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Abstract

This paper compares the classification performance of machine learning classifiers
vs. deep learning-based handcrafted models and various pretrained deep networks.
The proposed study performs a comprehensive analysis of object classification tech-
niques implemented on low-altitude UAV datasets using various machine and deep
learning models. Multiple UAV object classification is performed through widely
deployed machine learning-based classifiers such as K nearest neighbor, decision
trees, naive Bayes, random forest, a deep handcrafted model based on convolutional
layers, and pretrained deep models. The best result obtained using random forest
classifiers on the UAV dataset is 90%. The handcrafted deep model’s accuracy score
suggests the efficacy of deep models over machine learning-based classifiers in
low-altitude aerial images. This model attains 92.48% accuracy, which is a signifi-
cant improvement over machine learning-based classifiers. Thereafter, we analyze
several pretrained deep learning models, such as VGG-D, InceptionV3, DenseNet,
Inception-ResNetV4, and Xception. The experimental assessment demonstrates
nearly 100% accuracy values using pretrained VGG16- and VGG19-based deep net-
works. This paper provides a compilation of machine learning-based classifiers and
pretrained deep learning models and a comprehensive classification report for the
respective performance measures.
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1 Introduction

The UAV platform needs visual object classification as a core enabling technology
for the deployment of diverse applications in the computing paradigm. The low-alti-
tude aerial images are obtained from drones flying within a certain height from the
ground. We have considered aerial images that are captured by drones flying approx-
imately 100 m or less above the land. The applications of unmanned aerial vehicles
(UAVs) include autonomous driving cars [1], object detection and classification [2],
spotting violent crowd behaviors [3], traffic monitoring [4], and aerial terrain analy-
sis [5]. Low-altitude aerial images retrieved from UAVs incorporate public safety
in vehicle accidents [6], ship collisions [7], border-power lines [8], crowd surveil-
lance [9], and energy inspection from solar farms [10]. Low-altitude aerial images
in urban settings have different features than remote sensing or standard datasets.
These present significant challenges for object classification for low-altitude UAV
images, such as payload weight constraints and multiple overlapped or scale-ori-
ented images [11]. In this paper, we perform object classification on multiple low-
altitude aerial objects.

1.1 Motivation

Research on low-altitude datasets is relatively new, and this paper strives to experi-
mentally compare research in low-altitude aerial datasets by evaluating the perfor-
mances of leading deep learning methods for object classification. The advent of
artificial intelligence technologies has led to a boost in drone-based technologies to
perform a wide range of applications. In this paper, we compare machine- and deep
learning-based approaches for five different classes of low-altitude aerial objects.
The inherent characteristics of low-altitude aerial images are different from standard
images, so the challenges encountered in this case are more complicated to solve.
The classification algorithms show different behavior when applied to low-altitude
aerial images. The versatile applications of UAVs including crowd surveillance
[9], traffic monitoring [4], and autonomous navigation [1] are more feasible due to
recently formed drone policies. It is worth studying multiobject classification mod-
els along with diverse applications in the case of low-altitude aerial images. We aim
to provide a suitable model to perform classification in this unexplored domain. This
study targeted young audiences working in low-altitude UAV images to compare
machine and deep network choices for object classification. The recent technological
advancement of the machine and deep learning fields employs visual tasks in which
human experts are relatively less efficient in evaluating recognition outcomes with
correct visualization. This paper is an attempt in this direction, and the significant
offerings of this paper include the following:

e Comparison between machine learning-based classifiers and a deep handcrafted
CNN for object classification in low-altitude aerial images.
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e Comparison between a deep handcrafted CNN and pretrained deep models for
object classification in low-altitude aerial images.

e Performance evaluation of machine learning-based classifiers and pretrained
deep models for low-altitude UAV object classification.

e Provide a suitable choice from a machine learning-based classifier and pretrained
deep model for recognizing objects in low-altitude aerial images.

The organization of this research paper is as follows: Sect. 2 highlights the chal-
lenges of low-altitude UAV objects, machine learning studies, and deep learning-
based object classification techniques. Section 3 describes an experimental setup in
which the methodology of classification algorithms in low-altitude UAV datasets,
the training process, the evaluation parameters, and the description of the low-
altitude UAV dataset are discussed. Section 4 analyzes the results obtained from
machine learning-based classifiers and pretrained deep models with different param-
eters. The last section concludes the results achieved and predicts the feasible choice
of model for multi-object classification in low-altitude UAV datasets. The future
scope of the proposed work is discussed in this section.

