
Vol.:(0123456789)

The Journal of Supercomputing (2022) 78:14813–14845
https://doi.org/10.1007/s11227-022-04481-9

1 3

An integrated approach of designing functionality
with security for distributed cyber‑physical systems

Dipty Tripathi1 · Amit Biswas1 · Anil Kumar Tripathi1 · Lalit Kumar Singh1 ·
Amrita Chaturvedi1

Accepted: 23 March 2022 / Published online: 9 April 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature
2022

Abstract
In this work, we propose a multi-tier architectural model to separate functionality
and security concerns for distributed cyber-physical systems. On the line of distrib-
uted computing, such systems require the identification of leaders for distribution
of work, aggregation of results, etc. Further, we propose a fault-tolerant leader elec-
tion algorithm that can independently elect the functionality and security leaders.
The proposed election algorithm identifies a list of potential leader capable nodes to
reduce the leader election overhead. It keeps identifying the highest potential node
as the leader, whenever needed, including the situation when one has failed. We also
explain the proposed architecture and its management method through a case study.
Further, we perform several experiments to evaluate the system performance. The
experimental results show that the proposed architectural model improves the sys-
tem performance in terms of latency, average response time, and the number of real-
time tasks completed within the deadline.

Keywords Distributed cyber-physical systems · Functional requirements · Security
requirements · Aspect-orientation · Leader election · Fault-tolerance

 * Amit Biswas
 amitbiswas.rs.cse17@iitbhu.ac.in

 Dipty Tripathi
 diptytripathi.rs.cse17@iitbhu.ac.in

 Anil Kumar Tripathi
 aktripathi.cse@iitbhu.ac.in

 Lalit Kumar Singh
 lalit.rs.cse@iitbhu.ac.in

 Amrita Chaturvedi
 amrita.cse@iitbhu.ac.in

1 Department of Computer Science and Engineering, Indian Institute of Technology (BHU),
Varanasi, India

http://orcid.org/0000-0003-0567-7582
http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-022-04481-9&domain=pdf

14814 D. Tripathi et al.

1 3

1 Introduction

These days cyber-physical systems (CPSs) are mostly network-ready extensions of
traditional embedded systems which are connected to the Internet. The cyber nodes
monitor and control the real-world physical devices and infrastructures to achieve
better reliability and resource utilization [8, 26, 48]. The emerging CPS may range
from small-scale industries to large-scale connected systems of diverse areas such as
transportation, aerospace, entertainment, industrial control system, health care, and
so on. Thus, the components of a CPS are geographically distributed, which con-
sist of numerous sensing, actuation, and computational nodes. These nodes execute
different software modules to perform multiple real-time and non-real-time jobs to
achieve a common goal. However, these components may fail independently. This
failure can be unintentional or intentional. The integration of cyber components
enriches the intelligence and enhances the quality of services provided by physical
infrastructure and devices. However, the automation and connectivity of all the net-
worked computing devices increase the security risks [35, 47, 48, 51] by increasing
intentional failure. In recent years, several powerful attacks have been launched on
critical infrastructures. For instance, Stuxnet worm [1], Havex [40], and Triton [15]
malware are deployed to target different CPSs. These attacks caused huge financial
damage and physical injuries. The attackers try to dig out the existing security vul-
nerabilities present at any of the CPS architecture layers or any of its nodes. They
may arise due to ignorance at the design time or the facilities provided to the exter-
nal entities [49]. These vulnerabilities may be of different nature, such as open port,
buffer overflow, weak password, access control, and adoption of standardized pro-
tocols and technologies with known weakness. The attacker may launch an active
or passive attack to exploit the vulnerabilities and compromise the system’s critical
functionalities, availability, integrity, or confidentiality.

Hence, an integrated CPS architectural model is needed to organize security
with functionalities to perform real-time jobs securely [29, 55]. Moreover, the
occurrence of faulty nodes due to usual faults or security breaches demands the
secure architecture to be fault-tolerant as well. Unfortunately, in earlier system
design, security consideration takes a back-seat [9, 44] including existing CPS
design and architectures. The authors in [20, 21, 26] presented reference architec-
tures for designing CPSs in centralized fashion. In these architectures, the primary
focus was on the necessary components, their responsibilities, and interactions.
However, there is neither any discussion on the management and organization of
cyber layer nor on CPS security. To reduce latency, monitor network traffic and
reduce system management complexity, the authors [31] and [3] presented the
centralized architectures of CPS. But, these architectures are designed without
security arrangements. To facilitate secure data communication, the authors [50]
presented software-defined networking (SDN)-based centarlized architecture of
Internet of Things (IoT). However, the centralized architecture suffers from sin-
gle point of failure. The authors [33] presented SDN-based data transfer security
model middle box-guard (M-G) to manage the data flow with defined security
policies. The authors [19] improved [50] by presenting distributed architecture as

14815

1 3

An integrated approach of designing functionality with security…

Black SDN-IoT for smart city. The architecture integrates the network function
virtualization (NFV) for monitoring the traffic data flow. However, the main focus
in [3, 19, 31, 33, 50] was on the network layer and traffic security. To detect the
intrusion into the system, the authors [16, 25, 32, 38, 56] presented the intrusion
detection system-based CPS security frameworks. Though these approaches focus
on security monitoring, they fail to present an architectural model to integrate
security with functionality. To deal with cross-layer CPS security, the authors[57]
presented a hierarchical architecture. They applied game-theory to analyze sys-
tem security.

Hence, it is clear that to deal with these challenges, a security aware fault-tolerant
distributed architectural model is needed. As distributed system has the capability
to reschedule the job of a failed or compromised among the other non-faulty nodes
node. This makes the system more fault-tolerant by avoiding a single point of fail-
ure [34]. In a recent study, the authors [27] also advocated that some sort of distri-
bution is required to manage the functionality and security at physical and cyber
level of CPSs. They stated that in [26], “a 5 level architecture, namely 5C-CPS, has
been proposed for developing CPSs. There are many challenges associated with data
security, privacy, centralization, etc., which require further development and pro-
gress”. However, the authors do not present any explicit in-depth methodology to
integrate and organize the functionality and security in a distributed manner. Hence,
we propose design of distributed architectural model of CPS to integrate and organ-
ize the functionality and security. To design a distributed secure CPS, two major
responsibilities need to be distributed and organized including:

• distribution of functionality tasks such as monitoring, control, execution, infor-
mation gathering, and processing with aggregation of results.

• distribution of security tasks such as monitoring, data collection, buffering of
security threat events, and aggregation of results for its control.

In a distributed system, to handle the responsibilities of task distribution-aggrega-
tion, communication, and task redistribution in case of a node failure, there is a need
of a coordinating node known as leader [5, 39]. Depending upon the enormity and
complexity of event monitoring for security and functionality delivered in a CPS, a
single leader or separate leaders may handle the functionality and security responsi-
bilities. If the system is smaller with few or delay-tolerant tasks, both responsibili-
ties may be given to the same leader node. By nature, CPSs are complex and large
real-time systems like rail management or smart city. If security and functionality
are handled by one & the same leader, the leader node may face a heavy load to
coordinate all the functionality and security activities simultaneously. Consequently,
the deadline of the functional tasks may be overlooked, or security events may be
missed, which is considered a failure in hard real-time systems. Moreover, monitor-
ing and events related to security are pretty different from functionality and may
be needed to integrate and update the existing system for instance, in the railway
management system. By looking at the exigency and grave consequences of security
and the time criticality of security mechanisms, there is a need to have a logical and
physical separation between functionality and security.

14816 D. Tripathi et al.

1 3

Therefore, the objective of this paper is to propose a multi-tier distributed archi-
tectural arrangement to organize the functionality with the security of a large-scale
CPS. The idea is similar to aspect-orientation [24], as security is designed, imple-
mented, and maintained separately. It can be integrated along with the cyber part
in CPS to improve the modularity and maintainability of the system. For that, we
are bringing in the concept of leader(s) and leader election in CPS for the first time
and facilitating the logical and physical separation by electing separate functionality
and security leaders. Moreover, as most of the tasks are safety-critical and real time,
there should be a way to elect a new leader immediately after a leader node is failed
to minimize the adverse effect on real-time task coordination, system performance,
and security.

The existing leader election algorithms [4, 6, 7, 37, 39] are not suitable for a large
CPS as the proposed work elects a general leader without considering the need of
functionality and security requirements of time-constrained real-time systems.
Hence, we propose a fresh fault-tolerant leader election algorithm to elect the func-
tionality and security leaders for CPS. The significant contributions of this paper are
abridged as follows:

• We propose a distributed multi-tier architectural model to integrate and organize
security and functionality. The model consists of four layers: sensing & actuation
layer, controller, cyber layer, and decision support layer (CND). The bottom two
layers follow fixed distribution since each field device and field controller per-
forms dedicated tasks to respond to the real-time functional and security require-
ments. On the other hand, the cyber and decision support layers are managed in
a purely distributed fashion, where computing nodes are divided into clusters.
The functionality and security requirements in each cluster are distributed as two
core tasks among the functionality and security nodes. These nodes are managed
by functionality and security leader nodes, respectively. The security monitoring
and response at each layer are handled by the same or upper layers.

• Along with this, we propose a fault-tolerant leader election algorithm for elect-
ing functionality and security leaders. Instead of electing only a single leader,
a list of leader capable nodes is elected based on a predefined election crite-
rion. Moreover, the general leader election process is itself vulnerable to initiate
unnecessary leader election process. The proposed algorithm can also deal with
this scenario, where a malicious node tries to initiate the election process unnec-
essary to target an unbiased leader. It achieves consensus among leader-capable
nodes to start the election process.

• We evaluate the proposed architectural model by performing several experi-
ments. The experimental results show that the proposed architectural model
improves CPS performance in terms of latency, average response time, and the
number of real-time tasks completed within the deadline.

The rest of the paper is organized as follows. Section 1 deals with related work for
existing CPS architectures and the security approaches for CPSs. Section 3 presents
the attack scenario. Section 4 proposes the multi-tier architectural model and a pre-
selected leader election algorithm for electing the functionality and security leaders.

