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Abstract
In this work, we propose a multi-tier architectural model to separate functionality 
and security concerns for distributed cyber-physical systems. On the line of distrib-
uted computing, such systems require the identification of leaders for distribution 
of work, aggregation of results, etc. Further, we propose a fault-tolerant leader elec-
tion algorithm that can independently elect the functionality and security leaders. 
The proposed election algorithm identifies a list of potential leader capable nodes to 
reduce the leader election overhead. It keeps identifying the highest potential node 
as the leader, whenever needed, including the situation when one has failed. We also 
explain the proposed architecture and its management method through a case study. 
Further, we perform several experiments to evaluate the system performance. The 
experimental results show that the proposed architectural model improves the sys-
tem performance in terms of latency, average response time, and the number of real-
time tasks completed within the deadline.
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1 Introduction

These days cyber-physical systems (CPSs) are mostly network-ready extensions of 
traditional embedded systems which are connected to the Internet. The cyber nodes 
monitor and control the real-world physical devices and infrastructures to achieve 
better reliability and resource utilization [8, 26, 48]. The emerging CPS may range 
from small-scale industries to large-scale connected systems of diverse areas such as 
transportation, aerospace, entertainment, industrial control system, health care, and 
so on. Thus, the components of a CPS are geographically distributed, which con-
sist of numerous sensing, actuation, and computational nodes. These nodes execute 
different software modules to perform multiple real-time and non-real-time jobs to 
achieve a common goal. However, these components may fail independently. This 
failure can be unintentional or intentional. The integration of cyber components 
enriches the intelligence and enhances the quality of services provided by physical 
infrastructure and devices. However, the automation and connectivity of all the net-
worked computing devices increase the security risks [35, 47, 48, 51] by increasing 
intentional failure. In recent years, several powerful attacks have been launched on 
critical infrastructures. For instance, Stuxnet worm [1], Havex [40], and Triton [15] 
malware are deployed to target different CPSs. These attacks caused huge financial 
damage and physical injuries. The attackers try to dig out the existing security vul-
nerabilities present at any of the CPS architecture layers or any of its nodes. They 
may arise due to ignorance at the design time or the facilities provided to the exter-
nal entities [49]. These vulnerabilities may be of different nature, such as open port, 
buffer overflow, weak password, access control, and adoption of standardized pro-
tocols and technologies with known weakness. The attacker may launch an active 
or passive attack to exploit the vulnerabilities and compromise the system’s critical 
functionalities, availability, integrity, or confidentiality.

Hence, an integrated CPS architectural model is needed to organize security 
with functionalities to perform real-time jobs securely [29, 55]. Moreover, the 
occurrence of faulty nodes due to usual faults or security breaches demands the 
secure architecture to be fault-tolerant as well. Unfortunately, in earlier system 
design, security consideration takes a back-seat [9, 44] including existing CPS 
design and architectures. The authors in [20, 21, 26] presented reference architec-
tures for designing CPSs in centralized fashion. In these architectures, the primary 
focus was on the necessary components, their responsibilities, and interactions. 
However, there is neither any discussion on the management and organization of 
cyber layer nor on CPS security. To reduce latency, monitor network traffic and 
reduce system management complexity, the authors [31] and [3] presented the 
centralized architectures of CPS. But, these architectures are designed without 
security arrangements. To facilitate secure data communication, the authors [50] 
presented software-defined networking (SDN)-based centarlized architecture of 
Internet of Things (IoT). However, the centralized architecture suffers from sin-
gle point of failure. The authors [33] presented SDN-based data transfer security 
model middle box-guard (M-G) to manage the data flow with defined security 
policies. The authors [19] improved [50] by presenting distributed architecture as 
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Black SDN-IoT for smart city. The architecture integrates the network function 
virtualization (NFV) for monitoring the traffic data flow. However, the main focus 
in [3, 19, 31, 33, 50] was on the network layer and traffic security. To detect the 
intrusion into the system, the authors [16, 25, 32, 38, 56] presented the intrusion 
detection system-based CPS security frameworks. Though these approaches focus 
on security monitoring, they fail to present an architectural model to integrate 
security with functionality. To deal with cross-layer CPS security, the authors[57] 
presented a hierarchical architecture. They applied game-theory to analyze sys-
tem security.

Hence, it is clear that to deal with these challenges, a security aware fault-tolerant 
distributed architectural model is needed. As distributed system has the capability 
to reschedule the job of a failed or compromised among the other non-faulty nodes 
node. This makes the system more fault-tolerant by avoiding a single point of fail-
ure [34]. In a recent study, the authors [27] also advocated that some sort of distri-
bution is required to manage the functionality and security at physical and cyber 
level of CPSs. They stated that in [26], “a 5 level architecture, namely 5C-CPS, has 
been proposed for developing CPSs. There are many challenges associated with data 
security, privacy, centralization, etc., which require further development and pro-
gress”. However, the authors do not present any explicit in-depth methodology to 
integrate and organize the functionality and security in a distributed manner. Hence, 
we propose design of distributed architectural model of CPS to integrate and organ-
ize the functionality and security. To design a distributed secure CPS, two major 
responsibilities need to be distributed and organized including:

• distribution of functionality tasks such as monitoring, control, execution, infor-
mation gathering, and processing with aggregation of results.

• distribution of security tasks such as monitoring, data collection, buffering of 
security threat events, and aggregation of results for its control.

In a distributed system, to handle the responsibilities of task distribution-aggrega-
tion, communication, and task redistribution in case of a node failure, there is a need 
of a coordinating node known as leader [5, 39]. Depending upon the enormity and 
complexity of event monitoring for security and functionality delivered in a CPS, a 
single leader or separate leaders may handle the functionality and security responsi-
bilities. If the system is smaller with few or delay-tolerant tasks, both responsibili-
ties may be given to the same leader node. By nature, CPSs are complex and large 
real-time systems like rail management or smart city. If security and functionality 
are handled by one & the same leader, the leader node may face a heavy load to 
coordinate all the functionality and security activities simultaneously. Consequently, 
the deadline of the functional tasks may be overlooked, or security events may be 
missed, which is considered a failure in hard real-time systems. Moreover, monitor-
ing and events related to security are pretty different from functionality and may 
be needed to integrate and update the existing system for instance, in the railway 
management system. By looking at the exigency and grave consequences of security 
and the time criticality of security mechanisms, there is a need to have a logical and 
physical separation between functionality and security.
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Therefore, the objective of this paper is to propose a multi-tier distributed archi-
tectural arrangement to organize the functionality with the security of a large-scale 
CPS. The idea is similar to aspect-orientation [24], as security is designed, imple-
mented, and maintained separately. It can be integrated along with the cyber part 
in CPS to improve the modularity and maintainability of the system. For that, we 
are bringing in the concept of leader(s) and leader election in CPS for the first time 
and facilitating the logical and physical separation by electing separate functionality 
and security leaders. Moreover, as most of the tasks are safety-critical and real time, 
there should be a way to elect a new leader immediately after a leader node is failed 
to minimize the adverse effect on real-time task coordination, system performance, 
and security.