2 Related work

Over the last decade, convolutional neural networks (CNNs) have emerged as an
optimal choice for a range of image manipulation tasks such as object detection,
recognition [2], semantic segmentation, and pose estimation [12]. The real-time
applications deployed in low-altitude UAV datasets do CNNs work in civilian air-
space in a robust manner. The development of complex applications in low-altitude
aerial images includes crowd surveillance by estimating violent human poses [12],
recycling of plastic waste in wilds [13], monitoring power infrastructures [14], iden-
tifying mosquito breeding areas [15], and landslide accidents [16]. In this section,
we discuss the challenges of low-altitude UAV-based object classification, machine
learning-based classifiers, and deep models.

2.1 Challenges of UAV based object classification

Multiple object-based classification in low-altitude aerial images is a crucial prob-
lem due to overlapping image resolutions, limited contextual information, scale dif-
ferences in objects, etc. There are significant challenges in low-altitude UAV-based
object detection when related to standard images, such as:

Immense variations in the scale of aerial objects.

Dense distribution of small objects.

Arbitrary orientations of objects in low-altitude aerial images.

High illumination underexposes the dark regions of high-resolution images.
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@ Springer



On the performance evaluation of object classification models... 14551

5. Occlusion in the form of proximity with other present objects.

All the above-discussed challenges have led to object detection and recognition
techniques in low-altitude aerial images that used deep features for processing. We
first describe machine learning-based classifiers, then a handcrafted CNN model,
and finally pretrained deep learning-based models. Object classification-based
experiments were performed on models on a low-altitude aerial dataset.

2.2 Machine learning-based classifiers

The machine classifiers that have been implemented are K nearest neighbor (KNN),
decision trees [17], random forests (RF) [18], and naive Bayes [19]. These classi-
fiers have become high-performance baseline models in object recognition systems
in recent times [20]. K nearest neighbor, the classifier, is the oldest nonparametric
algorithm with k neighbors, determined using a cross-validation vector on an input
class. The decision tree classifier attempts to divide the features to yield a suitable
generalization. Decision trees are widely used models for classification and numeri-
cal data, whereas nonlinear parameters do not affect their performance. In this case,
the decision tree classifier is imported with a random state =0 and then fit on train-
ing data into the classifier. The design of decision trees includes attribute selection
and pruning method choices. Furthermore, the object is classified by considering the
voted class from existing predictors [21]. The most frequently used attribute-related
measures are the information gain ratio and Gini index. In a provided training set 7,
choosing one pixel at random belonging to some class C;, the Gini index is depicted
in Eq. (1), where f (C;, T)/IT1 belongs to the probability of the chosen scenario that
belongs to class C;.

> (F(CuT)/ITI) (F(C T) /1T1). )

J#

The machine learning-based RF classifier consists of a random combination of
features at every node of a tree. RF is an ensemble of unpruned decision trees that
are built on a bootstrap input using a variable subset. We utilize a random forest
without hyperparameter tuning and clustering. The naive Bayes classifier is based
upon the maximum a posteriori principle that calculates probability using the Bayes
theorem in Eq. (2):

P(C =cl||xy,....,x,) = P(C =c)P(xy,...,x,||C = c). )

This approach is extendable to multiple classes and assumes conditional inde-
pendence. Naive Bayes classifiers assign the most expected class described by its
feature vector and learning through feature independence. We compared machine
classifiers with a customized approach, i.e., a deep handcrafted learning-based CNN
network in our working methodology. This is intended to design an efficient and
lightweight network from the beginning rather than adapt an existing system for
low-altitude aerial images. The breakthrough of machine learning-based classifiers
is observed in image processing in providing optimized object recognition results.
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[22] described a hybrid approach of detecting an object from UAV imagery using
the Viola-Jones detection method and a histogram of oriented gradients (HOG)
[23]-based support vector machine (SVM) classifier [24] used jointly. The proposed
scheme adopted an orientation adjustment method that rotated the UAV image to
align in the horizontal direction. The strategy further developed an integrated hybrid
approach based on their detection speed to improve efficiency. [25] implemented a
cascading classifier that concatenated online learning-based classifiers by exploiting
multiscale HOG features. The dimensions of input features were drawn out in multi-
scale HOG to supply better and richer information for aerial images. Reference [26]
made use of the AdaBoost classifier through a sliding window method of region pro-
posals with integrated channel descriptions to detect independent moving features
from aerial views. Different segmentation techniques, such as contour extraction and
blob extraction, were evaluated to reduce the merging similarity of motion clusters.
References [27, 28] made use of scale-invariant feature transform (SIFT) descrip-
tors [29] for keypoint extraction of vehicle objects in UAV imagery. The number of
objects was given by the number of final vital points extracted by the SVM classifier
for classification and merging processes. Different combinations of SIFT features
with color and morphology were used to calculate detection and false alarms.