14817

1 3

An integrated approach of designing functionality with security…

Section 5 presents the performance evaluation of the proposed architectural model
and a case study on a smart healthcare system. Section 6 concludes the paper with
future work.

2 Related work

In [48, 49], the authors focused on early security modeling to assess the security
risks on CPS functionalities. However, these works do not provide any architectural
or algorithmic solution to these risks. As the concept of smart cities is being devel-
oped as a CPS, Jalali et al. presented a three-layer architecture [20] for a smart city.
The architecture includes the sensory, network, and control & service layers with
the discussion of supporting technology for each layer. To manage the generated
data in smart cities, Gaur et al. proposed a semantic web technology-based multi-
level architecture [14] for a smart city. The architecture consists of data to service
transformation layers such as data collection, data processing, data integration and
reasoning, device control & alerts. In [26], the authors presented a more detailed and
classic 5C CPS architecture which consists of connection, conversion, cyber, cogni-
tion, and configuration layers to optimize CPS roles and functions for manufactur-
ing industries. Next, JR Jiang extended the 5C architecture proposed in [26] and
presented it as 8C architecture [21] by adding customer, coalition, and content for
broader adoption in industries. However, the authors did not mention the manage-
ment procedure of these architectures [14, 20, 21, 26]. To reduce latency, monitor
network traffic and reduce system management complexity, in [31] and [3], Liu et al.
and Balta et al. presented two centralized architectures of CPS. However, centralized
architecture increases the risk of a single point of failure. To deal with these chal-
lenges, Garofalo et al. presented a concept of a decentralized real-time system [13].
They applied the decentralized system to control urban drainage networks equipped
with multiple sensors and a series of actuators. Moreover, the authors presented a
gossip-based algorithm for achieving performance and fault-tolerance properties.
However, there is a lack of provisions in [3, 13, 14, 20, 21, 26, 31] to make the sys-
tem secure. In [43], the authors proposed a hybrid smart city cyber security archi-
tecture to analyze the threats and associated risks. To deal with security concerns
in widely adopted networked and web-accessible CPSs, Zhu et al. presented a hier-
archical architecture [57] for dealing with cross-layer CPS security. They applied
game theory to evaluate the effect of possible strategies of attackers and defenders
on system security. However, this is not a unified architectural model integrating
functionality and security. There is no provision of being fault-tolerant. Tao et al.
presented a cloud-based multi-tier architectural model [46] to enable interactions
among different heterogeneous devices for IoT-based smart homes. Moreover, onto-
logical constructs integrate security and privacy in the interaction process. Although
the cloud supports the distributed architecture, the presented architectural model is
managed in a decentralized manner but not in a purely distributed manner at the
cyber level, limiting the model’s breach tolerance and fault-tolerance capabilities. To
facilitate secure data communication, Vandana et al. presented SDN-based central-
ized architecture [50] for IoT to ensure secure data communication. SDN can detect

14818 D. Tripathi et al.

1 3

anomalies and ensure some primary inhibition of communication network attacks.
The SDN-based paradigm, in essence, describes a centralized control architecture
where applications (the S in SDN) possess the intelligence of the system and fulfill
many roles such as computing, decision-making, and reconfiguration (of devices)
while leveraging the global view provided by a (logically) centralized controller.
However, centralized architecture suffers from a single point of failure. In [33], Liu
et al. presented SDN-based data transfer security model ’middlebox-guard’ to man-
age the data flow through SDN with defined security policies. They mainly focused
on the selection of the appropriate location of middlebox deployment and presented
the algorithmic solution for the same although it is neither a unified architectural
model to organize functionality with security nor a fault-tolerant model. In [19],
the authors improved [50] by presenting distributed architecture as Black SDN-IoT
for smart city. The architecture integrates the NFV to apply device virtualization
and monitor traffic flow. However, the main focus in SDN-based approaches [19,
33, 50] is on the network layer and traffic security only, where security is the sole
responsibility of the SDN controller. In this scenario, if the security controller of the
SDN controller fails, the system security gets compromised. There is no mechanism
for selecting the appropriate security controller node immediately. Lawal et al. pre-
sented real-time detection and mitigation approach of distributed denial of service
attack on SDN [25]. However, the approach does not fit for large CPS. Moreover, the
work does not provide any architectural or design solution for separating the func-
tional and security concerns for CPS. In [56], the authors proposed a distributed
intrusion detection system applied in multiple layers, including home area network,
neighborhood area network, and wide area network for smart grid. Feng et al. con-
sidered connected and automated vehicles (CAVs) as distributed CPS and proposed
a design for intelligent transport systems using information graphs [12]. The pro-
posed design points out the security requirements and uses edge computing to pro-
cess the information locally. However, the author does not provide a methodology
to integrate and analyze the security measures with functionality. In [27], Lee et al.
suggested a distributed architecture to overcome the centralized industrial network,
security, and trust issue of CPS. They suggested that the security distribution should
be at sensor level and computing level to take advantage of distributed computing in
handling the performance and privacy concerns. However, the authors do not pre-
sent any explicit explanation or in-depth methodology to organize and coordinate
the functionality and security. In [52–54], the authors proposed the methodologies
for privacy protection and handling the trust issues in information retrieval services
hosted on cloud. These works present different algorithms to construct ideal dummy
queries to meet the privacy model. However, these approaches are not designed for
cyber-physical systems’ privacy and security. Next, Liu et al. proposed hierarchi-
cally distributed intrusion detection for anomaly detection in industrial CPS [32].
The framework applies anomaly monitoring methods at each layer of CPS, includ-
ing perceptual layer, data transmission layer, and application control layer. Similarly,
in [42], the authors present a security framework to defend against cyberattacks for
IoT, where the intrusion detection system is applied for IoT sensors network and
Bluetooth protocol. The IDS detects cyber-attacks based on extracted features of
Bluetooth and sensor signals, which are further used by different machine learning

14819

1 3

An integrated approach of designing functionality with security…

classifiers. However, these works [32, 42, 56] do not consider the scenario where the
security nodes may also be failed or be compromised by sophisticated and coordi-
nated attacks.

Therefore, to the best of our knowledge, no work has been done yet that presents
a distributed architectural model to integrate and organize security with functional-
ity in existing CPSs. Moreover, who will coordinate the activity among heterogene-
ous nodes in CPS? How to implement adaptive functionality and security arrange-
ments in case functional or security nodes are compromised by sophisticated and
coordinated attacks for CPS? These are still open challenges that are not dealt with
by the community. Hence, in Sect. 4, we present a distributed architectural model
to coordinate and integrate the functionality and security, avoid a single point of
failure, and increase fault tolerance at reduced communication latency in a CPS by
bringing in the concept of fault-tolerant security and functionality leaders.

3 Attack scenario

In general CPS architectures [14, 20, 21, 26], the security vulnerabilities may exist at
any of the levels. As a result, security concerns are different at different layers. Dif-
ferent attacks like tempering, spoofing, or denial of service may be launched at any
of the layers to compromise the integrity, confidentiality, and availability of a node
by performing ARP spoofing, false data/command injection attacks, smurf attacks,
social engineering, replay attacks, infecting the firmware, or sniffing. As a result, the
nodes may fail, become non-responsive, or behave in a faulty manner. Moreover, the
sensitive information may be exfiltrated and sent to illegitimate nodes. Specifically,
the attack scenarios (AS) include

AS(1) attack on sensors or actuators
AS(2) attack on field controllers or
AS(3) attack on computing nodes that perform specified functionality
AS(4) initiation of unnecessary leader election process

4 The proposed architectural model

The section presents the formal description of the proposed architectural model. Dif-
ferent layers of the proposed architecture and their responsibilities are also explained
here. Then, the need and role of functional and security leaders and the proposed
leader election algorithm are discussed in detail.

4.1 Formal description

The proposed architectural model consists of four layers where security is added
as a cross-cutting concern as shown in Fig. 1. This architectural model is designed
and viewed as a distributed system with heterogeneous nodes as presented in
Fig. 2. Formally, the proposed CPS architecture is defined as a set of nodes (SN)

14820 D. Tripathi et al.

1 3

connected through an arbitrary network topology. SN = {S ∪ AR ∪ FC ∪ CN} ,
where S = {s1, s2,… , se} , AR = {ar1,… , arf } , FC = {fc1, fc2,… , fcg} , and
CN = {FN ∪ SN} , FN = {fn1,… , fnh} and SN = {sn1,… , snk} where e, f, g, k
and h are integer and k < h . The computing nodes are divided into set of non-
overlapping clusters C = {c1,… , cm} such that each cl = {fn ∪ sn} where
fn ⊆ FN, sn ⊆ SN . The clustering is done on the basis of dependent and inde-
pendent domain. A cluster in C is selected to make a higher level cluster called
decision support cluster (DSC) to have a global view of system’s functionality
and intrusion monitoring and response requests. A cluster cl communicates and
coordinates with other clusters via DSC. The leaders in each cl are responsible to
establish the inter-cluster communication via DSC leaders as shown in Fig. 3. The
meaning of all the variables and symbols used in this paper are given in Table 1.

Fig. 1 Layered representation of CPS architecture

Fig. 2 Clustered view of the proposed distributed CPS architectural model

14821

1 3

An integrated approach of designing functionality with security…

4.2 Layers responsibilities

In the proposed architectural model (as shown in Fig. 2), different computational
responsibilities of the total work of automation, instrumentation, control & secu-
rity are distributed. These responsibilities and performed by different types of
homogeneous or heterogeneous nodes at different layers for different purposes,
including sensing, actuation, computing, and coordination. The responsibilities
like sensing and actuation are hard-coded or fixed and performed by hardware
entities like sensors, actuators, and micro-controllers at lower layers. The bottom
two layers follow the fixed distribution. On the other hand, the top two layers
follow floating distribution as the tasks may be distributed or reallocated on any
computing node.

4.2.1 Sensor and actuation layer

Consists of numerous similar or different types of field devices, including sensor
and actuator nodes and represented as gray circles. These nodes may be deployed
for environmental and security monitoring. The layer is closer to the real world or
physical equipment and infrastructure and responsible for observing and reacting.
The sensor nodes perceive the system and environment state variables’ value, and
events send this information to the controller layer. The actuator nodes receive
the control command to execute the required actions directed by upper layers.

