Skip to main content
Log in

A parallel ETD algorithm for large-scale rate theory simulation

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

Rate theory (RT) is a commonly used method to simulate the evolution of material defects. A promising numerical method, exponential time difference (ETD), can reduce the stiff RT equations to explicit ordinary differential equations (ODEs). Previous implementations of ETD on the “Sunway TaihuLight” supercomputer suffer from high computation cost and poor parallel efficiency while solving a large amount of ODEs. This paper improves the algorithm with hybrid MPI+SIMD and additional instruction-level optimizations by taking advantage of the architecture of “Sunway TaihuLight”. The execution time of a single iteration is reduced by about 40%. Scaling from 64 to 4096 processes, the parallel efficiency of the new algorithm achieves 33.5% and 50.6% in strong and weak scalability, which corresponds to 21.4 and 32.4 in speedup, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Bacon DJ, Osetsky YN (2004) Multiscale modelling of radiation damage in metals: from defect generation to material properties. Mater Sci Eng A 365(1–2):46–56

    Article  Google Scholar 

  2. Wirth B, Odette G, Marian J, Ventelon L, Young-Vandersall J, Zepeda-Ruiz L (2004) Multiscale modeling of radiation damage in fe-based alloys in the fusion environment. J Nucl Mater 329:103–111

    Article  Google Scholar 

  3. Ghoniem NM (1999) Clustering theory of atomic defects. Radiat Eff Defects Solids 148(1–4):269–318

    Article  Google Scholar 

  4. Ashi H et al (2018) Solving stiff reaction-diffusion equations using exponential time differences methods. Am J Comput Math 8(01):55

    Article  Google Scholar 

  5. Bhatt HP, Khaliq AQ (2015) The locally extrapolated exponential time differencing lod scheme for multidimensional reaction-diffusion systems. J Comput Appl Math 285:256–278

    Article  MathSciNet  Google Scholar 

  6. Enright WH, Hull TE, Lindberg B (1975) Comparing numerical methods for stiff systems of ODE:s. BIT Numer Math 15(1):10–48. https://doi.org/10.1007/BF01932994

    Article  MATH  Google Scholar 

  7. Falgout RD, Yang UM (2002) hypre: a library of high performance preconditioners. In: Preconditioners,” Lecture Notes in Computer Science, pp 632–641

  8. Katoh Y, Muroga T, Kohyama A, Stoller RE, Namba C (1996) Rate theory modeling of defect evolution under cascade damage conditions: the influence of vacancy-type cascade remnants on defect evolution. J Nucl Mater 233:1022–1028

    Article  Google Scholar 

  9. Zhikuang XIN, Ningming HXNIE (2021) Application of exponential time difference method in simulation calculation of material irradiation damage. Atomic Energy Sci Technol 55(7):1230

    Google Scholar 

  10. Chen D, He X, Chu G, He X, Jia L, Wang Z, Yang W, Hu C (2021) An overview: multiscale simulation in understanding the radiation damage accumulation of reactor materials. SIMULATION 97(10):659–675

    Article  Google Scholar 

  11. Laliberte F, Boldon L, Liu L (2015) A review of the application of rate theory to simulate vacancy cluster formation and interstitial defect formation in reactor pressure vessel steel. J Eng Sci Technol Rev 8(3)

  12. Golubov S, Ovcharenko A, Barashev A, Singh B (2001) Grouping method for the approximate solution of a kinetic equation describing the evolution of point-defect clusters. Philos Mag A 81(3):643–658

    Article  Google Scholar 

  13. Wolfer W, Mansur L, Sprague J (1977) Theory of swelling and irradiation creep. Technical report, Wisconsin Univ., Madison (USA). Dept. of Nuclear Engineering; Oak Ridge National Lab., TN (USA); Naval Research Lab., Washington, DC (USA)

  14. Marian J, Bulatov VV (2011) Stochastic cluster dynamics method for simulations of multispecies irradiation damage accumulation. J Nucl Mater 415(1):84–95

    Article  Google Scholar 

  15. Terrier P, Athènes M, Jourdan T, Adjanor G, Stoltz G (2017) Cluster dynamics modelling of materials: A new hybrid deterministic/stochastic coupling approach. J Comput Phys 350:280–295