Inspired by the above works, we found it interesting to compare machine and
deep approaches to classify low-altitude aerial images. A comprehensive explana-
tion of CNN-based deep models for multiple aerial object classification is discussed
in the next sections.

2.3 Deep learning-based classification models

In the recent era, artificial intelligence has proven to be a revolution in machine learn-
ing in computer vision [30]. Later, an advancement of deep learning-based models
evolved in image processing, which achieved tremendous object recognition results
over traditional approaches in an effective manner [31]. CNNs have been the most
successful object classification architectures in deep learning and work analogously
to the human brain and embrace neurons that respond to the real-time environment
[32]. Deep learning-based well-known CNN architectures have been deployed for
object classification-based feature extractors for tuning the classifiers. The training
is processed in which filters and parameters have random seeds by performing for-
ward propagation. In low-altitude aerial studies, 2D-based CNNs have been com-
monly used to extract spatial features from the dimensions for object detection, rec-
ognition, and semantic segmentation of high-resolution aerial images [33], medical
image-based disease diagnosis [34], and COVID-related measures [35]. Reference
[34] proposed a VGG-inspired classification network to study the attention mecha-
nisms for Alzheimer’s disease. Eighteen-way data augmentation is proposed to avoid
overfitting. The precision and accuracy were 97.87+1.53 and 97.76 +1.13, respec-
tively. Reference [35] identified COVID-19 patients through a novel artificial intel-
ligence model on a chest CT dataset. A novel VGG-style base network was proposed
as a backbone network, and a convolutional block attention module was introduced
as an attention module. Furthermore, an improved multiple-way data augmentation
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method was used to resist overfitting. The proposed model achieved a precision
per class above 95% and yielded a micro averaged F1 score of 96.87%, which is
higher than 11 state-of-the-art approaches. Reference [36] improved building extrac-
tion accuracy in multifaceted building areas through a framework that applies deep
learning-based semantic segmentation to UAV images with a digital surface model.
The combination identified small buildings that were usually not high and covered
partly by tree branches. The proposed method is applied to an open standard dataset
to evaluate its strengths, and the results indicate an overall 4% accuracy increase
from RGB to RGBD. Reference [37] compared the classification results of three
deep models, AlexNet, VGG16, and VGG19, for ten classes of UAV landing sites
with respect to different performance parameters. The results offered an understand-
ing of typical false objects among classes of landing sites. Reference [38] proposed a
dual inspection mechanism that identified missed targets in suspicious areas to assist
single-stage detection branches in producing reliable results. The proposed method
improved 2.7% mAP on the VisDrone2020 dataset, 1.0% mAP on the UAVDT data-
set, and 1.8% mAP on the MS COCO dataset. Reference [39] provided a review on
vehicle detection from UAV imagery using deep learning techniques such as convo-
lutional neural networks, recurrent neural networks, autoencoders, generative adver-
sarial networks, and their impact on improving the vehicle detection task. Reference
[40] introduced a novel deep learning CNN architecture to identify anthracnose dis-
ease in mangos. A real-time dataset captured in farms of Karnataka, Maharashtra,
and New Delhi was used for validation. In comparison with other state-of-the-art
approaches, the proposed algorithm gives a higher classification accuracy of approx-
imately 96.16%. Reference [41] evaluated the usage of transfer learning and fine-
tuning on several CNN architectures, and the highest accuracy score was obtained
by fine-tuning the ResNet50 model, which was 88%. The testing results show that
transfer learning helps in generalization and demonstrates strong potential for the
real-time application of forest fire detection.

CNNs were explicitly designed for object classification tasks, i.e., assigning
single- or multiple-class labels to an entire scene. A breakthrough development in
object classification was the ImageNet Large Scale Visual Recognition Challenge
(ILSVRC) in 2012, where multiple CNNs outperformed the state-of-the-art mod-
els based on handcrafted appearance descriptors [42]. Unusual extensions, such as
trainable layers, increasing the capacity of the models [43], the introduction of drop-
out [44], batch normalization [45], and other strategies allowing better propagation
of gradients, such as rectified linear unit (ReL.U)-based nonlinearities [46], allow
efficient training of deeper CNNs. The correctly annotated datasets for training and
inference with powerful GPUs made CNNs the right standard for solving object
classification problems. The classification of low-altitude UAV images having mul-
tiple categories of objects is the primary offering of this study. Pretrained deep mod-
els such as VGG16 [43], InceptionV3 [47], ResNet50 [48] and DenseNet121 [49]
trained on ImageNet have been implemented for diverse object classification. Fur-
thermore, detailed information about the number of parameters, accuracy rates, and
required image size for pretrained deep models is presented in Table 1. The VGG-D
models consisted of VGG16 and VGGI19 with 13 and 16 convolutional layers,
respectively. Their training was regularized by several regularization mechanisms,
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Table 1 Parameters of pre-