4.2.2 Controller layer

Consists of multiple programmable field controllers shown as boxes in Fig. 2. The
layer is responsible for performing purely real-time tasks. To respond to real-time
functionality and security requirements, each controller receives, processes the
sensor data, and instructs the actuator to change its state accordingly. The layer
is also responsible for pushing the state information and control status onto the
cyber layer and updating the control directives from the upper layer if required.
The security at this level is embedded within the controller nodes to perform
authentication of communicating nodes and verify sensor values with set values.

Fig. 3 Clustered view of cyber layer and decision support layer of the proposed distributed CPS architec-
tural model with functionality and security leaders

14822 D. Tripathi et al.

1 3

Table 1 Notations and their meaning

Notation Description

SN Set of nodes in the system
S Set of sensors
AR Set of actuators
FC Set of monitoring & field controlling nodes
CN Set of computing nodes
G The graph consisting of all computing nodes
FN Set of functional nodes
SN Set of security nodes
C Set of non-overlapping clusters
DSC Decision support cluster
D Diameter of G
R Radius of G
cj jth cluster of graph G
dj Diameter of cluster cj
rdj Radius of cluster cj
N Number of computing nodes in graph G
node_idi Id of the ith node
n Number of nodes in cluster cj
� Number of attributes
Rki Rank of node i
eini_id Election initiator Id
c_ack_id ack message creator Id
r_list A 2D list with two fields. First field contains node Id and second field contains rank

of a node
leaderi A node i stores the system leader Id in it
s_em_id Id of an election message sender
flc_listi A node i stores the list of functionality leader capable nodes in it
slc_listi A node i stores the list of security leader capable nodes in it
l_id Newly elected leader Id
t_list List of transient leader
parenti Parent node of a node i
l_childi List of child nodes of a node i
failed_leader_id Failed leader id
tol Type of leader, tol=1 functionality leader, tol=0 security leader
toni Type of node, if node i is a functionality node then toni = 1 , if node i is a security

node then toni = 0

toe Type of election, if the election is initiated to elect the functionality leader then
toe = 1 , if the election is initiate to elect the security leader then toe = 0

fun_leaderi Functionality leader Id stored by a node i
sec_leaderi Security leader Id stored by a node i
Tf Set of functional tasks
Ts Set of security tasks

14823

1 3

An integrated approach of designing functionality with security…

Both sensor & actuation and controller layers follow fixed distribution or have
a limited scope of distribution. Hence, controller nodes are considered fixed lead-
ers. Moreover, the redundant nodes are applied at these layers to make the system
more fault or breach-tolerant.

4.2.3 Cyber layer

Interacts with the controller layer to monitor the system states and sends the control
directives to the controllers. It receives massive real-time data and processes it to extract
additional information for context awareness. The layer consists of several comput-
ing nodes, arranged as clusters and represented as ellipses. The nodes can collaborate
and distribute the management-level operational decisions as tasks among themselves.
Moreover, they aggregate and store the data at the local level and send the aggregated
data & results to the decision support layer for a global view of the system. Clustering
is done based on domain (region) separation to perform specific tasks in each domain
and independent of physical proximity. It improves performance, system management,
and security by identifying and localizing the system-level faults, isolating the attacked
segment, and preventing the cascading failures of the region due to security threats.
Each cluster performs some dependent and independent tasks. A region needs to inter-
act with other regions to execute the dependent tasks but does not need any interaction
to execute the independent tasks. The nodes communicate within the cluster to execute
the independent tasks.

4.2.4 Decision support layer

Consists of multiple computing nodes that mainly communicate & coordinate with
each cluster to obtain a global view of the entire system, although the layer can respond
to the requests from the cyber layer in real-time. However, it primarily performs non-
real-time operations for decision support, such as data correlation and more intense
analytics. The layer is responsible for finding, observing, and predicting the CPS
behavior, reliability assessment, machine health value, maintenance actions, configura-
tion management, change in management policy and business rules, storage, visualiza-
tion, auditing, and logging. It does not directly communicate with the controller layer,
but it can direct the lower layer to send instructions. It provides operational support to
lower layers by load balancing and task prioritization to avoid cascading failure due
to overload. The cyber and decision support layers collect, process, and analyze the
data to identify the changes in the environment and reconfigure the control decisions
accordingly at the local and global situations, respectively.

Since threats may persist at any of the nodes in cyber-phyiscal layers, security of
each layer is handled either on the same layer or at the upper layer.

4.3 Role of functionality and security leaders

The field controllers at the controller layer perform dedicated control tasks
to respond to the real-time functionality and security requirements. They are

14824 D. Tripathi et al.

1 3

considered fixed leaders. The security module is also embedded within the con-
troller node. It authenticates the attached nodes to establish secure communica-
tion, verifies the sensor’s data corresponding to predefined set values to detect
the unexpected deviation, identifies the non-responsiveness of attached sensor
and actuator nodes, and intrusion attempts on the controller node itself. Moreo-
ver, redundant or diverse nodes are deployed at this layer to take up the role of
failed leader node. At the top two layers, the functionality and security tasks are
distributed as two core tasks in each cluster. The functionality nodes are responsi-
ble for performing the tasks related to functionalities such as monitoring, execu-
tion, storage, and control. The security nodes are responsible for authentication,
encryption, secure storage [10], and key management, including key generation,
distribution, and storage. Moreover, they monitor, detect and respond to the mali-
cious events or abnormal behavior of functionality nodes [38] and the field con-
troller nodes. The security monitoring nodes take a snapshot of functionality
nodes at different times to monitor the discrepancy in their actual and expected
behavior and generate alerts. These nodes are also responsible for responding to
the detected malicious events by changing the system parameters.

The collaboration, coordination, and communication among the functionality
and security nodes are managed by the functionality leader and security leader. The
functionality leader coordinates the distribution and aggregation of functionality
tasks among different functionality nodes. Similarly, the security leader is respon-
sible for coordinating the distribution and aggregation of preventive and responsive
security tasks among different security nodes to identify, prevent and respond to the
malicious behavior of functionality nodes. It maintains a list of normal, suspicious,
and compromised functional nodes along with the list of failed security nodes.
These leader nodes of each cluster are called sub-leaders. If there are n clusters,
there will be 2n sub-leaders. While designing a secure system, the functionality and
security monitoring and response are two independent but coordinated tasks. Hence,
the functionality and security leaders of each cluster act as co-leaders. The co-lead-
ers are designed as co-routines to yield concurrency and communication. Further,
they transfer the control to each other to execute the system functionalities securely
and respond to malicious activities. To coordinate the system-level activities and to
establish communication among the clusters, we elect the functionality and security
leader at the decision support layer also and call these super-leaders. The commu-
nication request and data collected from each functionality and security sub-leaders
are transferred to super-leaders to make the system self-aware and reconfigure the
functionality and security policies. The election of sub-leaders and the super-leader
avoid a bottleneck situation where a single leader may face a heavy load to coordi-
nate all the functionality and security activities of the entire system. As the only sys-
tem leader coordinates the region-wise dependent and independent tasks, the inde-
pendent tasks take more time to complete because of the increased communication
latency and response from an overloaded leader. Implementing sub-leaders reduces
the unnecessary communication latency due to the need to coordinate with super-
leader to execute region-wise independent tasks. Thus, the decisions at the local
level reduce the upstream bandwidth demand as well. Consequently, the probability
of missing the deadline of functionality tasks or security events is reduced.

14825

1 3

An integrated approach of designing functionality with security…

4.4 The proposed leader election algorithm

In this section, the proposed leader election method is presented to elect the func-
tionality and security leaders. We assume that the system is static and the set of
computing nodes (CN) are arranged in a graph G and defined as G = (CN, L) , where
L is the set of links of graph G. D and R are the diameter and radius of graph G
and ⌈D

2
⌉ ≤ R ≤ D . As G represents graph of CN, hence, G as specified in Sect. 4.1,

divided into m clusters (sub graph) such that c1, c2,⋯ , cm ⊆ G . Each cluster cl has a
unique id. The diameter and radius of the cl are dl and rdl , respectively, and defined
as ⌈ dl

2
⌉ ≤ rdl ≤ dl , where ∀l, dl < D . We also assume that each node has a unique

id. A leader election algorithm runs to choose the leader when a system starts for
the first time, or a leader node is failed, malfunctioned, or becomes non-responsive
because of a DoS attack.

As in safety-critical systems, mostly real-time jobs need to be executed. Hence,
the proposed algorithm identifies a list of leader capable nodes based on specified
node selection criteria. Then, the highest potential (best) node is designated as the
chief leader, and the remaining nodes are declared as transient leaders. In case of
leader failure, one of the transient leaders instantly takes the responsibility of coor-
dinating the management activities. The time to select a temporary leader is less
than to elect a chief leader, so the presented algorithm reduces the election over-
head. While selecting the list of potential leaders, the proposed algorithm also han-
dles the threat scenario, where a malicious node can try to initiate the unnecessary
leader election process to hamper the system performance by falsifying the infor-
mation about leader failure. For this, if a node other than transient leaders realizes
the leader is failed, it communicates to the transient leaders to inform the leader’s
failure but cannot initiate the leader election process by itself. The election process
is started only when the transient leaders reach the consensus to start the election.
The proposed algorithm always tries to elect good-quality leaders for the system. To
do that, we introduce the concept of rank calculation of the nodes. Here, the higher
rank indicates the higher-good quality. According to the system requirements, sev-
eral quality attributes can be considered to calculate the rank of a node, for example,
memory capacity, processing capacity, failure rate, degree, eccentricity, and so on.

Suppose the set of attributes that need to consider to calculate the rank is A and
it contains � attributes, A = {a1, a2, a3,… , a�} . Here, we assume that every node
knows the possible maximum and minimum values of every attribute. Max(aq) and
Min(aq) represent the maximum value and minimum value of an attribute aq . Hence,
the rank Rki of a node i is calculated using Eq. 1.

Here, �iq =

⎧
⎪⎨⎪⎩

viq−Min(aq)

Max(aq)−Min(aq)
, if aq is a benefit attribute.

Max(aq)−viq

Max(aq)−Min(aq)
, if aq is a cost attribute.