    Article  MathSciNet  Google Scholar 

  16. Cox SM, Matthews PC (2002) Exponential time differencing for stiff systems. J Comput Phys 176(2):430–455

    Article  MathSciNet  Google Scholar 

  17. Meng X (2020) Localized exponential time differencing method for shallow water equations: Algorithms and numerical study. Commun Comput Phys 29(1)

  18. Phan-Thien N, Mai-Duy N, Pan D, Khoo B (2014) Exponential-time differencing schemes for low-mass dpd systems. Comput Phys Commun 185(1):229–235

    Article  MathSciNet  Google Scholar 

  19. Hederi M, Islas AL, Reger K, Schober CM (2016) Efficiency of exponential time differencing schemes for nonlinear schrödinger equations. Math Comput Simul 127:101–113

    Article  Google Scholar 

  20. Asante-Asamani E, Kleefeld A, Wade BA (2020) A second-order exponential time differencing scheme for non-linear reaction-diffusion systems with dimensional splitting. J Comput Phys 415:109490

    Article  MathSciNet  Google Scholar 

  21. Ashi H (2008) Numerical methods for stiff systems. PhD thesis, University of Nottingham

  22. Kuck DJ, Kuhn RH, Padua DA, Leasure B, Wolfe M Dependence graphs and compiler optimizations. In: Proceedings of the 8th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages. POPL ’81, pp. 207–218. Association for Computing Machinery. https://doi.org/10.1145/567532.567555

  23. D’Agostino D, Pasquale G, Clematis A, Maj C, Mosca E, Milanesi L, Merelli I Parallel solutions for voxel-based simulations of reaction-diffusion systems 2014, 980501

  24. Weiliang C, Erik DS Parallel STEPS: large scale stochastic spatial reaction-diffusion simulation with high performance computers 11(1), 13

  25. Roberts E, Stone JE, Luthey-Schulten Z (2013) Lattice microbes: high-performance stochastic simulation method for the reaction-diffusion master equation. J Comput Chem 34(3):245–255

    Article  Google Scholar 

  26. Xu D, Certain A, Lee Voigt HJ, Allen T, Wirth BD Ballistic effects on the copper precipitation and re-dissolution kinetics in an ion irradiated and thermally annealed fe–cu alloy 145(10), 29

  27. Cruz EHM, Diener M, Pilla LL (2019) Navaux POA Eagermap: a task mapping algorithm to improve communication and load balancing in clusters of multicore systems. ACM Trans Parallel Comput. https://doi.org/10.1145/3309711

    Article  Google Scholar 

  28. Li YS, Chen XH, Liu J, Yang B, Gong CY, Gan XB, Li SG, Xu H (2020) OHTMA an optimized heuristic topology-aware mapping algorithm on the tianhe-3 exascale supercomputer prototype. Front Inf Technol Electron Eng 21(6):939–949. https://doi.org/10.1631/FITEE.1900075

    Article  Google Scholar 

  29. Hunter JD (2007) Matplotlib: a 2d graphics environment. Comput Sci Eng 9(3):90–95. https://doi.org/10.1109/MCSE.2007.55

    Article  Google Scholar 

  30. Li X, Ju L, Hoang T-T-P (2021) Overlapping domain decomposition based exponential time differencing methods for semilinear parabolic equations. BIT Numer Math 61(1):1–36

    Article  MathSciNet  Google Scholar 

  31. Bhatt HP, Khaliq AQ (2014) Higher order exponential time differencing scheme for system of coupled nonlinear schrödinger equations. Appl Math Comput 228:271–291

    MathSciNet  MATH  Google Scholar 

  32. Zhong W, Tian Z (2012) The chemical kinetic numerical computation and kinetic model parameters estimating of parallel reactions with different reaction orders. In: Advanced Materials Research, vol 560, pp 1126–1132. Trans Tech Pub

  33. Haohuan FU, Liao J, Yang J, Wang L, Song Z, Huang X, Yang C, Xue W, Liu F, Qiao F (2016) The sunway taihulight supercomputer: system and applications. Sci China Inf Sci 59(7):072001

    Article  Google Scholar 

  34. Xu Z, Lin J, Matsuoka S (2017) Benchmarking SW26010 many-core processor. In: 2017 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW), pp 743–752. IEEE

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (No. 2020YFB0204603).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiali Li or Yun Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Li, J., Yang, Y. et al. A parallel ETD algorithm for large-scale rate theory simulation. J Supercomput 78, 14215–14230 (2022). https://doi.org/10.1007/s11227-022-04434-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-022-04434-2

Keywords

Navigation