M) (%) (%)
VGG16 224x224 138 74.4 91.9
VGG19 224224 144 74.5 92
InceptionV3 299%x299 23.8 78.8 94.4
InceptionResnetV2 299x299 55.8 80.1 95.1
Xception 299%x299 228 79 94.5
DenseNet121 224%x224 33 76.39 93.34

especially for fully connected layers. InceptionV3 [47] eliminates several connec-
tions between convolutional layers that are unsuccessful and have redundant infor-
mation due to the correlation between them. Inception-ResNetV2 [48] takes advan-
tage of both Inception and ResNet networks and outperforms leading deep models.
The Xception [54] architecture is built on a linear stack of a depth-wise separable
convolution layer with linear residual connections. There are two important layers
in architecture: a depth-wise convolutional layer in which a spatial convolution is
carried out independently in each channel of input data. A pointwise convolutional
layer has a 1 X 1 convolutional layer, which maps the output channels to a new chan-
nel space using a depth-wise convolution. The DenseNet [49] network was designed
to address the vanishing gradient problem arising from the network depth. The prob-
lem of training exists with every deep network due to the large flow of information
and gradients. These models were initially trained on ImageNet, and then feature
extraction was performed on customized low-altitude UAV datasets by transferring
weights only to initial layers.

3 Experimental setup

We have considered multiple classes of objects in low-altitude aerial images in
which object classification-based experiments have been performed. The method-
ology of applying machine learning-based classifiers on a low-altitude aerial data-
set includes importing the necessary Python libraries, loading image files with their
classes, scaling and transforming training and test data, instantiating the classifica-
tion model, fitting the visualizer, and the model, and evaluating the model on the test
data. The discussed machine learning-based classifiers and pretrained deep networks
are trained on a customized low-altitude UAV dataset for multiple-object classifica-
tion. The description of the dataset, training strategies, and performance evaluation
methods are presented in subsequent sections.

3.1 Deep network-based handcrafted model

An end-to-end deep object classification model has been trained on multiple objects
presented in low-altitude aerial datasets known as a deep handcrafted model. The

@ Springer



On the performance evaluation of object classification models... 14555

Classification
input Result
image Class1
Class 2
FCs T Dropout

CONV2D
64, 3°3

Fig. 1 Used handcrafted deep network

Table 2 Architectural details of

handerafted deep network for Layer type Activation Filters Size  Stride
object recognition 0  Conv2D Relu 32 3x3 1
1 Max-Pool 2
2 Conv2D Relu 32 3x3 1
3 Max-Pool 2
4 Conv2D Relu 64 3x3 1
5 Max-Pool 2
6 GlobalAveragePooling
7 Dense Relu 1024
8 Dropout 0.5
9 Dense Softmax 10

architectural details of the proposed handcrafted-based model are described in Fig. 1
and Table 2. The network contained six convolutional and pool layers with a size of
150 % 150 as input images. The low-altitude aerial images with different dimensions
were resized before feeding into the proposed algorithm. The filters were used to
learn different feature types, and each filter slid over the input images. The layers
after a convolution layer in the proposed architecture are global average pooling,
dropout, and fully connected layers. The flattened layer converts 3D feature maps
to 1D feature vectors. The activation function is ReLU, which accomplishes the
threshold operation on the input to purge the effect of dark and noisy regions. Max
and GlobalAveragePooling applied a maximum and average operation to each filter
by restoring the spatial information of the images. The class values are calculated
through a softmax classifier, and activation values correspond to diverse abstrac-
tion layers. The top layers of the model consisted of a softmax function class layer
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that resulted in function output, and hence, the class layer selects the label with the
determined probability.