(1)Rki =

�∑
q=1

�iq

14826 D. Tripathi et al.

1 3

where viq is the value of attribute aq of a node i. The benefit attributes are those
whose higher values are preferred, while cost attributes are those whose lower
values are preferred during leader election. The measurement unit of the different
attributes can be different, so we use the max-min normalization to normalize the
attributes.

4.4.1 Message type

In the proposed election algorithm, we use the following five types of messages.

1. The election message: This message is represented as em⟨eini_id, s_em_id, toe⟩
and consists of the election initiator id, the em message sender’s id and the type
of election. It is used to initiate an election.

2. The acknowledgement message: This message is represented as
ack⟨c_ack_id, eini_id⟩ and consists of the ack message creator id and the election
initiator id. A node creates an ack message to respond to getting an em message.

3. The rank message: This message is represented as rank⟨r_list⟩ . It is created by
child nodes to pass their rank information to the parent node.

4. The leader declaration message: This message is represented as ld⟨l_id, t_list, toe⟩
and consists of the elected leader id, the list of transient leaders and the type of
election. It is used to declare the elected leader.

5. The failure information message: It is represented as lfmsg⟨failed_leader_id, tol⟩
and consists of the failed leader’s id and the type of leader that has failed. It is
used to inform the transient leaders about the current leader’s failure.

4.4.2 Leader election method

Algorithm 1 and Algorithm 2 are designed to elect the functionality and security
leaders. Algorithm 1 explains the chief leader election method, while Algorithm 2
explains the transient leader election process. The election method elects the func-
tionality or security leader according to the system need. When the system starts for
the first time, any functionality or security node can run Algorithm 1 to elect a chief
functionality or security leader, respectively. When the election is initiated to elect
the functionality leader, the functionality nodes participate directly, and the security
nodes participate indirectly by only forwarding the election messages. Consequently,
the r leader capable nodes are selected from the functionality nodes only. The same
things happen in the case of the security leader election. Algorithm 1 executes in
two phases. In the first phase, the nodes build a tree using election message (em)
and acknowledgement message (ack). A node i creates em⟨eini_id, s_em_id, toe⟩ to
initiate the election process, where the eini_id and s_em_id are the same as node_id .
Here, the boolean variable toe is used to represent the type of election. That means
the election is started for electing functionality leaders or security leaders. If toe = 1 ,
the election is for electing the functionality leader. On the other hand, if toe = 0 , the
election is for electing the security leader. As node i initiates election, it is consid-
ered as the root node of the tree where parenti = � . It sends em⟨eini_id, s_em_id, toe⟩
to all the adjacent nodes and waits for ack⟨c_ack_id, eini_id⟩ . When an adjacent

14827

1 3

An integrated approach of designing functionality with security…

node j receives the em⟨eini_id, s_em_id, toe⟩ , it creates ack⟨c_ack_id, eini_id⟩ mes-
sage and sends it to node i. Here, the node i considers node j as is child node and
node j considers node i as its parent node. Then, node j modifies and forwards the
election message to its adjacent nodes, except its parent node (node i), and waits for
the acknowledgement message. There may be two cases: (1) either it receives the
election message from one node or (2) it receives the redundant election message
from multiple nodes as duplicate messages. Hence, the receiving node checks if the
election message is received for the first time by checking eini_id , it considers the
message sender node as its parent and sends back the ack message to it in response.
Otherwise, it does not respond or send an acknowledgement message to the prede-
cessor node. The steps repeat until the election message is circulated among all the
nodes in the system.

In the second phase, all the nodes send their rank value to their parent node.
To send its rank, a node j checks that if it is a leaf node or does not get any
ack⟨c_ack_id, eini_id⟩ message from the adjacent nodes, it appends its id and rank in
its rank list (r_list) and sends it to its parent node through rank message rank⟨r_list⟩ .
The parent node collects rank⟨r_list⟩ messages from all its child nodes, makes a
list of nodes by sorting the collected child nodes’ ranks and self-rank according to
the rank value in descending order. Then, top r values are selected from the sorted
list and sent to its parent node. The process is repeated until the root node gets the
rank⟨r_list⟩ message from all its child nodes. The root node sorts the nodes to get
the r leader capable nodes’ list. If toe = 1 , the top node of the r_list is declared as
the chief functionality leader and the remaining r − 1 nodes are declared as the tran-
sient functionality leaders. If toe = 0 , the top node of the r_list is declared as the
chief security leader and remaining r − 1 nodes are declared as the transient security
leaders. The root node broadcasts a ld⟨l_id, t_list, toe⟩ message to declare the elected
leader as well as the transient leaders. On receiving the ld⟨l_id, t_list, toe⟩ , node j

14828 D. Tripathi et al.

1 3

14829

1 3

An integrated approach of designing functionality with security…

 checks value of toe, if toe = 1 , it updates the chief leader id as functionality
chief leader and transient leaders list as functionality transient leaders. If toe = 0 ,
it updates the chief leader id as a chief security leader and transient leaders list as
transient security leaders. It is worth mentioning that if two or more nodes realize
and initiate election simultaneously, the election message created by the node with
highest id survives in the network. Thus, the node with highest id gets the scope to
create the tree. On the other hand, the election messages created by the other nodes
get discarded that helps to avoid multiple election trees formation.

Algorithm 2 runs to select the transient leaders. The leader failure may be real-
ized by either leader-capable nodes or non-leader capable (normal) nodes. When
a node realizes that the chief leader has been failed or become non-responsive, it
creates a message lfmsg⟨failed_leader_id , tol⟩ and sends it to all the leader-capable
nodes. Then, the transient leader nodes verify whether the chief leader has failed and
initiating elections based on mutual consensus. If the leader is failed and the num-
ber of transient leader nodes is greater than r/2, the top alive node is selected from
t_list as functionality or security leader based on the tfl value. After that, the t_list
is updated and a ld⟨l_id, t_list⟩ message is broadcast to all the nodes. Otherwise, if
the nodes in leader capable list (lc_list) are less than or equal to r/2, the nodes build
the consensus to initiate election, and the highest leader capable node among them
invokes algorithm 1 to elect a chief leader. Thus, the proposed algorithm also pre-
vents any undetected compromised node from abusing the leader election process.

4.4.3 Complexity analysis

The complexity of the leader election algorithm is measured in terms of message
complexity and time complexity. In this section, we calculate the message and time
complexities of the proposed election algorithm considering a network of N nodes
and D diameter.

Message complexity
As the nodes communicate by message passing, the message complexity depends

upon the number of messages exchanged among the nodes during an election.

14830 D. Tripathi et al.

1 3

Best case: When the number of alive transient leader nodes is more than r/2, and
one of them realizes the chief leader’s failure, then it is the best-case scenario of the
algorithm. In this case, the node that realizes the leader’s failure informs the other
transient leader nodes about the leader’s failure. Then, all the transient leader nodes
collaboratively elect the highest leader capable node from the list of transient leaders
as the new leader and declare the elected leader by broadcasting the leader declara-
tion message. Here, O(r) messages are required to inform the leader’s failure to all
the transient leader nodes and O(N) messages are required to broadcast the elected
leader. N ≥ r , hence in the best case, the message complexity of the proposed leader
election algorithm is O(N).

Worst case: When the number of alive transient leader nodes is less than r/2,
and all the nodes realize the leader’s failure concurrently, it becomes the worst-case
scenario of our algorithm. In this case, all nodes initiate the election concurrently
to identify the r leader capable nodes. Here, a maximum of O(N2) messages are
exchanged to build the election tree. After that, O(N) rank messages are exchanged
for passing the ranks to the election conducting node. Finally, O(N) leader decla-
ration messages are exchanged to declare the leader. So, in this case, the message
complexity is O(N2).

Time complexity
Time complexity quantifies the time required to elect a leader.
Best and worst cases: In the best case, O(D) time is required to inform the

leader’s failure information to all the alive transient leader nodes, and O(D) time is
required to broadcast the leader declaration message. So, in the best case, the time
complexity is O(D). In the worst case, the time complexity depends on the election
tree construction time, time to pass the ranks to the election conducting node, and to
broadcast the leader declaration message. Each of these three steps takes O(D) time.
Hence, in the worst-case, the time complexity is also O(D).

4.5 Resilience against cyber attacks

Since, cyber threats may persist at any of the nodes in cyber-physical layers, security
of each layer is handled either on the same layer or at the upper layer. The field con-
trollers perform dedicated control tasks to respond to the real-time functionality and
security requirements at the controller layer. The security module is also embedded
within the controller node to retaliate AS(1) and AS(2). It authenticates the attached
nodes to establish secure communication, verifies the sensor’s data with predefined
set values to detect the unexpected deviation [23, 32], identifies the non-responsive-
ness of attached sensor and actuator nodes using heart beat message [17], and intru-
sion attempts on the controller node itself. Moreover, redundant or diverse nodes are
deployed at this layer to take up the role of failed leader node. However, the methods
of how these security mechanisms are implemented are already known and available
in the literature [17, 23, 32].

At cyber and decision support layers, the functionality and security leader col-
laborate as co-routines [41, 45] to respond to the malicious events at the cluster
level. To defend against AS(3), the model can retaliate the attacks on a functionality

14831

1 3

An integrated approach of designing functionality with security…

node, functionality leader, security node, or security leader. Initially, the security
leader maintains a list of nodes with normal status. When a security monitoring
node observes a functionality node is behaving suspiciously, it informs the secu-
rity leader. To detect and tolerate security monitoring node failure, the methods are
already known and available in the literature [16, 22, 36]. After confirming the sus-
pected behavior to be malicious, the security leader removes the node from the nor-
mal node list and adds it to the compromised node list. It sends a compromised node
id to the functionality leader, which reallocates that node’s responsibility among the
least-loaded normal functionality nodes. The attack on security monitoring and con-
trol nodes is observed by the security leader, as it communicates with the security
monitoring nodes periodically. If the security monitoring node does not respond, the
security leader assumes it to be failed. In this situation, the security leader isolates
the compromised node and reallocates the security task to the least loaded node.
Similarly, when any security monitoring node attempts to communicate with the
security leader and does not get any response, it communicates to one of the tran-
sient leaders. All the transient leaders would verify by sending the heartbeat mes-
sage to the chief leader node and reach a consensus of whether the chief leader is
failed due to attack as mentioned in Sect. 4.4. To defend against AS(4), the proposed
algorithm can prevent the abuse of the leader election process itself. The algorithm
can deal with the scenario where a malicious node tries to initiate the election pro-
cess unnecessary to target an unbiased leader. Only the leader-capable nodes are
responsible for verifying whether the chief leader has failed and initiating elections
based on mutual consensus. Thus, the proposed architectural framework can tolerate
or respond to the mentioned attack scenarios or exceptional conditions.