The existing leader election algorithms [4, 6, 7, 37, 39] are not suitable for a large 
CPS as the proposed work elects a general leader without considering the need of 
functionality and security requirements of time-constrained real-time systems. 
Hence, we propose a fresh fault-tolerant leader election algorithm to elect the func-
tionality and security leaders for CPS. The significant contributions of this paper are 
abridged as follows:

• We propose a distributed multi-tier architectural model to integrate and organize 
security and functionality. The model consists of four layers: sensing & actuation 
layer, controller, cyber layer, and decision support layer (CND). The bottom two 
layers follow fixed distribution since each field device and field controller per-
forms dedicated tasks to respond to the real-time functional and security require-
ments. On the other hand, the cyber and decision support layers are managed in 
a purely distributed fashion, where computing nodes are divided into clusters. 
The functionality and security requirements in each cluster are distributed as two 
core tasks among the functionality and security nodes. These nodes are managed 
by functionality and security leader nodes, respectively. The security monitoring 
and response at each layer are handled by the same or upper layers.

• Along with this, we propose a fault-tolerant leader election algorithm for elect-
ing functionality and security leaders. Instead of electing only a single leader, 
a list of leader capable nodes is elected based on a predefined election crite-
rion. Moreover, the general leader election process is itself vulnerable to initiate 
unnecessary leader election process. The proposed algorithm can also deal with 
this scenario, where a malicious node tries to initiate the election process unnec-
essary to target an unbiased leader. It achieves consensus among leader-capable 
nodes to start the election process.

• We evaluate the proposed architectural model by performing several experi-
ments. The experimental results show that the proposed architectural model 
improves CPS performance in terms of latency, average response time, and the 
number of real-time tasks completed within the deadline.

The rest of the paper is organized as follows. Section 1 deals with related work for 
existing CPS architectures and the security approaches for CPSs. Section 3 presents 
the attack scenario. Section 4 proposes the multi-tier architectural model and a pre-
selected leader election algorithm for electing the functionality and security leaders. 
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Section 5 presents the performance evaluation of the proposed architectural model 
and a case study on a smart healthcare system. Section 6 concludes the paper with 
future work.

2  Related work

In [48, 49], the authors focused on early security modeling to assess the security 
risks on CPS functionalities. However, these works do not provide any architectural 
or algorithmic solution to these risks. As the concept of smart cities is being devel-
oped as a CPS, Jalali et al. presented a three-layer architecture [20] for a smart city. 
The architecture includes the sensory, network, and control & service layers with 
the discussion of supporting technology for each layer. To manage the generated 
data in smart cities, Gaur et al. proposed a semantic web technology-based multi-
level architecture [14] for a smart city. The architecture consists of data to service 
transformation layers such as data collection, data processing, data integration and 
reasoning, device control & alerts. In [26], the authors presented a more detailed and 
classic 5C CPS architecture which consists of connection, conversion, cyber, cogni-
tion, and configuration layers to optimize CPS roles and functions for manufactur-
ing industries. Next, JR Jiang extended the 5C architecture proposed in [26] and 
presented it as 8C architecture [21] by adding customer, coalition, and content for 
broader adoption in industries. However, the authors did not mention the manage-
ment procedure of these architectures [14, 20, 21, 26]. To reduce latency, monitor 
network traffic and reduce system management complexity, in [31] and [3], Liu et al. 
and Balta et al. presented two centralized architectures of CPS. However, centralized 
architecture increases the risk of a single point of failure. To deal with these chal-
lenges, Garofalo et al. presented a concept of a decentralized real-time system [13]. 
They applied the decentralized system to control urban drainage networks equipped 
with multiple sensors and a series of actuators. Moreover, the authors presented a 
gossip-based algorithm for achieving performance and fault-tolerance properties. 
However, there is a lack of provisions in [3, 13, 14, 20, 21, 26, 31] to make the sys-
tem secure. In [43], the authors proposed a hybrid smart city cyber security archi-
tecture to analyze the threats and associated risks. To deal with security concerns 
in widely adopted networked and web-accessible CPSs, Zhu et al. presented a hier-
archical architecture [57] for dealing with cross-layer CPS security. They applied 
game theory to evaluate the effect of possible strategies of attackers and defenders 
on system security. However, this is not a unified architectural model integrating 
functionality and security. There is no provision of being fault-tolerant. Tao et  al. 
presented a cloud-based multi-tier architectural model [46] to enable interactions 
among different heterogeneous devices for IoT-based smart homes. Moreover, onto-
logical constructs integrate security and privacy in the interaction process. Although 
the cloud supports the distributed architecture, the presented architectural model is 
managed in a decentralized manner but not in a purely distributed manner at the 
cyber level, limiting the model’s breach tolerance and fault-tolerance capabilities. To 
facilitate secure data communication, Vandana et al. presented SDN-based central-
ized architecture [50] for IoT to ensure secure data communication. SDN can detect 
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anomalies and ensure some primary inhibition of communication network attacks. 
The SDN-based paradigm, in essence, describes a centralized control architecture 
where applications (the S in SDN) possess the intelligence of the system and fulfill 
many roles such as computing, decision-making, and reconfiguration (of devices) 
while leveraging the global view provided by a (logically) centralized controller. 
However, centralized architecture suffers from a single point of failure. In [33], Liu 
et al. presented SDN-based data transfer security model ’middlebox-guard’ to man-
age the data flow through SDN with defined security policies. They mainly focused 
on the selection of the appropriate location of middlebox deployment and presented 
the algorithmic solution for the same although it is neither a unified architectural 
model to organize functionality with security nor a fault-tolerant model. In [19], 
the authors improved [50] by presenting distributed architecture as Black SDN-IoT 
for smart city. The architecture integrates the NFV to apply device virtualization 
and monitor traffic flow. However, the main focus in SDN-based approaches [19, 
33, 50] is on the network layer and traffic security only, where security is the sole 
responsibility of the SDN controller. In this scenario, if the security controller of the 
SDN controller fails, the system security gets compromised. There is no mechanism 
for selecting the appropriate security controller node immediately. Lawal et al. pre-
sented real-time detection and mitigation approach of distributed denial of service 
attack on SDN [25]. However, the approach does not fit for large CPS. Moreover, the 
work does not provide any architectural or design solution for separating the func-
tional and security concerns for CPS. In [56], the authors proposed a distributed 
intrusion detection system applied in multiple layers, including home area network, 
neighborhood area network, and wide area network for smart grid. Feng et al. con-
sidered connected and automated vehicles (CAVs) as distributed CPS and proposed 
a design for intelligent transport systems using information graphs [12]. The pro-
posed design points out the security requirements and uses edge computing to pro-
cess the information locally. However, the author does not provide a methodology 
to integrate and analyze the security measures with functionality. In [27], Lee et al. 
suggested a distributed architecture to overcome the centralized industrial network, 
security, and trust issue of CPS. They suggested that the security distribution should 
be at sensor level and computing level to take advantage of distributed computing in 
handling the performance and privacy concerns. However, the authors do not pre-
sent any explicit explanation or in-depth methodology to organize and coordinate 
the functionality and security. In [52–54], the authors proposed the methodologies 
for privacy protection and handling the trust issues in information retrieval services 
hosted on cloud. These works present different algorithms to construct ideal dummy 
queries to meet the privacy model. However, these approaches are not designed for 
cyber-physical systems’ privacy and security. Next, Liu et  al. proposed hierarchi-
cally distributed intrusion detection for anomaly detection in industrial CPS [32]. 
The framework applies anomaly monitoring methods at each layer of CPS, includ-
ing perceptual layer, data transmission layer, and application control layer. Similarly, 
in [42], the authors present a security framework to defend against cyberattacks for 
IoT, where the intrusion detection system is applied for IoT sensors network and 
Bluetooth protocol. The IDS detects cyber-attacks based on extracted features of 
Bluetooth and sensor signals, which are further used by different machine learning 
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classifiers. However, these works [32, 42, 56] do not consider the scenario where the 
security nodes may also be failed or be compromised by sophisticated and coordi-
nated attacks.