3.2 Training process

The machine learning classifiers are implemented through Python’s Scikit-learn library
to use the customized low-altitude aerial dataset, which consists of images and corre-
sponding labels. The task is to forecast the low-altitude aerial class to which the related
images belong. During the training process, the loading of the dataset takes place, after
which the splitting of the dataset into its attributes and labels is performed. The stand-
ard scaler function is employed before splitting the data into training and testing as it
transforms the data. The final step is to calculate inferences on testing data. The clas-
sification report method is utilized to calculate precision, recall, and F-1 score metrics
over the employed models. Deep learning-based architectures have been implemented
in Keras with a TensorFlow1.10 version backend. We utilized uniform standard data
shuffling techniques in all our experiments, including random horizontal, vertical
flipping, random scaling, and rotations of the input data images. The input data are
shuffled randomly and further split into training and validation (3:1 ratio) for passing
into deep learning-based classification models. The same process is repeated multiple
times so that a fair evaluation of data can be inferred. Root mean square propagation
(RMSProp) was employed to optimize the network loss function, starting with a learn-
ing rate of 0.001. The training of each employed network is performed for 1000 epochs.
In our case of multiclass classification of low-altitude UAV images, the categorical
cross-entropy loss function provides a stable network and significant results. The drop-
out rate is 0.2 as a regularization technique for deep neural networks, and a batch size
of 32 is kept due to the size of the input data. The final trained model was saved to disk
for further visualization of the results. Computing on a cluster of 2 NVIDIA Titan XP
GPUs was performed for training and validation inputs. Throughout the experiments,
platforms of an Ubuntu 16.04 LTS-based Intel Core i7-6850 K CPU @ 3.60 GHzx 12
and 64 GB RAM are used. The main components of the proposed analysis are imple-
mented using the Python language, supported with Sklearn [50], OpenCV libraries
[51], Keras [52], and the TensorFlow backend [53]. The deep models utilized the vari-
ous pretrained CNNs [43, 47, 48], partially fine-tuned with a widely deployed dataset,
and implemented with NVIDIA-CUDA toolkits [55] to run on desktop graphical pro-
cessing units (GPUs).

3.3 Evaluation parameters

To evaluate the accuracy of each deep model, popular classification-related evaluation
metrics have been employed to visualize the results precisely. The classification report
was generated from the predicted data to measure recall, precision, and F-1 score. The
metric precision means the fraction of the true positives from the total sum of true posi-
tives and false positives. Recall means the fraction of true positives from the total num-
ber of true positives and false negatives. The F; score describes the harmonic mean of
precision and recall.
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True positives

Precision = — —, (3)
True positives + False positives
True positives
Recall = —°P — 4)
True positives + False negatives
F,measure = 2 x Prec?s?on X Recall’ )
Precision + Recall
Number of correct predictions
Accuracy = 6)

Total number of predictions

The accuracy score is the true predictions from the class one having the maxi-
mum probability and metrics have been represented in Egs. 3-6.

3.4 Description of low-altitude UAV dataset

We have considered annotated low-altitude UAV datasets such as CARPK [56],
Okutama [57], VEDAI [58], and UAVBD [59] and combined them to form five dif-
ferent categories of multiple objects in a single image. A wide variety of low-alti-
tude UAV datasets have been merged to produce multiple classes of objects, such
as vehicles, persons, cars, plastic bottles, etc. The description, annotation support,
and dataset size- related information are presented in Table 3. The CARPK dataset
[56] provides localization and counting of car objects in the parking lot to gather
free space information for new entrants. The UAVBD dataset [13] is dedicated to
procuring waste plastic bottles from mountains and wild grasses for recycling from
a drone’s view. The Okutama dataset [57] is specifically dedicated to human action
detection between different humans as objects. The Birds dataset [59] captured at a
low resolution of 25 pixels from cameras and telephoto lenses detects birds in wind
farms for ecological conservation. This combined dataset has five different classes
and sizes named birds, cars, persons, bottles, and vehicles, as depicted in Fig. 2. All
the above classes make a total of 5000 low-altitude UAV images for implementing
machine and deep learning-based classification models. The resizing of the origi-
nal image was performed according to a pretrained network size, such as 224 x 224
for VGG and 299 %299 for the Xception model. The low-altitude image data have
been shuffled to maximize accuracy, and the performance comparisons of the vari-
ous machines, as well as deep network-based methods, are made from UAV datasets.
The next section describes a training process of multiple object classification in low-
altitude UAV datasets.
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T
|
I

BOEE

; C.a; ‘ - Person Bird Plastic_bottle Vehicle

Fig.2 Multiple classes of low-altitude UAV dataset

4 Results and discussion

In this section, a comprehensive quantitative analysis is proposed concerning various
machine classifiers and deep learning architectures to predict urban objects in low-
altitude aerial images. The experiments suggest that the handcrafted CNN achieved
a maximum accuracy score of 92.48 compared with machine classifiers. Out of
the KNN, naive Bayes, decision trees, and random forest classifiers, random for-
ests obtained the highest value of 90% on low-altitude aerial data. Our experimental
results helped to conclude that deep networks provide the right choice for achieving
significant improvements in low-altitude aerial image-based classification. The over-
all accuracy score of the handcrafted CNN (92.48), as shown in Table 4, is higher
than machine-based classifiers in Table 6. The performance of the handcrafted CNN
degraded when compared with pretrained networks. The deep network models are
trained for various input sizes of multiple low-altitude aerial datasets. Deep network
architectures such as VGG16, VGG19, InceptionV3, Xception, DenseNet121, and
InceptionResNetV2 were utilized to perform the experiments. The acquired data-
set of low-altitude aerial images was resized to 224 X224 for the VGG16 & 19 and
DenseNet121 networks and to 299 %299 for the InceptionV3, Xception and Incep-
tionResNetV?2 networks.