5 Performance evaluation of the proposed architectural model

In this section, we analyze and demonstrate the effectiveness of the proposed CPS
architecture through several experiments. We show that the concept of clustering
and separation of functionality and security leaders helps to improve the overall per-
formance and security management. A distributed smart hospital management case
study is considered to explain the proposed architecture, where multiple hospitals
are connected as a medical-CPS.

5.1 Case study

A smart hospital is a concept that uses emerging technologies of information
and communications technology (ICT) to optimize and manage the health care
operations and its functional requirements efficiently [30]. Smart hospitals fall
under the safety-critical domain as the safety of patients is at most priority. Any
security failure in terms of denial of service or integrity failures of life sup-
port systems may lead to unsafe situations for the system. It may consequently
create big chaos in patients’ lives. Various sensors and data collection devices
are deployed to monitor the environmental conditions, hospital resources, and

14832 D. Tripathi et al.

1 3

services. Different actuators respond as specified and controlled by controllers. In
our proposed architectural model, each cluster with computing nodes represents
a hospital. The computing nodes store and process the collected environmental,
operational, and patient data (confidential and non-confidential) to perform dif-
ferent functionality and security monitoring tasks as shown in Fig. 4. The nodes
do intra-cluster communication to perform the cluster independent tasks via the
leader node. The nodes do inter-cluster communication to perform multiple clus-
ters dependent tasks via cluster leaders. There may be various functionality tasks
in hospital management, although, to demonstrate the effectiveness of our pro-
posed approach, we are just demonstrating the example of treating the COVID
patients and distribution, deployment, and administration of the vaccine for fight-
ing with COVID-19 pandemic [11].

The decision support layer represented as c5 (as shown in Fig. 4) and it com-
municates to each cluster leader to optimize the availability of vaccines in each
hospital by monitoring the lack or excess of the vaccine. Moreover, it stores the
updated records of vaccinated persons and the total number of treated and active
COVID patients and their distribution in each region/ hospital at the country
level. The probable attack scenarios may include a denial of service attack, mal-
functioning of life support system units in intensive care units, or an integrity
attack on vaccinated person records. The attacker may delete the vaccine avail-
ability and distribution records, malfunctions computing nodes, breach patient
records suffering from other critical diseases, disturb the HVAC control unit.
Moreover, a successful integrity attack on a node that performs the staff-alloca-
tion task compromises its functionality in the critical time. As a result, the com-
promised node allocates a non-specialized doctor.

Fig. 4 Cluster arrangement of a distributed hospital network with functionality and security leaders

14833

1 3

An integrated approach of designing functionality with security…

Suppose, in cluster c1, a set of functionality tasks Tf = {Tf1, Tf2, Tf3, Tf4, Tf5}
are running on functionality nodes. There are security tasks Ts = {Ts1, Ts2, Ts3}
running on security monitoring nodes. The security monitoring nodes observe the
incorrect behavior of the functionality nodes by observing the deviation in allocated
functionality tasks. It sends a message to the security leader on finding a node with
suspicious behavior, which sends the message to the functionality leader and blocks
the compromised node. The functionality leader reallocates the staff-allocation task
to the least-loaded node to avoid further chaos.

5.2 Performance evaluation

To analyze the system management improvement, we have considered four different
forms of system management, i.e., purely centralized, purely distributed without a
leader, distributed with a single leader, and clustered distributed manner with mul-
tiple leaders (including functionality and security leaders). To evaluate the perfor-
mance of the proposed architecture with each of these management forms, a p step
task is considered. A p step task is defined as a task T that involves p steps to com-
plete it. Suppose there are N nodes in the system.

(1) Purely centralized In this manner, a fixed central node controls and manages
other nodes and all the system’s activities. Here, the main problem is a single-point
failure. When the fixed central node collapses, the whole system collapses. Hence,
the fault-tolerance capacity of the system is minimum. To complete a p step task, a
node exchanges p number of messages with the central node. The message complex-
ity of completing this task is O(p.D.N), and the time complexity is O(D) where D is
the network’s diameter.

(2) Distributed without considering the leader There is no central node that con-
trols and manages the system. Here, a node needs to send messages to all the other
nodes to complete a task consistently. In this manner, the fault-tolerance capacity of
the system is maximum, but the message and time complexities are very high. Here,
the message complexity and the time complexity of completing a p step task are
O(p.N2) and O(D), respectively.

(3) Distributed with a single leader The system is managed in a distributed way
by electing a node as the system leader, as discussed earlier. Here, the system is
managed similarly to the centralized manner. The only difference is that the central
node (the system controlling node) is fixed in a centralized manner, but here the cen-
tral node is not fixed. If the central node is crashed, another node can be elected as
the central node or the leader. The leader election overhead (extra cost) is associated
with this manner. Here, the message complexity and the time complexity of com-
pleting a p step task are O(p.D.N) and O(D), respectively.

(4) Clustered distributed with multiple leaders In this manner, the CPS is man-
aged in distributed manner but divided into multiple clusters. Each cluster has a
functionality leader and security leader. Intra-cluster functionality and security tasks
are managed by its functionality and security leaders, respectively. On the other
hand, inter-cluster tasks are managed by the leaders of the clusters. Here, the mes-
sage complexity and the time complexity of completing a p step inter-cluster task

14834 D. Tripathi et al.

1 3

are O(p.dmax.N) and O(D), respectively, where dmax is the maximum diameter of the
clusters. The message complexity and the time complexity of completing a p step
intra-cluster task are O(p.d.n) and O(d), respectively, where d is the cluster’s diam-
eter, and n is the number of nodes in the cluster.

Here, dmax ≤ D and D < N . So, O(p.dmax.N) ≤ O(p.D.N) < O(p.N2) . That means
if we manage a CPS in distributed clustered manner with multiple leaders, to com-
plete a task, the number of exchanged messages (network traffic) gets reduced. As
d < D , then O(d) < O(D).

We consider the COVID-19 vaccine distribution, deployment, and administra-
tion (as mentioned in the case study) task to simulate and evaluate the proposed
architecture’s effectiveness and performance with the management schemes as men-
tioned earlier. To simulate the proposed architectural model, we use python 3.6 as
a programming language, MPICH version 3.2, and mpi4py tool as a message pass-
ing interface. We have considered six different sizes of networks where nodes of
each network are connected through an arbitrary network topology. All the networks
details are given in Table 2, and the simulation results are shown in Figs. 5, 6. We
perform the entire simulation in a single machine equipped with Intel (R) Core(TM)
i7-3770 processor (3.40 GHz, 8 MB cache), 26 GB DDR3 RAM, 1TB 5400rmp
HDD, NVIDIA GeForce graphics, running Ubuntu Linux Release 16.04 (xenial ker-
nel 4.4).

In Fig. 5, X-axis represents the number of nodes, and Y-axis represents the num-
ber of messages exchanged to complete the task. In Fig. 6, X-axis represents the
number of nodes, and Y-axis represents the time required to complete the task. Fig-
ures 5, 6 show that the number of exchanged messages among the nodes and the
time required to complete the task in a purely distributed manner without a leader
are highest. In contrast, the number of exchanged messages and time required to
complete the task is least when the system is managed in a distributed clustered
manner with multiple leaders for functionality and security. Figure 7 shows the aver-
age response time of the tasks when we manage the top two layers in a distributed
manner with a single leader and in a distributed clustered manner with multiple
leaders. In Fig. 7, X-axis represents number of tasks, and Y-axis represents the aver-
age response time of functionality and security tasks. Here, we have considered that
out of total tasks, one-third are security tasks, and two-thirds are functionality tasks.
Figure 7 concludes that if we manage the CPS in a distributed clustered manner with

Table 2 Details of the networks
considered for the experiments

Network Number of
nodes

Number of
edges

Diameter Num-
ber of
cluster

Network 1 30 52 8 3
Network 2 60 98 10 4
Network 3 90 176 12 5
Network 4 120 256 14 6
Network 5 150 290 16 7
Network 6 180 375 18 8

14835

1 3

An integrated approach of designing functionality with security…

multiple leaders, the average response time of tasks gets reduced. Figure 8 compares
the completion rate of real-time tasks within a specified deadline while managing
the cyber layer in a distributed manner with a single leader and in a clustered distrib-
uted manner with multiple leaders. In Fig. 8, X-axis represents number of tasks, and
Y-axis represents the completion(or success) rate of real-time tasks within a speci-
fied deadline. Here, we have considered that out of total tasks, half are real-time
task, and half are non-real-time tasks. We have used priority scheduling to schedule

Fig. 5 Comparison of the proposed system management manner with other possible system management
manners based on the number of exchanged messages to complete the task

Fig. 6 Comparison of the proposed system management manner with other possible system management
manners based on the time required to complete the task

14836 D. Tripathi et al.

1 3

these tasks, where real-time tasks have priority over non-real-time tasks. Figure 8
concludes that success rate of real-time tasks gets increased if we manage the CPS
in a clustered distributed manner with multiple leaders. From the simulation results
shown in Figs. 7 and 8, it can be observed that the distributed clustered manner
with separate functionality and security leaders is more efficient in terms of average
response time and when the system needs to honor the deadlines of the real-time
tasks. We performed two statistical tests, i.e., the Quantile-Quantile plot (Q-Q plot)
test [28] and the Shapiro-Wilk test [18] on the completion ratio of real-time tasks
and the average response time of the tasks through the proposed system manage-
ment manner (clustered distributed manner with multiple leaders). The Q-Q plots
of the average response time and the completion ratio of real-time tasks are shown
in Figs. 9 and 10, respectively. The Q-Q plots show that the average response time

Fig. 7 Comparison of the proposed system management manner with the distributed manner with a sin-
gle leader based on the average response time of the task

Fig. 8 Comparison of the proposed system management manner with the distributed manner with a sin-
gle leader based on the success ratio of real time tasks completion within deadline

14837

1 3

An integrated approach of designing functionality with security…

and the completion ratio of real-time tasks follow the normal distribution. The p
value of the Shapiro-Wilk test of the completion ratio of real-time tasks is 0.843. As
0.843 > 0.05 , the completion ratio of real-time tasks follows the normal distribution.
On the other hand, the p value of the Shapiro-Wilk test of the average response time
is 0.466. Here, 0.466 is also greater than 0.05, which means the average response
time also follows the normal distribution.

