain images classification. Digit Signal Process 20:433–441

    Article  Google Scholar 

  26. Zhang Y, Wang S, Wu L (2010) A novel method for magnetic resonance brain image classification based on adaptive chaotic PSO. Progress Electromagn Res 109:325–343

    Article  Google Scholar 

  27. Zhang Y, Dong Z, Wu L, Wang S (2011) A hybrid method for MRI brain image classification. Expert Syst Appl 38(8):10049–10053

    Article  Google Scholar 

  28. Wu L, Wang S (2011) Magnetic resonance brain image classification by an improved artificial bee colony algorithm. Prog Electromagn Res 116:65–79

    Article  Google Scholar 

  29. Zhang Y, Wu L (2012) An MR brain images classifier via principal component analysis and kernel support vector machine. Progress Electromagne Res 130:369–388

    Article  Google Scholar 

  30. Zhang Y, Wang S, Ji G, Dong Z (2013) An MR brain images classifier system via particle swarm optimization and kernel support vector machine. Sci World J 2013

  31. Das S, Chowdhury M, Kundu MK (2013) Brain MR image classification using multiscale geometric analysis of Ripplet. Prog Electromagn Res 137:1–17

    Article  Google Scholar 

  32. El-Dahshan E-SA, Mohsen HM, Revett K, Salem A-BM (2014) Computer-aided diagnosis of human brain tumor through MRI: a survey and a new algorithm. Expert Syst Appl 41:5526–5545

    Article  Google Scholar 

  33. Zhang Y, Wang S, Dong Z (2014) Classification of Alzheimer disease based on structural magnetic resonance imaging by kernel support vector machine decision tree. Progress Electromagn Res 144:171–184

    Article  Google Scholar 

  34. Yu DZ, Zheng CD, Ai JL, Shui HW, Gen LJ, Zheng Z, Ji QY (2015) MR brain image classification via stationary wavelet transform and generalized eigenvalue proximal SVM. J Med Imaging Health Inform 5(7):1–9

    Google Scholar 

  35. Zhang Y, Dong Z, Wang S, Ji G, Yang J (2015) Preclinical diagnosis of magnetic resonance (MR) brain images via discrete wavelet packet transform with Tsallis entropy and generalized eigenvalue proximal support vector machine (GEPSVM). Entropy 17(4):1795–1813

    Article  Google Scholar 

  36. Zhang Y, Wang S, Sun P, Phillips P (2015) Pathological brain detection based on wavelet entropy and Hu moment invariants. Bio-Med Mater Eng 26(s1):S1283-S1290

    Article  Google Scholar 

  37. Zhang YD, Wang SH, Yang XJ, Dong ZC, Liu G, Phillips P, Yuan TF (2015) Pathological brain detection in MRI scanning by wavelet packet Tsallis entropy and fuzzy support vector machine. Springerplus 4(1):716

    Article  Google Scholar 

  38. Wang S, Zhang Y, Dong Z, Du S, Ji G, Yan J, Yang J, Wang Q, Feng C, Phillips P (2015) Feed-forward neural network optimized by hybridization of PSO and ABC for abnormal brain detection. Int J Imaging Syst Technol 25(2):153–164

    Article  Google Scholar 

  39. Singh R, Goel A, Raghuvanshi DK (2020) Computer-aided diagnostic network for brain tumor classification employing modulated Gabor filter banks. Vis Comput 24:1–5

    Google Scholar 

  40. Wang S, Zhang Y, Yang X, Sun P, Dong Z, Liu A, Yuan TF (2015) Pathological brain detection by a novel image feature fractional Fourier entropy. Entropy 17(12):8278–8296

    Article  Google Scholar 

  41. Wang S, Phillips P, Yang J, Sun P, Zhang Y (2016) Magnetic resonance brain classification by a novel binary particle swarm optimization with mutation and time-varying acceleration coefficients. Biomed Eng Biomed Tech 61(4):431–441

    Article  Google Scholar 

  42. Nayak DR, Dash R, Majhi B (2018) Discrete ripplet-II transform and modified PSO based improved evolutionary extreme learning machine for pathological brain detection. Neurocomputing 282:232–247

    Article  Google Scholar 

  43. Tanveer M (2015) Robust and sparse linear programming twin support vector machines. Cogn Comput 7(1):137–149

    Article  Google Scholar 

  44. Schirner G, Erdogmus D, Chowdhury K, Padir T (2013) The future of human-in-the-loop cyber-physical systems. Computer 46(1):36–45