4.1 Analysis of performance metrics

In this section, an analysis of performance metrics such as precision, recall, and F-1
score evaluation has been discussed. The confusion matrices for each machine learn-
ing-based classifier are utilized to better understand true positives and false positives
for multiobject classification in low-altitude aerial images. Table 4 represents the

Table 4 Performance results for Class

handerafted CNN Precision Recall F-1 score
Vehicles 0.96 0.85 0.90
Plastic bottles 0.85 0.93 0.89
Persons 0.96 1.00 0.98
Cars 0.99 0.82 0.90
Birds 0.89 1.00 0.94
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Table5 Confusion matrix of machine learning-based classifiers

vehicles 0.05 0.02 0.05 vehicles | o8
- 0.8
plastic_bottles X 0.05 0.05 plastic_bottles | s
- 0.6
persons 0 0.99 o C persons
0.4 - 04
cars cars
0.2 - 0.2
birds 005 [H063 birds
0.0
3 3 2 2 8 8 P 2 2 8
2 = 2 c B 2 £ 2 o 5
B 2 g B o g
g 2
Naive Bayes Classifier KNN Classifier
-1.0
vehicles o 3 0.02 vehicles 0 0005 001
- 0.8 - 08
plastic_bottles [N 0.03 plastic_bottles
- 0.6 - 0.6
persons [ 0 persons
- 0.4 0.4
cars 0.04 0.05 cars
0.2 - 0.2
birds [ birds
_ 00 - 0.0
8 &2 g & 3 £ £ & § 3
] <] 2 S 3 2 g 2 “ 3
g % & : 5 &
8 i
Decision Tree Classifier Random Forest Classifier
Table 6 Comparison of classification accuracy in machine learning-based classifiers
Classifier Individual Class Accuracy Metrics Classifier Individual Class Accuracy Metrics
K Nearest Class Precision recall | F1 Decision Class precision recall | F1
Neighbor score Tree score
Accuracy Vehicles | 0.84 0.99 0.91 Accuracy Vehicles 0.90 0.92 0.91
82.66 Plastic 1.00 070 | 083 83.26 Plastic 0.81 079 | 0.80
bottles bottles
Persons | 0.78 1.00 | 0.88 Persons | 0.98 098 | 0.98
Cars 0.85 0.89 0.87
Birds 0.68 054 | 060 Cars 085 081 |08
Birds 0.62 0.65 0.64
Naive Bayes Class precision | recall | F1 Random Class precision | recall | F1
Accuracy score Forest score
79.00 Vehicles | 0.89 0.82 | 0.86 Accuracy Vehicles | 0.98 096 | 097
Plastic 0.76 0.57 0.65 90.00 Plastic 0.89 0.85 0.87
bottles bottles
Persons 1.00 0.99 0.99 Persons 1.00 1.00 1.00
Cars 0.85 0.82 0.83 Cars 0.90 0.94 0.92
Birds 0.54 0.77 0.63 Birds 0.77 0.78 0.77

confusion matrices for the KNN, naive Bayes, decision tree, and random forest clas-
sifiers. The diagonal values in the matrix represent the true predictions out of the
total samples. The evaluation of performance metrics in the case of machine classi-
fiers and deep learning-based networks has been done for low-altitude aerial images.
Parameters such as precision, recall, F-1 score, and accuracy score were calculated
from the classification report (Table 5). Detailed visualization of the classification
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Fig. 3 Performance of various
deep learning models

Value

»

Precision v/s Recall v/s F1-Score
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Table 7 Comparison of classification accuracy between pretrained deep CNNs