Moreover, the proposed distributed clustered manner with multiple lead-
ers is more fault-tolerant and maintainable as compared to other architectural

Fig. 9 Quantile-Quantile plot (Q-Q plot) on the average response time of the tasks getting through the
proposed system management manner

Fig. 10 Quantile-Quantile plot (Q-Q plot) on the completion ratio of real-time tasks getting through the
proposed system management manner

14838 D. Tripathi et al.

1 3

arrangements. The proposed arrangement avoids a single point of functionality and
security failure in better ways and conquers the complexity of designing a secure
CPS. When there is a change or update in security policy, it will not affect the sys-
tem functionality. The proposed architectural model has the leader election over-
head, but it is reasonable as it increases system performance and the fault-tolerance
capability of distributed CPS.

Table 3 presents a comparative analysis of the proposed architectural arrange-
ment with other architectural arrangements and philosophy. It shows the strength of
the proposed work, which comes by including the objective neither considered nor
analyzed in the existing works.

6 Conclusion and future work

A cyber-physical system (CPS) is a kind of distributed system with safety-critical
functionalities. Nowadays, with the ever-growing technological expansion, large-
scale CPSs are in demand. However, designing a secure, fault-tolerant, maintain-
able, and performance-efficient large-scale CPS is challenging. In this work, to
improve the performance, maintainability, fault-tolerability, and security of a large-
scale CPS, we propose a multi-tier architectural model of a cyber-physical system.
We introduce the concept of separately managing the functional and security con-
cerns by electing the functional and security leaders for better management of the
proposed CPS. Management of functional concerns and security concerns separately
improves the maintainability as well as the performance of the system. This separa-
tion is similar to the aspect orientation in design and implemented by exploiting the
concept of leader(s) as available in the case of the distributed computing system.
Here, the security and functionality leaders act as co-leaders to collaborate and com-
municate among themselves for preventing and responding to security threats. On
the other hand, management of a CPS is done in a clustered distributed manner,
which improves the system performance and makes the system more fault-tolerant.
Along with this, we have proposed a fault-tolerant leader election algorithm. Unlike
the existing algorithms, along with electing a leader, the proposed algorithm identi-
fies and makes a list of leader-capable nodes. So that if a leader fails, the system
can instantly elect a new leader from among the identified leader capable nodes to
minimize the adverse effect on real-time task coordination, system performance,
and security. Thus, the proposed architecture improves the maintainability, perfor-
mance, security of the system and makes the system more fault-tolerant. Further, we
perform several experiments by simulating the proposed architecture to evaluate its
performance. The experimental results show that the proposed architectural model
improves the system performance in terms of latency, average response time, and
the number of real-time tasks completed within the deadline. The proposed archi-
tectural model has the leader election overhead, but it is reasonable as it increases
system performance and the fault-tolerance capability of the distributed CPS. On the
other hand, because security and functionality are separately scalable, the overhead
of functionality nodes is minimized. This work does not present a scalability study
of the proposed approach. However, it is not a limitation, but an elaborated study

14839

1 3

An integrated approach of designing functionality with security…

Ta
bl

e
3

 C
om

pa
ra

tiv
e

an
al

ys
is

 w
ith

 e
xi

sti
ng

 w
or

ks

Ex
ist

in
g

W
or

k
Sy

ste
m

 M
an

ag
e-

m
en

t
Ta

rg
et

 W
or

k
Li

m
ita

tio
ns

Se
cu

rit
y

ar
ra

ng
e-

m
en

t
Fa

ul
t-t

ol
er

an
ce

Pe
rfo

rm
an

ce
M

ai
nt

ai
na

bi
lit

y

[1
4]

N
ot

 d
is

cu
ss

ed
Pr

es
en

ts
 se

m
an

tic

w
eb

 te
ch

no
lo

gy

dr
iv

en
 C

PS
 a

rc
hi

-
te

ct
ur

e

N
ot

 a
 u

ni
fie

d
ar

ch
ite

ct
ur

e
fo

r i
nt

eg
ra

tin
g

fu
nc

tio
na

lit
y

an
d

se
cu

rit
y

N
ot

 c
on

si
de

re
d

N
ot

 d
is

cu
ss

ed
N

ot
 d

is
cu

ss
ed

N
ot

 c
on

si
de

re
d

[2
6]

N
ot

 d
is

cu
ss

ed
C

PS
 re

fe
re

nc
e

ar
ch

i-
te

ct
ur

e
to

 d
es

cr
ib

e
its

 la
ye

rs
 a

nd
 ro

le
s

N
ot

 a
 u

ni
fie

d
ar

ch
ite

ct
ur

e
fo

r i
nt

eg
ra

tin
g

fu
nc

tio
na

lit
y

an
d

se
cu

rit
y

N
ot

 c
on

si
de

re
d

N
ot

 d
is

cu
ss

ed
N

ot
 d

is
cu

ss
ed

N
ot

 c
on

si
de

re
d

[2
0]

N
ot

 d
is

cu
ss

ed
Th

re
e-

la
ye

r a
rc

hi
-

te
ct

ur
e

fo
r a

 sm
ar

t
ci

ty

N
ot

 a
 u

ni
fie

d
ar

ch
ite

ct
ur

e
fo

r i
nt

eg
ra

tin
g

fu
nc

tio
na

lit
y

an
d

se
cu

rit
y

Pa
rti

al
N

ot
 c

on
si

de
re

d
N

ot
 e

va
lu

at
ed

N
ot

 c
on

si
de

re
d

[5
7]

N
ot

 d
is

cu
ss

ed
H

ie
ra

rc
hi

ca
l a

rc
hi

-
te

ct
ur

e
w

ith
 g

am
e

th
eo

ry
 to

 d
ea

l w
ith

cr

os
s-

la
ye

r C
PS

se

cu
rit

y

N
ot

 a
 u

ni
fie

d
ar

ch
ite

ct
ur

e
fo

r i
nt

eg
ra

tin
g

fu
nc

tio
na

lit
y

an
d

se
cu

rit
y

C
on

si
de

re
d

N
ot

 d
is

cu
ss

ed
N

ot
 e

va
lu

at
ed

N
ot

 c
on

si
de

re
d

14840 D. Tripathi et al.

1 3

Ta
bl

e
3

 (c
on

tin
ue

d)

Ex
ist

in
g

W
or

k
Sy

ste
m

 M
an

ag
e-

m
en

t
Ta

rg
et

 W
or

k
Li

m
ita

tio
ns

Se
cu

rit
y

ar
ra

ng
e-

m
en

t
Fa

ul
t-t

ol
er

an
ce

Pe
rfo

rm
an

ce
M

ai
nt

ai
na

bi
lit

y

[3
1]

C
en

tra
liz

ed
 m

an
ne

r
So

ftw
ar

e-
de

fin
ed

Io

T
ar

ch
ite

ct
ur

e
fo

r
sm

ar
t u

rb
an

 se
ns

-
in

g
w

he
re

 C
en

tra
l-

iz
ed

 c
on

tro
lle

rs

ar
e

de
si

gn
ed

 to

m
an

ag
e

ph
ys

i-
ca

l d
ev

ic
es

 a
nd

pr

ov
id

e
A

PI
s o

f
da

ta
 a

cq
ui

si
tio

n,

tra
ns

m
is

si
on

,
an

d
pr

oc
es

si
ng

se

rv
ic

es

N
ot

 a
 u

ni
fie

d
ar

ch
i-

te
ct

ur
e

fo
r i

nt
e-

gr
at

in
g

fu
nc

tio
na

l-
ity

 a
nd

 se
cu

rit
y.

M

or
eo

ve
r,

th
e

ris
k

of
 a

 si
ng

le
 p

oi
nt

 o
f

fa
ilu

re

N
ot

 c
on

si
de

re
d

Lo
w

 d
ue

 to
 th

e
ris

k
of

 si
ng

le
-p

oi
nt

fa

ilu
re

N
ot

 e
va

lu
at

ed
N

ot
 c

on
si

de
re

d

[5
0]

C
en

tra
liz

ed
 n

et
w

or
k

co
nt

ro
l

SD
N

-b
as

ed
 a

rc
hi

-
te

ct
ur

e
fo

r I
oT

 to

en
su

re
 se

cu
re

 d
at

a
co

m
m

un
ic

at
io

n
us

in
g

th
e

in
he

re
nt

ca

pa
bi

lit
y

of
 S

D
N

co

nt
ro

lle
rs

O
nl

y
fo

cu
s o

n
th

e
ne

tw
or

k
la

ye
r a

nd

tra
ffi

c
se

cu
rit

y
w

he
re

 se
cu

rit
y

is

th
e

so
le

 re
sp

on
-

si
bi

lit
y

of
 th

e
SD

N
 c

on
tro

lle
r.