Therefore, to the best of our knowledge, no work has been done yet that presents 
a distributed architectural model to integrate and organize security with functional-
ity in existing CPSs. Moreover, who will coordinate the activity among heterogene-
ous nodes in CPS? How to implement adaptive functionality and security arrange-
ments in case functional or security nodes are compromised by sophisticated and 
coordinated attacks for CPS? These are still open challenges that are not dealt with 
by the community. Hence, in Sect. 4, we present a distributed architectural model 
to coordinate and integrate the functionality and security, avoid a single point of 
failure, and increase fault tolerance at reduced communication latency in a CPS by 
bringing in the concept of fault-tolerant security and functionality leaders.

3  Attack scenario

In general CPS architectures [14, 20, 21, 26], the security vulnerabilities may exist at 
any of the levels. As a result, security concerns are different at different layers. Dif-
ferent attacks like tempering, spoofing, or denial of service may be launched at any 
of the layers to compromise the integrity, confidentiality, and availability of a node 
by performing ARP spoofing, false data/command injection attacks, smurf attacks, 
social engineering, replay attacks, infecting the firmware, or sniffing. As a result, the 
nodes may fail, become non-responsive, or behave in a faulty manner. Moreover, the 
sensitive information may be exfiltrated and sent to illegitimate nodes. Specifically, 
the attack scenarios (AS) include

AS(1) attack on sensors or actuators
AS(2) attack on field controllers or
AS(3) attack on computing nodes that perform specified functionality
AS(4) initiation of unnecessary leader election process

4  The proposed architectural model

The section presents the formal description of the proposed architectural model. Dif-
ferent layers of the proposed architecture and their responsibilities are also explained 
here. Then, the need and role of functional and security leaders and the proposed 
leader election algorithm are discussed in detail.

4.1  Formal description

The proposed architectural model consists of four layers where security is added 
as a cross-cutting concern as shown in Fig. 1. This architectural model is designed 
and viewed as a distributed system with heterogeneous nodes as presented in 
Fig. 2. Formally, the proposed CPS architecture is defined as a set of nodes (SN) 
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connected through an arbitrary network topology. SN = {S ∪ AR ∪ FC ∪ CN} , 
where S = {s1, s2,… , se} , AR = {ar1,… , arf } , FC = {fc1, fc2,… , fcg} , and 
CN = {FN ∪ SN} , FN = {fn1,… , fnh} and SN = {sn1,… , snk} where e,  f,  g,  k 
and h are integer and k < h . The computing nodes are divided into set of non-
overlapping clusters C = {c1,… , cm} such that each cl = {fn ∪ sn} where 
fn ⊆ FN, sn ⊆ SN . The clustering is done on the basis of dependent and inde-
pendent domain. A cluster in C is selected to make a higher level cluster called 
decision support cluster (DSC) to have a global view of system’s functionality 
and intrusion monitoring and response requests. A cluster cl communicates and 
coordinates with other clusters via DSC. The leaders in each cl are responsible to 
establish the inter-cluster communication via DSC leaders as shown in Fig. 3. The 
meaning of all the variables and symbols used in this paper are given in Table 1.

Fig. 1  Layered representation of CPS architecture

Fig. 2  Clustered view of the proposed distributed CPS architectural model
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4.2  Layers responsibilities

In the proposed architectural model (as shown in Fig. 2), different computational 
responsibilities of the total work of automation, instrumentation, control & secu-
rity are distributed. These responsibilities and performed by different types of 
homogeneous or heterogeneous nodes at different layers for different purposes, 
including sensing, actuation, computing, and coordination. The responsibilities 
like sensing and actuation are hard-coded or fixed and performed by hardware 
entities like sensors, actuators, and micro-controllers at lower layers. The bottom 
two layers follow the fixed distribution. On the other hand, the top two layers 
follow floating distribution as the tasks may be distributed or reallocated on any 
computing node.

4.2.1  Sensor and actuation layer

Consists of numerous similar or different types of field devices, including sensor 
and actuator nodes and represented as gray circles. These nodes may be deployed 
for environmental and security monitoring. The layer is closer to the real world or 
physical equipment and infrastructure and responsible for observing and reacting. 
The sensor nodes perceive the system and environment state variables’ value, and 
events send this information to the controller layer. The actuator nodes receive 
the control command to execute the required actions directed by upper layers.

4.2.2  Controller layer

Consists of multiple programmable field controllers shown as boxes in Fig. 2. The 
layer is responsible for performing purely real-time tasks. To respond to real-time 
functionality and security requirements, each controller receives, processes the 
sensor data, and instructs the actuator to change its state accordingly. The layer 
is also responsible for pushing the state information and control status onto the 
cyber layer and updating the control directives from the upper layer if required. 
The security at this level is embedded within the controller nodes to perform 
authentication of communicating nodes and verify sensor values with set values.