Pretrained Individual Class Accuracy Metrics Pretrained | Individual Class Accuracy Metrics
CNNs CNNs
Inception Class precision | recall | F1 Inception Class precision | recall | F1
ResnetV2 score V3 score
Accuracy Vehicles 1.00 0.93 0.96 Accuracy Vehicles 1.00 0.80 0.89
0.9864 . 0.96 Plast 090 100 004
Loss 0.2041 Plastic 0.96 1.00 0.98 Loss 0.5740 astic K . X
bottles bottles
Persons 0.99 1.00 1.00 Persons 0.96 1.00 0.98
Cars 0.99 1.00 0.99 Cars 0.96 1.00 0.98
Birds 1.00 1.00 1.00 Birds 1.00 1.00 1.00
VGG16 Class precision | recall | F1 VGG19 Class precision | recall | F1
Accuracy 1.00 score Accuracy score
Loss Vehicles 1.00 1.00 | 1.00 || 0.9968 Vehicles | 1.00 0.99 | 0.99
0.0012 Loss 0.0317 -
Plastic 1.00 1.00 1.00 Plastic 0.99 1.00 1.00
bottles bottles
Persons 1.00 1.00 1.00 Persons 1.00 1.00 1.00
Cars 1.00 1.00 1.00 Cars 1.00 1.00 1.00
Birds 1.00 1.00 1.00 Birds 1.00 1.00 1.00
DenseNet121 Class precision | recall | F1 Xception Class precision | recall | F1
Accuracy score Accuracy score
0.9968 Vehicles 1.00 098 | 099 || 09864 Vehicles 1.00 0.94 | 0.97
Loss 0.0414 Loss 0.1680 _
Plastic 1.00 1.00 | 1.00 Plastic 1.00 1.00 | 0.98
bottles bottles
Persons 1.00 1.00 1.00 Persons 0.98 1.00 0.99
Cars 0.99 1.00 0.99 Cars 0.96 1.00 1.00
Birds 1.00 1.00 1.00 Birds 1.00 0.99 0.99

report of machine learning classifiers and handcrafted CNN-based object classifica-
tion models with individual classes of low-altitude UAV datasets are displayed in
Tables 4 and 6, respectively. Furthermore, classification performance metrics with
respect to low-altitude UAV objects are presented in these tables. The precision,
recall, and F-1 score of each machine classifier and deep learning-based handcrafted
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Fig. 4 Training duration of vari- Training duration of deep networks

ous deep learning models 1 I
| I
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00"
e?
\¢
Deep Networks

Wt

CNN model were combined to depict that the deep handcrafted model performed
better than machine classifiers. The detailed visualization of the classification report
of deep learning-based object classification models with individual classes of low-
altitude UAV datasets is displayed in Fig. 3 and Table 7. The experiments suggest
that the Xception model needed maximum time when trained for the required num-
ber of epochs, as depicted in Fig. 4. The VGG16 and VGG19 models converged
quickly; after that, stagnant performance was seen. The analyzed deep networks
depicted different behavior when trained on low-altitude aerial datasets compared
to standard images. Xception, DenseNet121 and InceptionResNetV2 performed bet-
ter than InceptionV3 in terms of evaluation parameters. Our experimental results
helped gather deep network choices for multiple class-based object classification
problems in low-altitude aerial images. The value of the handcrafted-based CNN
(92.48) is found to be higher than machine learning-based classifiers such as KNN
(82.26), naive Bayes (83.26), decision trees (79), and random forests (90). Our find-
ings concluded that training a handcrafted deep neural network is feasible compared
with machine classifiers, as the accuracy obtained by the CNN (92.48) is higher than
each employed machine classifier. High performance has not been achieved, as the
discussed machine learning-based classifiers face problems in the case of low-alti-
tude UAV images, such as [26]:

e The features obtained from manual work relying on aerial domain knowledge
may not be adequate for object recognition tasks.
Handcrafted feature engineering is a time-consuming process and quite tedious.
Machines with related mathematical models and assumptions restrict the flexibil-
ity to handle aerial image shapes.

The pretrained networks perform even better than deep handcrafted networks
because the handcrafted CNN started with randomly initialized dynamic weights. In
contrast, pretrained networks trained on a large ImageNet dataset provide better end-
to-end learning. In addition, pretrained deep model even performed better than the
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handcrafted CNN and machine models on the same dataset. This is because of the
training of the model’s weights. The six kinds of pretrained transfer learning-based
deep networks show different multiple object recognition results when compared
with previous findings. Inception-ResNet-v2 achieved an accuracy of 98.64 and a
loss of 0.2041, the same as that of the Xception network. Accurate models such as
InceptionV3 obtained 96.00 accuracy and 0.5740 loss, which states that Inception-
ResNetV2 has an improved network over InceptionV3 in our settings. Xception also
performed better than InceptionV3, with an accuracy score of 98.64%. The recently
developed DenseNet121 also showed significant performance due to concatenation
of input layers to produce an output layer with an accuracy of 99.68 and loss value
of 0.0414.