M
or

eo
ve

r,
th

e
ris

k
of

 a
 si

ng
le

 p
oi

nt
 o

f
fa

ilu
re

C
on

si
de

re
d

Lo
w

 d
ue

 to
 th

e
ris

k
of

 si
ng

le
-p

oi
nt

fa

ilu
re

Lo
w

 d
ue

 to
 b

ot
-

tle
ne

ck
N

ot
 c

on
si

de
re

d

14841

1 3

An integrated approach of designing functionality with security…

Ta
bl

e
3

 (c
on

tin
ue

d)

Ex
ist

in
g

W
or

k
Sy

ste
m

 M
an

ag
e-

m
en

t
Ta

rg
et

 W
or

k
Li

m
ita

tio
ns

Se
cu

rit
y

ar
ra

ng
e-

m
en

t
Fa

ul
t-t

ol
er

an
ce

Pe
rfo

rm
an

ce
M

ai
nt

ai
na

bi
lit

y

[3
]

C
en

tra
liz

ed
 m

an
ne

r
C

en
tra

liz
ed

 fr
am

e-
w

or
k

fo
r s

ys
te

m
-

le
ve

l c
on

tro
l a

nd

m
an

ag
em

en
t o

f
ad

di
tiv

e
m

an
uf

ac
-

tu
rin

g
fle

et
s

N
ot

 a
 u

ni
fie

d
ar

ch
i-

te
ct

ur
e

fo
r i

nt
e-

gr
at

in
g

fu
nc

tio
na

l-
ity

 a
nd

 se
cu

rit
y,

M

or
eo

ve
r,

ris
k

of

a
si

ng
le

 p
oi

nt
 o

f
fa

ilu
re

N
ot

 c
on

si
de

re
d

O
w

 d
ue

 to
 ri

sk

of
 si

ng
le

-p
oi

nt

fa
ilu

re

N
ot

 e
va

lu
at

ed
N

ot
 c

on
si

de
re

d

[1
3]

D
ec

en
tra

liz
ed

m

an
ne

r
G

os
si

p-
ba

se
d

al
go

-
rit

hm
 fo

r a
ch

ie
vi

ng

pe
rfo

rm
an

ce
 a

nd

fa
ul

t-t
ol

er
an

ce

pr
op

er
tie

s

no
t a

 u
ni

fie
d

ar
ch

i-
te

ct
ur

e
fo

r i
nt

e-
gr

at
in

g
fu

nc
tio

na
l-

ity
 a

nd
 se

cu
rit

y

N
ot

 c
on

si
de

re
d

C
on

si
de

re
d

C
on

si
de

re
d

N
ot

 c
on

si
de

re
d

[4
6]

D
ec

en
tra

liz
ed

m

an
ne

r
A

 c
lo

ud
-b

as
ed

m

ul
ti-

tie
r s

er
vi

ce
-

or
ie

nt
ed

 a
rc

hi
-

te
ct

ur
al

 m
od

el

w
ith

 o
nt

ol
og

ic
al

co

ns
tru

ct
s f

or

in
te

ra
ct

io
ns

 a
m

on
g

di
ffe

re
nt

 h
et

er
og

e-
ne

ou
s d

ev
ic

es
 fo

r
Io

T-
ba

se
d

sm
ar

t
ho

m
e

W
ho

 is
 c

oo
rd

i-
na

tin
g

th
e

ta
sk

di

str
ib

ut
io

n
an

d
ag

gr
eg

at
io

n
is

 n
ot

di

sc
us

se
d

C
on

si
de

re
d

N
o

ex
pl

ic
it

ar
ra

ng
e-

m
en

t i
s p

re
se

nt
ed

N
ot

 e
va

lu
at

ed
C

on
si

de
re

d

[4
3]

D
ec

en
tra

liz
ed

m

an
ne

r
H

yb
rid

 sm
ar

t c
ity

cy

be
r s

ec
ur

ity

ar
ch

ite
ct

ur
e

to

an
al

yz
e

th
e

th
re

at
s

an
d

as
so

ci
at

ed
 ri

sk

N
ot

 a
 u

ni
fie

d
ar

ch
ite

ct
ur

e
fo

r i
nt

eg
ra

tin
g

fu
nc

tio
na

lit
y

an
d

se
cu

rit
y

co
nc

er
ns

N
ot

 c
on

si
de

re
d

no
t c

on
si

de
re

d
N

ot
 e

va
lu

at
ed

N
ot

 c
on

si
de

re
d

14842 D. Tripathi et al.

1 3

Ta
bl

e
3

 (c
on

tin
ue

d)

Ex
ist

in
g

W
or

k
Sy

ste
m

 M
an

ag
e-

m
en

t
Ta

rg
et

 W
or

k
Li

m
ita

tio
ns

Se
cu

rit
y

ar
ra

ng
e-

m
en

t
Fa

ul
t-t

ol
er

an
ce

Pe
rfo

rm
an

ce
M

ai
nt

ai
na

bi
lit

y

[1
9]

D
ist

rib
ut

ed
 m

an
ne

r
D

ist
rib

ut
ed

 a
rc

hi
-

te
ct

ur
e

as
 B

la
ck

SD

N
-I

oT
 w

ith

SD
N

 c
on

tro
lle

r,
de

vi
ce

 v
irt

ua
liz

a-
tio

n
to

 c
on

tro
l a

nd

m
on

ito
r t

he
 tr

affi
c

da
ta

 fl
ow

O
nl

y
fo

cu
s o

n
th

e
ne

tw
or

k
la

ye
r a

nd

tra
ffi

c
se

cu
rit

y.

M
or

eo
ve

r,
no

t a

un
ifi

ed
 a

rc
hi

te
c-

tu
re

 fo
r i

nt
eg

ra
tin

g
fu

nc
tio

na
lit

y
an

d
se

cu
rit

y
co

nc
er

ns

C
on

si
de

re
d

H
ig

h
A

na
ly

ze
d

M
ed

iu
m

[2
7]

D
ist

rib
ut

ed
 m

an
ne

r
Em

ph
as

iz
ed

 th
e

ne
ed

 fo
r d

ist
rib

-
ut

ed
 a

rc
hi

te
ct

ur
al

m

an
ag

em
en

t,
w

he
re

 se
cu

rit
y

di
str

ib
ut

io
n

sh
ou

ld

be
 a

t s
en

so
r l

ev
el

as

 w
el

l a
s c

om
pu

t-
in

g
le

ve
l t

o
ta

ke

ad
va

nt
ag

e
of

 d
is

-
tri

bu
te

d
co

m
pu

tin
g

in
 h

an
dl

in
g

th
e

pe
rfo

rm
an

ce
 a

nd

pr
iv

ac
y

co
nc

er
ns

N
ot

 a
 u

ni
fie

d
ar

ch
ite

ct
ur

e
fo

r i
nt

eg
ra

tin
g

fu
nc

tio
na

lit
y

an
d

se
cu

rit
y

co
nc

er
ns

.
M

or
eo

ve
r,

no
 d

is
-

cu
ss

io
n

on
 h

ow
 to

co

or
di

na
te

, d
ist

rib
-

ut
e

an
d

ag
gr

eg
at

e
th

e
fu

nc
tio

na
l a

nd

se
cu

rit
y

ta
sk

s

C
on

si
de

re
d

N
o

ex
pl

ic
it

ar
ra

ng
e-

m
en

t i
s p

re
se

nt
ed

to

 a
ch

ie
ve

 it

N
ot

 e
va

lu
at

ed
N

ot
 c

on
si

de
re

d

Pr
op

os
ed

 w
or

k
C

lu
ste

re
d

di
str

ib
ut

ed

m
an

ne
r

A
 u

ni
fie

d
ar

ch
ite

c-
tu

ra
l a

rr
an

ge
m

en
t

fo
r i

nt
eg

ra
tin

g
fu

nc
tio

na
lit

y
an

d
se

cu
rit

y
co

nc
er

ns

in
 e

xi
sti

ng
 sy

ste
m

an

d
ne

w
 sy

ste
m

C
an

 b
e

ex
te

nd
ed

 fo
r

ot
he

r d
ep

en
da

bi
l-

ity
 a

ttr
ib

ut
es

C
on

si
de

re
d

H
ig

h,
 d

ue
 to

 th
e

pr
op

os
ed

 c
hi

ef

an
d

tra
ns

ie
nt

le

ad
er

s

C
on

si
de

re
d

an
d

ev
al

ua
te

d
C

on
si

de
re

d
w

ith

as
pe

ct
-o

rie
n-

ta
tio

n

14843

1 3

An integrated approach of designing functionality with security…

needs to be performed in the future. Moreover, the work related to application of
learning in CPS may take benefit of similar approaches used in different domain
including [2, 52–54] in future.

References

 1. Albright D, Brannan P, Walrond C (2010) Did Stuxnet take out 1,000 centrifuges at the Natanz
enrichment plant? Institute for science and international security

 2. Bai B, Li G, Wang S, Wu Z, Yan W (2021) Time series classification based on multi-feature diction-
ary representation and ensemble learning. Expert Syst Appl 169:114162

 3. Balta EC, Tilbury DM, Barton K (2018) A centralized framework for system-level control and man-
agement of additive manufacturing fleets. In: 2018 IEEE 14th International Conference on Automa-
tion Science and Engineering (CASE), IEEE, 1071–1078

 4. Biswas A, Dutta A (2016) A timer based leader election algorithm. In: 2016 Intl IEEE Conferences
on Ubiquitous Intelligence & Computing, Advanced and Trusted Computing, Scalable Computing
and Communications, Cloud and Big Data Computing, Internet of People, and Smart World Con-
gress (UIC/ATC/ScalCom/CBDCom/IoP/SmartWorld), IEEE, 432–439

 5. Biswas A, Tripathi AK (2021) Preselection based leader election in distributed systems. In: Pro-
ceedings. 14th international symposium on intelligent distributed computing, (accepted), Springer

 6. Biswas A, Maurya AK, Tripathi AK, Aknine S (2021) Frlle: a failure rate and load-based leader
election algorithm for a bidirectional ring in distributed systems. J Supercomput 77(1):751–779

 7. Biswas A, Tripathi AK, Aknine S (2021b) Lea-tn: leader election algorithm considering node and
link failures in a torus network. J Supercomput, 1–38

 8. Bordel B, Alcarria R, de Rivera DS, Robles T (2018) Process execution in cyber-physical systems
using cloud and cyber-physical internet services. J Supercomput 74(8):4127–4169

 9. Camacho CR, Marczak S, Cruzes DS (2016) Agile team members perceptions on non-functional
testing: influencing factors from an empirical study. In: 2016 11th International Conference on
Availability, Reliability and Security (ARES), IEEE, pp 582–589

 10. Castiglione J, Pavlovic D (2019) Dynamic distributed secure storage against ransomware. IEEE
Transactions on computational social systems