Fig. 3  Clustered view of cyber layer and decision support layer of the proposed distributed CPS architec-
tural model with functionality and security leaders
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Table 1  Notations and their meaning

Notation Description

SN Set of nodes in the system
S Set of sensors
AR Set of actuators
FC Set of monitoring & field controlling nodes
CN Set of computing nodes
G The graph consisting of all computing nodes
FN Set of functional nodes
SN Set of security nodes
C Set of non-overlapping clusters
DSC Decision support cluster
D Diameter of G
R Radius of G
cj jth cluster of graph G
dj Diameter of cluster cj
rdj Radius of cluster cj
N Number of computing nodes in graph G
node_idi Id of the ith node
n Number of nodes in cluster cj
� Number of attributes
Rki Rank of node i
eini_id Election initiator Id
c_ack_id ack message creator Id
r_list A 2D list with two fields. First field contains node Id and second field contains rank 

of a node
leaderi A node i stores the system leader Id in it
s_em_id Id of an election message sender
flc_listi A node i stores the list of functionality leader capable nodes in it
slc_listi A node i stores the list of security leader capable nodes in it
l_id Newly elected leader Id
t_list List of transient leader
parenti Parent node of a node i
l_childi List of child nodes of a node i
failed_leader_id Failed leader id
tol Type of leader, tol=1 functionality leader, tol=0 security leader
toni Type of node, if node i is a functionality node then toni = 1 , if node i is a security 

node then toni = 0

toe Type of election, if the election is initiated to elect the functionality leader then 
toe = 1 , if the election is initiate to elect the security leader then toe = 0

fun_leaderi Functionality leader Id stored by a node i
sec_leaderi Security leader Id stored by a node i
Tf Set of functional tasks
Ts Set of security tasks
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Both sensor & actuation and controller layers follow fixed distribution or have 
a limited scope of distribution. Hence, controller nodes are considered fixed lead-
ers. Moreover, the redundant nodes are applied at these layers to make the system 
more fault or breach-tolerant.

4.2.3  Cyber layer

Interacts with the controller layer to monitor the system states and sends the control 
directives to the controllers. It receives massive real-time data and processes it to extract 
additional information for context awareness. The layer consists of several comput-
ing nodes, arranged as clusters and represented as ellipses. The nodes can collaborate 
and distribute the management-level operational decisions as tasks among themselves. 
Moreover, they aggregate and store the data at the local level and send the aggregated 
data & results to the decision support layer for a global view of the system. Clustering 
is done based on domain (region) separation to perform specific tasks in each domain 
and independent of physical proximity. It improves performance, system management, 
and security by identifying and localizing the system-level faults, isolating the attacked 
segment, and preventing the cascading failures of the region due to security threats. 
Each cluster performs some dependent and independent tasks. A region needs to inter-
act with other regions to execute the dependent tasks but does not need any interaction 
to execute the independent tasks. The nodes communicate within the cluster to execute 
the independent tasks.

4.2.4  Decision support layer

Consists of multiple computing nodes that mainly communicate & coordinate with 
each cluster to obtain a global view of the entire system, although the layer can respond 
to the requests from the cyber layer in real-time. However, it primarily performs non-
real-time operations for decision support, such as data correlation and more intense 
analytics. The layer is responsible for finding, observing, and predicting the CPS 
behavior, reliability assessment, machine health value, maintenance actions, configura-
tion management, change in management policy and business rules, storage, visualiza-
tion, auditing, and logging. It does not directly communicate with the controller layer, 
but it can direct the lower layer to send instructions. It provides operational support to 
lower layers by load balancing and task prioritization to avoid cascading failure due 
to overload. The cyber and decision support layers collect, process, and analyze the 
data to identify the changes in the environment and reconfigure the control decisions 
accordingly at the local and global situations, respectively.

Since threats may persist at any of the nodes in cyber-phyiscal layers, security of 
each layer is handled either on the same layer or at the upper layer.

4.3  Role of functionality and security leaders

The field controllers at the controller layer perform dedicated control tasks 
to respond to the real-time functionality and security requirements. They are 
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considered fixed leaders. The security module is also embedded within the con-
troller node. It authenticates the attached nodes to establish secure communica-
tion, verifies the sensor’s data corresponding to predefined set values to detect 
the unexpected deviation, identifies the non-responsiveness of attached sensor 
and actuator nodes, and intrusion attempts on the controller node itself. Moreo-
ver, redundant or diverse nodes are deployed at this layer to take up the role of 
failed leader node. At the top two layers, the functionality and security tasks are 
distributed as two core tasks in each cluster. The functionality nodes are responsi-
ble for performing the tasks related to functionalities such as monitoring, execu-
tion, storage, and control. The security nodes are responsible for authentication, 
encryption, secure storage [10], and key management, including key generation, 
distribution, and storage. Moreover, they monitor, detect and respond to the mali-
cious events or abnormal behavior of functionality nodes [38] and the field con-
troller nodes. The security monitoring nodes take a snapshot of functionality 
nodes at different times to monitor the discrepancy in their actual and expected 
behavior and generate alerts. These nodes are also responsible for responding to 
the detected malicious events by changing the system parameters.

The collaboration, coordination, and communication among the functionality 
and security nodes are managed by the functionality leader and security leader. The 
functionality leader coordinates the distribution and aggregation of functionality 
tasks among different functionality nodes. Similarly, the security leader is respon-
sible for coordinating the distribution and aggregation of preventive and responsive 
security tasks among different security nodes to identify, prevent and respond to the 
malicious behavior of functionality nodes. It maintains a list of normal, suspicious, 
and compromised functional nodes along with the list of failed security nodes. 
These leader nodes of each cluster are called sub-leaders. If there are n clusters, 
there will be 2n sub-leaders. While designing a secure system, the functionality and 
security monitoring and response are two independent but coordinated tasks. Hence, 
the functionality and security leaders of each cluster act as co-leaders. The co-lead-
ers are designed as co-routines to yield concurrency and communication. Further, 
they transfer the control to each other to execute the system functionalities securely 
and respond to malicious activities. To coordinate the system-level activities and to 
establish communication among the clusters, we elect the functionality and security 
leader at the decision support layer also and call these super-leaders. The commu-
nication request and data collected from each functionality and security sub-leaders 
are transferred to super-leaders to make the system self-aware and reconfigure the 
functionality and security policies. The election of sub-leaders and the super-leader 
avoid a bottleneck situation where a single leader may face a heavy load to coordi-
nate all the functionality and security activities of the entire system. As the only sys-
tem leader coordinates the region-wise dependent and independent tasks, the inde-
pendent tasks take more time to complete because of the increased communication 
latency and response from an overloaded leader. Implementing sub-leaders reduces 
the unnecessary communication latency due to the need to coordinate with super-
leader to execute region-wise independent tasks. Thus, the decisions at the local 
level reduce the upstream bandwidth demand as well. Consequently, the probability 
of missing the deadline of functionality tasks or security events is reduced.
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4.4  The proposed leader election algorithm

In this section, the proposed leader election method is presented to elect the func-
tionality and security leaders. We assume that the system is static and the set of 
computing nodes (CN) are arranged in a graph G and defined as G = (CN, L) , where 
L is the set of links of graph G. D and R are the diameter and radius of graph G 
and ⌈D

2
⌉ ≤ R ≤ D . As G represents graph of CN, hence, G as specified in Sect. 4.1, 

divided into m clusters (sub graph) such that c1, c2,⋯ , cm ⊆ G . Each cluster cl has a 
unique id. The diameter and radius of the cl are dl and rdl , respectively, and defined 
as ⌈ dl

2
⌉ ≤ rdl ≤ dl , where ∀l, dl < D . We also assume that each node has a unique 

id. A leader election algorithm runs to choose the leader when a system starts for 
the first time, or a leader node is failed, malfunctioned, or becomes non-responsive 
because of a DoS attack.