4.2 Comparisons of accuracy and loss graphs

The training process of deep networks for multiple object recognition was executed
for 500 epochs. For each epoch, a summary of accuracy and loss is generated, and
thus graphs obtained from TensorBoard related to deep networks are presented in
Figs. 5 and 6. The plots depicted in Fig. 6 show that the validation accuracy models
seem to have converged. The line plots for both accuracy and loss show good con-
vergence behavior, although they are somewhat bumpy. All described models are
well configured and show no signs of over- or underfitting. The loss and accuracy
values depicted almost no convergence after 400 epochs, from which we can assume
that the model is trained. DenseNets performed fairly well in multiple object-based
UAV datasets and achieved 99.68% accuracy. High convergence can be seen in
the accuracy plot of Inception-ResNetV2 due to the learning capacity of the net-
work. InceptionV3 did not perform well in our settings and obtained a loss value of
0.5714, which is higher than other pretrained deep networks. Xception performed
better than the InceptionV3 network but relatively poorly when compared with other
deep networks trained on low-altitude UAV datasets. The value of loss and accuracy
depicted no convergence after 200 epochs, and both VGG16 and VGG19 models
performed best on the low-altitude UAV dataset.

The comparison with the state-of-the art studies mentioned in Table 8, [60, 63,
64] made use of descriptor-based classification methods. These methods require
hand engineering and complex methodology. [66] employed hyperspectral images
by developing a hail vegetation index to identify agriculture-based patterns. Our
dataset contains multiple size objects, and the impressive results of the VGG net-
works revealed that the network depth is an important factor in obtaining high clas-
sification accuracy. The evaluation presented in Fig. 7 indicates that deep networks
trained on standard images have a different scope than those trained on low-altitude
aerial views. Due to the inherent characteristics of low-altitude aerial images, such
as the small size of objects, captured angle, resolution, orientation, and scale, they
differ from natural images.
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Table 8 Comparison with existing classification methods

Studies Methods Datasets Best Results
[60] Handcrafted shape and color features Flavia 96.30
[61] GoogleNet and micro-Doppler signature Merging MDS and CVD 94.7
based classification
[62] CNN, SVM TARBIL 97.47
[63] Fourier and wavelet descriptors, MLP Flavia 97.50
[64] Pixel-based image classification method Fixed wing drone dataset 84.7
[65] AlexNet/LDA UCI Leaf 96.20
[66] Hail Vegetation Index Hyperspectral Images >90
Our work VGG16/VGG19 Instances of VEDAI, 99.68
CARPK, OKUTAMA,
BIRDS
100 B Accuracy
Precision
Recall

80 B Fiscore

60

40

20
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Fig. 7 Performance comparison of all algorithms

5 Conclusion

This paper has analyzed various machine learning- and deep learning-based clas-
sification networks to recognize multiple objects from low-altitude UAVs. The pro-
posed evaluation compares machine classifiers KNN, naive Bayes, random forest,
decision trees and deep models such as handcrafted-based CNN, VGG16, VGGI19,
InceptionV3, Xception, DenseNets, etc. Machine- and deep model-based classifica-
tion was performed to conduct experiments on low-altitude UAV images. Among
the employed machine classifiers for classification, random forests achieved better
results among KNN, decision trees, and naive Bayes classifiers. However, when
compared with a handcrafted CNN, the performance of leading machine classifier
random forests degraded on low-altitude aerial images. In the case of pretrained
deep models for object recognition, VGGD, InceptionV3, DenseNet121, Inception-
ResNetV2, and Xception depicted different behaviors when trained on low-altitude
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aerial datasets. DenseNetl21 and Inception-ResNetV2 performed better than
InceptionV3 and Xception. However, VGG16 and VGG19 performed better than
Xception,

DenseNet121, and Inception-ResNetV2 due to the inherent characteristics of low-
altitude data. Our experimental results provide academia and the research commu-
nity with a medium for dealing with multiple object classification in low-altitude
aerial images. The classification reports concerning individual class in terms of pre-
cision, recall, and F-1 score are represented to analyze models better.

The progressive approaches of deep learning-based object classification in low-
altitude aerial data seem to have a bright future. The vast deployment of applications
influenced the aerial imaging market, which is expected to grow at a rate of 14.2% in
the coming years. One of the major factors creating advanced prospects in the aerial
imaging classification solutions market is the recently published drone policies by
the Government of India and the availability of artificial intelligence-based technol-
ogies. Furthermore, as a part of our future work, we intend to explore human activity
recognition and detect abnormal behaviors in surveillance-based UAV applications.
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