 11. Ciotti M, Ciccozzi M, Terrinoni A, Jiang WC, Wang CB, Bernardini S (2020) The covid-19 pan-
demic. Crit Rev Clin Lab Sci 57(6):365–388

 12. Feng Y, Hu B, Hao H, Gao Y, Li Z, Tan J (2018) Design of distributed cyber-physical systems
for connected and automated vehicles with implementing methodologies. IEEE Trans Ind Inform
14(9):4200–4211

 13. Garofalo G, Giordano A, Piro P, Spezzano G, Vinci A (2017) A distributed real-time approach for
mitigating cso and flooding in urban drainage systems. J Net Computer Appl 78:30–42

 14. Gaur A, Scotney B, Parr G, McClean S (2015) Smart city architecture and its applications based on
iot. Procedia Computer Sci 52:1089–1094

 15. Gibbs S (2018) Triton: hackers take out safety systems in’watershed’attack on energy plant. The
Guardian

 16. Goodloe AE, Pike L (2010) Monitoring distributed real-time systems: a survey and future direc-
tions. National Aeronautics and Space Administration, Langley Research Center

 17. Gouda MG, McGuire TM (1998) Accelerated heartbeat protocols. In: Proceedings. 18th Interna-
tional Conference on Distributed Computing Systems (Cat. No. 98CB36183), IEEE, pp 202–209

 18. Hanusz Z, Tarasińska J (2015) Normalization of the kolmogorov-smirnov and shapiro-wilk tests of
normality. Biom Lett 52(2):85–93

 19. Islam MJ, Mahin M, Roy S, Debnath BC, Khatun A (2019) Distblacknet: a distributed secure black
sdn-iot architecture with nfv implementation for smart cities. 2019 International Conference on
Electrical. Computer and Communication Engineering (ECCE), IEEE, 1–6

 20. Jalali R, El-Khatib K, McGregor C (2015) Smart city architecture for community level services
through the internet of things. In: 2015 18th International Conference on Intelligence in Next Gen-
eration Networks, IEEE, 108–113

 21. Jiang JR (2018) An improved cyber-physical systems architecture for industry 4.0 smart factories.
Adv Mech Eng 10(6):1687814018784192

14844 D. Tripathi et al.

1 3

 22. Kargl F, Klenk A, Schlott S, Weber M (2004) Advanced detection of selfish or malicious nodes
in ad hoc networks. In: European workshop on security in Ad-hoc and sensor networks, Springer,
152–165

 23. Keshtkarjahromi Y (2021) Method and system that determine malicious nodes in a distributed
computation network. US Patent App. 17/069,077

 24. Kiczales G, Lamping J, Mendhekar A, Maeda C, Lopes C, Loingtier JM, Irwin J (1997) Aspect-
oriented programming. In: European Conference on Object-Oriented Programming, Springer,
220–242

 25. Lawal BH, Nuray A (2018) Real-time detection and mitigation of distributed denial of service
(ddos) attacks in software defined networking (sdn). In: 2018 26th Signal Processing and Com-
munications Applications Conference (SIU), IEEE, 1–4

 26. Lee J, Bagheri B, Kao HA (2015) A cyber-physical systems architecture for industry 4.0-based
manufacturing systems. Manuf Lett 3:18–23

 27. Lee J, Azamfar M, Singh J (2019) A blockchain enabled cyber-physical system architecture for
industry 4.0 manufacturing systems. Manuf Lett 20:34–39

 28. Lee JY, Woo JS, Rhee SW (1998) A transformed quantile-quantile plot for normal and bimodal
distributions. J Inf Opti Sci 19(3):305–318

 29. Leitão P, Colombo AW, Karnouskos S (2016) Industrial automation based on cyber-physical sys-
tems technologies: prototype implementations and challenges. Comput Ind 81:11–25

 30. Lin CL, Chen JK, Ho HH (2021) Bim for smart hospital management during covid-19 using
mcdm. Sustainability 13(11):6181

 31. Liu J, Li Y, Chen M, Dong W, Jin D (2015) Software-defined internet of things for smart urban
sensing. IEEE Commun Mag 53(9):55–63

 32. Liu J, Zhang W, Ma T, Tang Z, Xie Y, Gui W, Niyoyita JP (2020) Toward security monitoring of
industrial cyber-physical systems via hierarchically distributed intrusion detection. Expert Syst
Appl 158:113578

 33. Liu Y, Kuang Y, Xiao Y, Xu G (2017) Sdn-based data transfer security for internet of things.
IEEE Internet Things J 5(1):257–268

 34. Maurya AK, Tripathi D, Biswas A, Tripathi AK (2018) Design issues in distributed software.
2018 Fifth International Conference on Parallel. Distributed and grid Computing (PDGC), IEEE,
563–567

 35. Moraitis G, Nikolopoulos D, Bouziotas D, Lykou A, Karavokiros G, Makropoulos C (2020)
Quantifying failure for critical water infrastructures under cyber-physical threats. J Environ Eng
146(9):04020108

 36. Mozafari SH, Meyer BH (2016) Efficient performance evaluation of multi-core simt processors
with hot redundancy. IEEE Trans Emerg Top Comput 6(4):498–510

 37. Pari SMA, Noormohammadpour M, Salehi MJ, Khalaj BH, Bagheri H, Katz M (2013) A self-
organizing approach to malicious detection in leader-based mobile ad-hoc networks. In: 2013
IFIP wireless days (WD), IEEE, 1–3

 38. Parsamehr R, Esfahani A, Mantas G, Radwan A, Mumtaz S, Rodriguez J, Martínez-Ortega JF
(2019) A novel intrusion detection and prevention scheme for network coding-enabled mobile
small cells. IEEE Trans Comput Soc Syst 6(6):1467–1477

 39. Rahman MU (2019) Leader election in the internet of things: challenges and opportunities. arXiv
preprint arXiv: 19110 0759

 40. Rrushi J, Farhangi H, Howey C, Carmichael K, Dabell J (2015) A quantitative evaluation of
the target selection of havex ics malware plugin. In: Industrial control system security (ICSS)
workshop

 41. Şahin S, Gedik B (2018) C-stream: a co-routine-based elastic stream processing engine. ACM Trans
Parallel Comput (TOPC) 4(3):1–27

 42. Satam S, Satam P, Pacheco J, Hariri S (2021) Security framework for smart cyber infrastructure.
Cluster Comput, 1–12

 43. Sengan S, Subramaniyaswamy V, Nair SK, Indragandhi V, Manikandan J, Ravi L (2020) Enhancing
cyber-physical systems with hybrid smart city cyber security architecture for secure public data-
smart network. Future Gener Comput Syst 112:724–737

 44. Singh P, Tripathi AK (2012) Exploring problems and solutions in estimating testing effort for non
functional requirement. Int J Comput Technol 3(2b):284–290

 45. Stroustrup B, Shopiro JE (1984) A set of C++ classes for co-routine style programming. AT & T
bell laboratories

http://arxiv.org/abs/191100759

14845

1 3

An integrated approach of designing functionality with security…

 46. Tao M, Zuo J, Liu Z, Castiglione A, Palmieri F (2018) Multi-layer cloud architectural model and
ontology-based security service framework for iot-based smart homes. Future Gener Comput Syst
78:1040–1051

 47. Tripathi D, Maurya AK, Chaturvedi A, Tripathi AK (2019) A study of security modeling techniques
for smart systems. 2019 International Conference on Machine Learning. Big Data, Cloud and Paral-
lel Computing (COMITCon), IEEE, 87–92

 48. Tripathi D, Singh LK, Tripathi AK, Chaturvedi A (2021) Model based security verification of
cyber-physical system based on petrinet: a case study of nuclear power plant. Annals Nucl Energy
159:108306

 49. Tripathi D, Tripathi AK, Singh LK, Chaturvedi A (2021b) Towards analyzing the impact of intru-
sion prevention and response on cyber-physical system availability: a case study of npp. Annals of
Nucl Energy p 108863

 50. Vandana C (2016) Security improvement in iot based on software defined networking (sdn). Int J
Sci, Eng Technol Res (IJSETR) 5(1):2327–4662

 51. Walker-Roberts S, Hammoudeh M, Aldabbas O, Aydin M, Dehghantanha A (2020) Threats on
the horizon: understanding security threats in the era of cyber-physical systems. J Supercomput
76(4):2643–2664

 52. Wu Z, Li R, Zhou Z, Guo J, Jiang J, Su X (2020) A user sensitive subject protection approach for
book search service. J Assoc Inf Sci Technol 71(2):183–195

 53. Wu Z, Shen S, Lian X, Su X, Chen E (2020) A dummy-based user privacy protection approach for
text information retrieval. Knowl-Based Syst 195:105679

 54. Wu Z, Li G, Shen S, Lian X, Chen E, Xu G (2021) Constructing dummy query sequences to protect
location privacy and query privacy in location-based services. World Wide Web 24(1):25–49

 55. Yaacoub JPA, Salman O, Noura HN, Kaaniche N, Chehab A, Malli M (2020) Cyber-physical sys-
tems security: limitations, issues and future trends. Microprocess Microsyst 77:103201

 56. Zhang Y, Wang L, Sun W, Green RC II, Alam M (2011) Distributed intrusion detection system in a
multi-layer network architecture of smart grids. IEEE Trans Smart Grid 2(4):796–808

 57. Zhu Q, Rieger C, Başar T (2011) A hierarchical security architecture for cyber-physical systems. In:
2011 4th international symposium on resilient control systems, IEEE, 15–20

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

	An integrated approach of designing functionality with security for distributed cyber-physical systems
	Abstract
	1 Introduction
	2 Related work
	3 Attack scenario
	4 The proposed architectural model
	4.1 Formal description
	4.2 Layers responsibilities
	4.2.1 Sensor and actuation layer
	4.2.2 Controller layer
	4.2.3 Cyber layer
	4.2.4 Decision support layer

	4.3 Role of functionality and security leaders
	4.4 The proposed leader election algorithm
	4.4.1 Message type
	4.4.2 Leader election method
	4.4.3 Complexity analysis

	4.5 Resilience against cyber attacks

	5 Performance evaluation of the proposed architectural model
	5.1 Case study
	5.2 Performance evaluation

	6 Conclusion and future work
	References