As in safety-critical systems, mostly real-time jobs need to be executed. Hence, 
the proposed algorithm identifies a list of leader capable nodes based on specified 
node selection criteria. Then, the highest potential (best) node is designated as the 
chief leader, and the remaining nodes are declared as transient leaders. In case of 
leader failure, one of the transient leaders instantly takes the responsibility of coor-
dinating the management activities. The time to select a temporary leader is less 
than to elect a chief leader, so the presented algorithm reduces the election over-
head. While selecting the list of potential leaders, the proposed algorithm also han-
dles the threat scenario, where a malicious node can try to initiate the unnecessary 
leader election process to hamper the system performance by falsifying the infor-
mation about leader failure. For this, if a node other than transient leaders realizes 
the leader is failed, it communicates to the transient leaders to inform the leader’s 
failure but cannot initiate the leader election process by itself. The election process 
is started only when the transient leaders reach the consensus to start the election. 
The proposed algorithm always tries to elect good-quality leaders for the system. To 
do that, we introduce the concept of rank calculation of the nodes. Here, the higher 
rank indicates the higher-good quality. According to the system requirements, sev-
eral quality attributes can be considered to calculate the rank of a node, for example, 
memory capacity, processing capacity, failure rate, degree, eccentricity, and so on.

Suppose the set of attributes that need to consider to calculate the rank is A and 
it contains � attributes, A = {a1, a2, a3,… , a�} . Here, we assume that every node 
knows the possible maximum and minimum values of every attribute. Max(aq) and 
Min(aq) represent the maximum value and minimum value of an attribute aq . Hence, 
the rank Rki of a node i is calculated using Eq. 1.

Here, �iq =

⎧
⎪⎨⎪⎩

viq−Min(aq)

Max(aq)−Min(aq)
, if aq is a benefit attribute.

Max(aq)−viq

Max(aq)−Min(aq)
, if aq is a cost attribute.

(1)Rki =

�∑
q=1

�iq
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where viq is the value of attribute aq of a node i. The benefit attributes are those 
whose higher values are preferred, while cost attributes are those whose lower 
values are preferred during leader election. The measurement unit of the different 
attributes can be different, so we use the max-min normalization to normalize the 
attributes.

4.4.1  Message type

In the proposed election algorithm, we use the following five types of messages. 

1. The election message: This message is represented as em⟨eini_id, s_em_id, toe⟩ 
and consists of the election initiator id, the em message sender’s id and the type 
of election. It is used to initiate an election.

2. The acknowledgement message: This message is represented as 
ack⟨c_ack_id, eini_id⟩ and consists of the ack message creator id and the election 
initiator id. A node creates an ack message to respond to getting an em message.

3. The rank message: This message is represented as rank⟨r_list⟩ . It is created by 
child nodes to pass their rank information to the parent node.

4. The leader declaration message: This message is represented as ld⟨l_id, t_list, toe⟩ 
and consists of the elected leader id, the list of transient leaders and the type of 
election. It is used to declare the elected leader.

5. The failure information message: It is represented as lfmsg⟨failed_leader_id, tol⟩ 
and consists of the failed leader’s id and the type of leader that has failed. It is 
used to inform the transient leaders about the current leader’s failure.

4.4.2  Leader election method

Algorithm 1 and Algorithm 2 are designed to elect the functionality and security 
leaders. Algorithm 1 explains the chief leader election method, while Algorithm 2 
explains the transient leader election process. The election method elects the func-
tionality or security leader according to the system need. When the system starts for 
the first time, any functionality or security node can run Algorithm 1 to elect a chief 
functionality or security leader, respectively. When the election is initiated to elect 
the functionality leader, the functionality nodes participate directly, and the security 
nodes participate indirectly by only forwarding the election messages. Consequently, 
the r leader capable nodes are selected from the functionality nodes only. The same 
things happen in the case of the security leader election. Algorithm 1 executes in 
two phases. In the first phase, the nodes build a tree using election message (em) 
and acknowledgement message (ack). A node i creates em⟨eini_id, s_em_id, toe⟩ to 
initiate the election process, where the eini_id and s_em_id are the same as node_id . 
Here, the boolean variable toe is used to represent the type of election. That means 
the election is started for electing functionality leaders or security leaders. If toe = 1 , 
the election is for electing the functionality leader. On the other hand, if toe = 0 , the 
election is for electing the security leader. As node i initiates election, it is consid-
ered as the root node of the tree where parenti = � . It sends em⟨eini_id, s_em_id, toe⟩ 
to all the adjacent nodes and waits for ack⟨c_ack_id, eini_id⟩ . When an adjacent 
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node j receives the em⟨eini_id, s_em_id, toe⟩ , it creates ack⟨c_ack_id, eini_id⟩ mes-
sage and sends it to node i. Here, the node i considers node j as is child node and 
node j considers node i as its parent node. Then, node j modifies and forwards the 
election message to its adjacent nodes, except its parent node (node i), and waits for 
the acknowledgement message. There may be two cases: (1) either it receives the 
election message from one node or (2) it receives the redundant election message 
from multiple nodes as duplicate messages. Hence, the receiving node checks if the 
election message is received for the first time by checking eini_id , it considers the 
message sender node as its parent and sends back the ack message to it in response. 
Otherwise, it does not respond or send an acknowledgement message to the prede-
cessor node. The steps repeat until the election message is circulated among all the 
nodes in the system.