    Article  Google Scholar 

  45. Walsh C (2018) Human-in-the-loop development of soft wearable robots. Nat Rev Mater 3(6):78–80

    Article  Google Scholar 

  46. Jotterand F, Bosco C (2020) Keeping the “Human in the Loop’’ in the Age of Artificial Intelligence. Sci Eng Ethics 26(5):2455–2460

    Article  Google Scholar 

  47. Wu X, Xiao L, Sun Y, Zhang J, Ma T, He L (2021) A survey of human-in-the-loop for machine learning. arXiv preprint arXiv:2108.00941

  48. Budd S, Robinson EC, Kainz B (2021) A survey on active learning and human-in-the-loop deep learning for medical image analysis. Med Image Anal 71:102062

    Article  Google Scholar 

  49. Shanker R, Bhattacharya M (2021) Automated diagnosis system for detection of the pathological brain using Fast version of Simplified Pulse-Coupled Neural Network and Twin Support Vector Machine. Multimed Tools Appl 21:1–24

    Google Scholar 

  50. Shanker R, Bhattacharya M (2019) Brain tumor segmentation of normal and lesion tissues using hybrid clustering and hierarchical centroid shape descriptor. Comput Methods Biomech Biomed Eng Imaging Vis 7(5–6):676–689

    Article  Google Scholar 

  51. Galdames FJ, Jaillet F, Perez CA (2012) An accurate skull stripping method based on simplex meshes and histogram analysis for magnetic resonance images. J Neurosci Methods 206(2):103–119

    Article  Google Scholar 

  52. Sachdeva J, Kumar V, Gupta I, Khandelwal N, Ahuja CK (2016) A package-SFERCB-"segmentation, feature extraction, reduction and classification analysis by both SVM and ANN for brain tumors". Appl Soft Comput 47:151–167

    Article  Google Scholar 

  53. Nabizadeh N, Kubat M (2015) Brain tumors detection and segmentation in MR images: Gabor wavelet vs. statistical features. Comput Electr Eng 45:286–301

    Article  Google Scholar 

  54. Sachdeva J, Kumar V, Gupta I, Khandelwal N, Ahuja CK (2013) Segmentation, feature extraction, and multiclass brain tumor classification. J Digit Imaging 26(6):1141–1150

    Article  Google Scholar 

  55. Behnam M, Pourghassem H (2015) Optimal query-based relevance feedback in medical image retrieval using score fusion-based classification. J Digit Imaging 28(2):160–178

    Article  Google Scholar 

  56. Shanker R, Bhattacharya M (2020) An automated computer-aided diagnosis system for classification of MR images using texture features and gbest-guided gravitational search algorithm. Biocybern Biomed Eng 40(2):815–835

    Article  Google Scholar 

  57. Tamura H, Mori S, Yamawaki T (1978) Textural features corresponding to visual perception. IEEE Trans Syst Man Cybern 8(6):460–473

    Article  Google Scholar 

  58. Gupta N, Khanna P (2017) A non-invasive and adaptive CAD system to detect brain tumor from T2-weighted MRIs using customized Otsu’s thresholding with prominent features and supervised learning. Signal Process Image Commun 59:18–26

    Article  Google Scholar 

  59. Bablani A, Edla DR, Tripathi D, Kuppili V (2019) An efficient concealed information test: EEG feature extraction and ensemble classification for lie identification. Mach Vis Appl 30(5):813–832

    Article  Google Scholar 

  60. Jaganathan P, Kuppuchamy R (2013) A threshold fuzzy entropy based feature selection for medical database classification. Comput Biol Med 43(12):2222–2229

    Article  Google Scholar 

  61. Hiriart-Urruty JB, Strodiot JJ, Nguyen VH (1984) Generalized Hessian matrix and second-order optimality conditions for problems withC 1, 1 data. Appl Math Optim 11(1):43–56

    Article  MathSciNet  MATH  Google Scholar 

  62. Fung G, Mangasarian OL (2003) Finite Newton method for Lagrangian support vector machine classification. Neurocomputing 55(1–2):39–55

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravi Shanker.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shanker, R., Bhattacharya, M. Classification of brain MR images using Modified version of Simplified Pulse-Coupled Neural Network and Linear Programming Twin Support Vector Machines. J Supercomput 78, 13831–13863 (2022). https://doi.org/10.1007/s11227-022-04420-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-022-04420-8

Keywords

Navigation