In the second phase, all the nodes send their rank value to their parent node. 
To send its rank, a node j checks that if it is a leaf node or does not get any 
ack⟨c_ack_id, eini_id⟩ message from the adjacent nodes, it appends its id and rank in 
its rank list ( r_list ) and sends it to its parent node through rank message rank⟨r_list⟩ . 
The parent node collects rank⟨r_list⟩ messages from all its child nodes, makes a 
list of nodes by sorting the collected child nodes’ ranks and self-rank according to 
the rank value in descending order. Then, top r values are selected from the sorted 
list and sent to its parent node. The process is repeated until the root node gets the 
rank⟨r_list⟩ message from all its child nodes. The root node sorts the nodes to get 
the r leader capable nodes’ list. If toe = 1 , the top node of the r_list is declared as 
the chief functionality leader and the remaining r − 1 nodes are declared as the tran-
sient functionality leaders. If toe = 0 , the top node of the r_list is declared as the 
chief security leader and remaining r − 1 nodes are declared as the transient security 
leaders. The root node broadcasts a ld⟨l_id, t_list, toe⟩ message to declare the elected 
leader as well as the transient leaders. On receiving the ld⟨l_id, t_list, toe⟩ , node j 
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 checks value of toe, if toe = 1 , it updates the chief leader id as functionality 
chief leader and transient leaders list as functionality transient leaders. If toe = 0 , 
it updates the chief leader id as a chief security leader and transient leaders list as 
transient security leaders. It is worth mentioning that if two or more nodes realize 
and initiate election simultaneously, the election message created by the node with 
highest id survives in the network. Thus, the node with highest id gets the scope to 
create the tree. On the other hand, the election messages created by the other nodes 
get discarded that helps to avoid multiple election trees formation.

Algorithm 2 runs to select the transient leaders. The leader failure may be real-
ized by either leader-capable nodes or non-leader capable (normal) nodes. When 
a node realizes that the chief leader has been failed or become non-responsive, it 
creates a message lfmsg⟨failed_leader_id , tol⟩ and sends it to all the leader-capable 
nodes. Then, the transient leader nodes verify whether the chief leader has failed and 
initiating elections based on mutual consensus. If the leader is failed and the num-
ber of transient leader nodes is greater than r/2, the top alive node is selected from 
t_list as functionality or security leader based on the tfl value. After that, the t_list 
is updated and a ld⟨l_id, t_list⟩ message is broadcast to all the nodes. Otherwise, if 
the nodes in leader capable list ( lc_list ) are less than or equal to r/2, the nodes build 
the consensus to initiate election, and the highest leader capable node among them 
invokes algorithm 1 to elect a chief leader. Thus, the proposed algorithm also pre-
vents any undetected compromised node from abusing the leader election process.

4.4.3  Complexity analysis

The complexity of the leader election algorithm is measured in terms of message 
complexity and time complexity. In this section, we calculate the message and time 
complexities of the proposed election algorithm considering a network of N nodes 
and D diameter.

Message complexity
As the nodes communicate by message passing, the message complexity depends 

upon the number of messages exchanged among the nodes during an election.
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Best case: When the number of alive transient leader nodes is more than r/2, and 
one of them realizes the chief leader’s failure, then it is the best-case scenario of the 
algorithm. In this case, the node that realizes the leader’s failure informs the other 
transient leader nodes about the leader’s failure. Then, all the transient leader nodes 
collaboratively elect the highest leader capable node from the list of transient leaders 
as the new leader and declare the elected leader by broadcasting the leader declara-
tion message. Here, O(r) messages are required to inform the leader’s failure to all 
the transient leader nodes and O(N) messages are required to broadcast the elected 
leader. N ≥ r , hence in the best case, the message complexity of the proposed leader 
election algorithm is O(N).

Worst case: When the number of alive transient leader nodes is less than r/2, 
and all the nodes realize the leader’s failure concurrently, it becomes the worst-case 
scenario of our algorithm. In this case, all nodes initiate the election concurrently 
to identify the r leader capable nodes. Here, a maximum of O(N2) messages are 
exchanged to build the election tree. After that, O(N) rank messages are exchanged 
for passing the ranks to the election conducting node. Finally, O(N) leader decla-
ration messages are exchanged to declare the leader. So, in this case, the message 
complexity is O(N2).

Time complexity
Time complexity quantifies the time required to elect a leader.
Best and worst cases: In the best case, O(D) time is required to inform the 

leader’s failure information to all the alive transient leader nodes, and O(D) time is 
required to broadcast the leader declaration message. So, in the best case, the time 
complexity is O(D). In the worst case, the time complexity depends on the election 
tree construction time, time to pass the ranks to the election conducting node, and to 
broadcast the leader declaration message. Each of these three steps takes O(D) time. 
Hence, in the worst-case, the time complexity is also O(D).

4.5  Resilience against cyber attacks

Since, cyber threats may persist at any of the nodes in cyber-physical layers, security 
of each layer is handled either on the same layer or at the upper layer. The field con-
trollers perform dedicated control tasks to respond to the real-time functionality and 
security requirements at the controller layer. The security module is also embedded 
within the controller node to retaliate AS(1) and AS(2). It authenticates the attached 
nodes to establish secure communication, verifies the sensor’s data with predefined 
set values to detect the unexpected deviation [23, 32], identifies the non-responsive-
ness of attached sensor and actuator nodes using heart beat message [17], and intru-
sion attempts on the controller node itself. Moreover, redundant or diverse nodes are 
deployed at this layer to take up the role of failed leader node. However, the methods 
of how these security mechanisms are implemented are already known and available 
in the literature [17, 23, 32].

At cyber and decision support layers, the functionality and security leader col-
laborate as co-routines [41, 45] to respond to the malicious events at the cluster 
level. To defend against AS(3), the model can retaliate the attacks on a functionality 



14831

1 3

An integrated approach of designing functionality with security…

node, functionality leader, security node, or security leader. Initially, the security 
leader maintains a list of nodes with normal status. When a security monitoring 
node observes a functionality node is behaving suspiciously, it informs the secu-
rity leader. To detect and tolerate security monitoring node failure, the methods are 
already known and available in the literature [16, 22, 36]. After confirming the sus-
pected behavior to be malicious, the security leader removes the node from the nor-
mal node list and adds it to the compromised node list. It sends a compromised node 
id to the functionality leader, which reallocates that node’s responsibility among the 
least-loaded normal functionality nodes. The attack on security monitoring and con-
trol nodes is observed by the security leader, as it communicates with the security 
monitoring nodes periodically. If the security monitoring node does not respond, the 
security leader assumes it to be failed. In this situation, the security leader isolates 
the compromised node and reallocates the security task to the least loaded node. 
Similarly, when any security monitoring node attempts to communicate with the 
security leader and does not get any response, it communicates to one of the tran-
sient leaders. All the transient leaders would verify by sending the heartbeat mes-
sage to the chief leader node and reach a consensus of whether the chief leader is 
failed due to attack as mentioned in Sect. 4.4. To defend against AS(4), the proposed 
algorithm can prevent the abuse of the leader election process itself. The algorithm 
can deal with the scenario where a malicious node tries to initiate the election pro-
cess unnecessary to target an unbiased leader. Only the leader-capable nodes are 
responsible for verifying whether the chief leader has failed and initiating elections 
based on mutual consensus. Thus, the proposed architectural framework can tolerate 
or respond to the mentioned attack scenarios or exceptional conditions.

5   Performance evaluation of the proposed architectural model

In this section, we analyze and demonstrate the effectiveness of the proposed CPS 
architecture through several experiments. We show that the concept of clustering 
and separation of functionality and security leaders helps to improve the overall per-
formance and security management. A distributed smart hospital management case 
study is considered to explain the proposed architecture, where multiple hospitals 
are connected as a medical-CPS.

5.1  Case study

A smart hospital is a concept that uses emerging technologies of information 
and communications technology (ICT) to optimize and manage the health care 
operations and its functional requirements efficiently [30]. Smart hospitals fall 
under the safety-critical domain as the safety of patients is at most priority. Any 
security failure in terms of denial of service or integrity failures of life sup-
port systems may lead to unsafe situations for the system. It may consequently 
create big chaos in patients’ lives. Various sensors and data collection devices 
are deployed to monitor the environmental conditions, hospital resources, and 
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services. Different actuators respond as specified and controlled by controllers. In 
our proposed architectural model, each cluster with computing nodes represents 
a hospital. The computing nodes store and process the collected environmental, 
operational, and patient data (confidential and non-confidential) to perform dif-
ferent functionality and security monitoring tasks as shown in Fig. 4. The nodes 
do intra-cluster communication to perform the cluster independent tasks via the 
leader node. The nodes do inter-cluster communication to perform multiple clus-
ters dependent tasks via cluster leaders. There may be various functionality tasks 
in hospital management, although, to demonstrate the effectiveness of our pro-
posed approach, we are just demonstrating the example of treating the COVID 
patients and distribution, deployment, and administration of the vaccine for fight-
ing with COVID-19 pandemic [11].

The decision support layer represented as c5 (as shown in Fig. 4) and it com-
municates to each cluster leader to optimize the availability of vaccines in each 
hospital by monitoring the lack or excess of the vaccine. Moreover, it stores the 
updated records of vaccinated persons and the total number of treated and active 
COVID patients and their distribution in each region/ hospital at the country 
level. The probable attack scenarios may include a denial of service attack, mal-
functioning of life support system units in intensive care units, or an integrity 
attack on vaccinated person records. The attacker may delete the vaccine avail-
ability and distribution records, malfunctions computing nodes, breach patient 
records suffering from other critical diseases, disturb the HVAC control unit. 
Moreover, a successful integrity attack on a node that performs the staff-alloca-
tion task compromises its functionality in the critical time. As a result, the com-
promised node allocates a non-specialized doctor.

Fig. 4  Cluster arrangement of a distributed hospital network with functionality and security leaders
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Suppose, in cluster c1, a set of functionality tasks Tf = {Tf1, Tf2, Tf3, Tf4, Tf5} 
are running on functionality nodes. There are security tasks Ts = {Ts1, Ts2, Ts3} 
running on security monitoring nodes. The security monitoring nodes observe the 
incorrect behavior of the functionality nodes by observing the deviation in allocated 
functionality tasks. It sends a message to the security leader on finding a node with 
suspicious behavior, which sends the message to the functionality leader and blocks 
the compromised node. The functionality leader reallocates the staff-allocation task 
to the least-loaded node to avoid further chaos.

5.2   Performance evaluation

To analyze the system management improvement, we have considered four different 
forms of system management, i.e., purely centralized, purely distributed without a 
leader, distributed with a single leader, and clustered distributed manner with mul-
tiple leaders ( including functionality and security leaders). To evaluate the perfor-
mance of the proposed architecture with each of these management forms, a p step 
task is considered. A p step task is defined as a task T that involves p steps to com-
plete it. Suppose there are N nodes in the system.

(1) Purely centralized In this manner, a fixed central node controls and manages 
other nodes and all the system’s activities. Here, the main problem is a single-point 
failure. When the fixed central node collapses, the whole system collapses. Hence, 
the fault-tolerance capacity of the system is minimum. To complete a p step task, a 
node exchanges p number of messages with the central node. The message complex-
ity of completing this task is O(p.D.N), and the time complexity is O(D) where D is 
the network’s diameter.

(2) Distributed without considering the leader There is no central node that con-
trols and manages the system. Here, a node needs to send messages to all the other 
nodes to complete a task consistently. In this manner, the fault-tolerance capacity of 
the system is maximum, but the message and time complexities are very high. Here, 
the message complexity and the time complexity of completing a p step task are 
O(p.N2) and O(D), respectively.

(3) Distributed with a single leader The system is managed in a distributed way 
by electing a node as the system leader, as discussed earlier. Here, the system is 
managed similarly to the centralized manner. The only difference is that the central 
node (the system controlling node) is fixed in a centralized manner, but here the cen-
tral node is not fixed. If the central node is crashed, another node can be elected as 
the central node or the leader. The leader election overhead (extra cost) is associated 
with this manner. Here, the message complexity and the time complexity of com-
pleting a p step task are O(p.D.N) and O(D), respectively.

(4) Clustered distributed with multiple leaders In this manner, the CPS is man-
aged in distributed manner but divided into multiple clusters. Each cluster has a 
functionality leader and security leader. Intra-cluster functionality and security tasks 
are managed by its functionality and security leaders, respectively. On the other 
hand, inter-cluster tasks are managed by the leaders of the clusters. Here, the mes-
sage complexity and the time complexity of completing a p step inter-cluster task 
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are O(p.dmax.N) and O(D), respectively, where dmax is the maximum diameter of the 
clusters. The message complexity and the time complexity of completing a p step 
intra-cluster task are O(p.d.n) and O(d), respectively, where d is the cluster’s diam-
eter, and n is the number of nodes in the cluster.

Here, dmax ≤ D and D < N . So, O(p.dmax.N) ≤ O(p.D.N) < O(p.N2) . That means 
if we manage a CPS in distributed clustered manner with multiple leaders, to com-
plete a task, the number of exchanged messages (network traffic) gets reduced. As 
d < D , then O(d) < O(D).

We consider the COVID-19 vaccine distribution, deployment, and administra-
tion (as mentioned in the case study) task to simulate and evaluate the proposed 
architecture’s effectiveness and performance with the management schemes as men-
tioned earlier. To simulate the proposed architectural model, we use python 3.6 as 
a programming language, MPICH version 3.2, and mpi4py tool as a message pass-
ing interface. We have considered six different sizes of networks where nodes of 
each network are connected through an arbitrary network topology. All the networks 
details are given in Table 2, and the simulation results are shown in Figs. 5, 6. We 
perform the entire simulation in a single machine equipped with Intel (R) Core(TM) 
i7-3770 processor (3.40 GHz, 8 MB cache), 26 GB DDR3 RAM, 1TB 5400rmp 
HDD, NVIDIA GeForce graphics, running Ubuntu Linux Release 16.04 (xenial ker-
nel 4.4).

In Fig. 5, X-axis represents the number of nodes, and Y-axis represents the num-
ber of messages exchanged to complete the task. In Fig.  6, X-axis represents the 
number of nodes, and Y-axis represents the time required to complete the task. Fig-
ures 5, 6 show that the number of exchanged messages among the nodes and the 
time required to complete the task in a purely distributed manner without a leader 
are highest. In contrast, the number of exchanged messages and time required to 
complete the task is least when the system is managed in a distributed clustered 
manner with multiple leaders for functionality and security. Figure 7 shows the aver-
age response time of the tasks when we manage the top two layers in a distributed 
manner with a single leader and in a distributed clustered manner with multiple 
leaders. In Fig. 7, X-axis represents number of tasks, and Y-axis represents the aver-
age response time of functionality and security tasks. Here, we have considered that 
out of total tasks, one-third are security tasks, and two-thirds are functionality tasks. 
Figure 7 concludes that if we manage the CPS in a distributed clustered manner with 

Table 2  Details of the networks 
considered for the experiments

Network Number of 
nodes

Number of 
edges

Diameter Num-
ber of 
cluster

Network 1 30 52 8 3
Network 2 60 98 10 4
Network 3 90 176 12 5
Network 4 120 256 14 6
Network 5 150 290 16 7
Network 6 180 375 18 8
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multiple leaders, the average response time of tasks gets reduced. Figure 8 compares 
the completion rate of real-time tasks within a specified deadline while managing 
the cyber layer in a distributed manner with a single leader and in a clustered distrib-
uted manner with multiple leaders. In Fig. 8, X-axis represents number of tasks, and 
Y-axis represents the completion(or success) rate of real-time tasks within a speci-
fied deadline. Here, we have considered that out of total tasks, half are real-time 
task, and half are non-real-time tasks. We have used priority scheduling to schedule 

Fig. 5  Comparison of the proposed system management manner with other possible system management 
manners based on the number of exchanged messages to complete the task

Fig. 6  Comparison of the proposed system management manner with other possible system management 
manners based on the time required to complete the task
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these tasks, where real-time tasks have priority over non-real-time tasks. Figure 8 
concludes that success rate of real-time tasks gets increased if we manage the CPS 
in a clustered distributed manner with multiple leaders. From the simulation results 
shown in Figs.  7 and 8, it can be observed that the distributed clustered manner 
with separate functionality and security leaders is more efficient in terms of average 
response time and when the system needs to honor the deadlines of the real-time 
tasks. We performed two statistical tests, i.e., the Quantile-Quantile plot (Q-Q plot) 
test [28] and the Shapiro-Wilk test [18] on the completion ratio of real-time tasks 
and the average response time of the tasks through the proposed system manage-
ment manner (clustered distributed manner with multiple leaders). The Q-Q plots 
of the average response time and the completion ratio of real-time tasks are shown 
in Figs. 9 and 10, respectively. The Q-Q plots show that the average response time 

Fig. 7  Comparison of the proposed system management manner with the distributed manner with a sin-
gle leader based on the average response time of the task

Fig. 8  Comparison of the proposed system management manner with the distributed manner with a sin-
gle leader based on the success ratio of real time tasks completion within deadline



14837

1 3

An integrated approach of designing functionality with security…

and the completion ratio of real-time tasks follow the normal distribution. The p 
value of the Shapiro-Wilk test of the completion ratio of real-time tasks is 0.843. As 
0.843 > 0.05 , the completion ratio of real-time tasks follows the normal distribution. 
On the other hand, the p value of the Shapiro-Wilk test of the average response time 
is 0.466. Here, 0.466 is also greater than 0.05, which means the average response 
time also follows the normal distribution.

Moreover, the proposed distributed clustered manner with multiple lead-
ers is more fault-tolerant and maintainable as compared to other architectural 

Fig. 9  Quantile-Quantile plot (Q-Q plot) on the average response time of the tasks getting through the 
proposed system management manner

Fig. 10  Quantile-Quantile plot (Q-Q plot) on the completion ratio of real-time tasks getting through the 
proposed system management manner



14838 D. Tripathi et al.

1 3

arrangements. The proposed arrangement avoids a single point of functionality and 
security failure in better ways and conquers the complexity of designing a secure 
CPS. When there is a change or update in security policy, it will not affect the sys-
tem functionality. The proposed architectural model has the leader election over-
head, but it is reasonable as it increases system performance and the fault-tolerance 
capability of distributed CPS.

Table  3 presents a comparative analysis of the proposed architectural arrange-
ment with other architectural arrangements and philosophy. It shows the strength of 
the proposed work, which comes by including the objective neither considered nor 
analyzed in the existing works.

6  Conclusion and future work

A cyber-physical system (CPS) is a kind of distributed system with safety-critical 
functionalities. Nowadays, with the ever-growing technological expansion, large-
scale CPSs are in demand. However, designing a secure, fault-tolerant, maintain-
able, and performance-efficient large-scale CPS is challenging. In this work, to 
improve the performance, maintainability, fault-tolerability, and security of a large-
scale CPS, we propose a multi-tier architectural model of a cyber-physical system. 
We introduce the concept of separately managing the functional and security con-
cerns by electing the functional and security leaders for better management of the 
proposed CPS. Management of functional concerns and security concerns separately 
improves the maintainability as well as the performance of the system. This separa-
tion is similar to the aspect orientation in design and implemented by exploiting the 
concept of leader(s) as available in the case of the distributed computing system. 
Here, the security and functionality leaders act as co-leaders to collaborate and com-
municate among themselves for preventing and responding to security threats. On 
the other hand, management of a CPS is done in a clustered distributed manner, 
which improves the system performance and makes the system more fault-tolerant. 
Along with this, we have proposed a fault-tolerant leader election algorithm. Unlike 
the existing algorithms, along with electing a leader, the proposed algorithm identi-
fies and makes a list of leader-capable nodes. So that if a leader fails, the system 
can instantly elect a new leader from among the identified leader capable nodes to 
minimize the adverse effect on real-time task coordination, system performance, 
and security. Thus, the proposed architecture improves the maintainability, perfor-
mance, security of the system and makes the system more fault-tolerant. Further, we 
perform several experiments by simulating the proposed architecture to evaluate its 
performance. The experimental results show that the proposed architectural model 
improves the system performance in terms of latency, average response time, and 
the number of real-time tasks completed within the deadline. The proposed archi-
tectural model has the leader election overhead, but it is reasonable as it increases 
system performance and the fault-tolerance capability of the distributed CPS. On the 
other hand, because security and functionality are separately scalable, the overhead 
of functionality nodes is minimized. This work does not present a scalability study 
of the proposed approach. However, it is not a limitation, but an elaborated study 
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needs to be performed in the future. Moreover, the work related to application of 
learning in CPS may take benefit of similar approaches used in different domain 
including [2, 52–54] in future.
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