Skip to main content
Log in

Exact assessment of the super \(P_k\)-connectivity for the crossed cube interconnection network

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

A network is connected if there exists a path between any two distinct vertices. The vertex-connectivity of any connected network is the cardinality of its minimum vertex-cut. Then, a network is super connected if every of its minimum vertex-cuts always consists of a certain vertex’s neighborhood. Kung and Lin (Discret Appl Math 293: 143–156, 2021) recently defined the notion of the super cluster-connectivity as a novel, generalized measure to quantify a network’s connectedness level. This article is dedicated to establishing a deep analysis on the exact formula of super path-connectivity for the crossed cube interconnection network. Accordingly, a sufficient and necessary condition is presented to classify whether or not crossed cubes can be super path-connected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Dally WJ, Towles B (2004) Principles and practices of interconnection networks. Morgan Kaufmann, San Francisco

    Google Scholar 

  2. Duato J, Yalamanchili S, Ni L (2002) Interconnection networks: an engineering approach. Morgan Kaufmann, San Francisco

    Google Scholar 

  3. NASA: Pleiades Supercomputer. https://www.nas.nasa.gov/hecc/resources/pleiades.html (2021)

  4. Deng Y, Guo M, Ramos AF, Huang X, Xu Z, Liu W (2020) Optimal low-latency network topologies for cluster performance enhancement. J Supercomput 76(12):9558–9584

    Article  Google Scholar 

  5. Hsu L-H, Lin C-K (2008) Graph Theory and Interconnection Networks. CRC Press, Boca Raton/London/New York

    Book  MATH  Google Scholar 

  6. Xu J-M (2001) Topological structure and analysis of interconnection networks. Kluwer Academic Publishers, Dordrecht/Boston/London

    Book  MATH  Google Scholar 

  7. TOP500.org: The 58th annual edition of the TOP500. https://www.top500.org/ (2021)

  8. Bistouni F, Jahanshahi M (2014) Improved extra group network: a new fault-tolerant multistage interconnection network. J Supercomput 69(1):161–199

    Article  Google Scholar 

  9. Bistouni F, Jahanshahi M (2015) Pars network: a multistage interconnection network with fault-tolerance capability. J Parallel Distrib Comput 75:168–183

    Article  Google Scholar 

  10. Abedini R, Ravanmehr R (2020) Parallel sen: a new approach to improve the reliability of shuffle-exchange network. J Supercomput 76(12):10319–10353

    Article  Google Scholar 

  11. Prakash A, Yadav DK (2019) Design and reliability analysis of fault-tolerant shuffle exchange gamma logical neighborhood interconnection network. J Supercomput 75(12):7934–7951

    Article  Google Scholar 

  12. Arabnia HR, Oliver MA (1987) A transputer network for the arbitrary rotation of digitised images. Comput J 30:425–432

    Article  Google Scholar 

  13. Arabnia HR, Oliver MA (1989) A transputer network for fast operations on digitised images. Int J Eurogr Assoc (Comput Graphs Forum) 8:3–11

    Google Scholar 

  14. Bhandarkar SM, Arabnia HR (1995) The hough transform on a reconfigurable multi-ring network. J Parallel Distrib Comput 24:107–114

    Article  Google Scholar 

  15. Bhandarkar SM, Arabnia HR, Smith JW (1995) A reconfigurable architecture for image processing and computer vision. Int J Pattern Recognit Artif Intell 9:201–229

    Article  Google Scholar 

  16. Bhandarkar SM, Arabnia HR (1995) The refine multiprocessor: theoretical properties and algorithms. Parallel Comput 21:1783–1805

    Article  Google Scholar 

  17. Valafar H, Arabnia HR, Williams G (2004) Distributed global optimization and its development on the multiring network. Neural Parallel Sci Comput 12(4):465–490

    MathSciNet  MATH  Google Scholar 

  18. Imani M, Joudaki M, Arabnia HR, Mazhari N (2017) A survey on asynchronous quorum-based power saving protocols in multi-hop networks. J Inf Process Syst 13(6):1436–1458

    Google Scholar 

  19. Arabnia HR (1990) A parallel algorithm for the arbitrary rotation of digitized images using process-and-data-decomposition approach. J Parallel Distrib Comput 10:188–192

    Article  Google Scholar 

  20. Arabnia HR, Bhandarkar SM (1996) Parallel stereocorrelation on a reconfigurable multi-ring network. J Supercomput 10:243–269

    Article  MATH  Google Scholar 

  21. Arabnia HR (1996) Distributed stereo-correlation algorithm. Comput Commun 19:707–711

    Article  Google Scholar 

  22. Wani MA, Arabnia HR (2003) Parallel edge-region-based segmentation algorithm targeted at reconfigurable multiring network. J Supercomput 25:43–62

    Article  MATH  Google Scholar 

  23. Bondy JA, Murty USR (2008) Graph Theory. Springer, London

    Book  MATH  Google Scholar 

  24. Cheng E, Lipman MJ, Park HA (2001) Super connectivity of star graphs, alternating group graphs and split-stars. Ars Comb 59:107–116

    MathSciNet  MATH  Google Scholar 

  25. Esfahanian AH (1989) Generalized measures of fault tolerance with application to \(n\)-cube networks. IEEE Trans Comput 38(11):1586–1591

    Article  Google Scholar 

  26. Ma M, Liu G, Xu J-M (2008) The super connectivity of augmented cubes. Inf Process Lett 106:59–63

    Article  MathSciNet  MATH  Google Scholar 

  27. Ma M, Zhu L (2011) The super connectivity of exchanged hypercubes. Inf Process Lett 111:360–364

    Article  MathSciNet  MATH  Google Scholar 

  28. Xu J-M, Xu M, Zhu Q (2005) The super connectivity of shuffle-cubes. Inf Process Lett 96:123–127

    Article  MathSciNet  MATH  Google Scholar 

  29. Yang M-C (2012) Super connectivity of balanced hypercubes. Appl Math Comput 219:970–975

    MathSciNet  MATH  Google Scholar 

  30. Zhu Q, Xu J-M, Hou X-M, Xu X (2007) On reliability of the folded hypercubes. Inf Sci 177:1782–1788

    Article  MathSciNet  MATH  Google Scholar 

  31. Bossard A, Kaneko K (2020) Cluster-fault tolerant routing in a torus. Sensors 20(11):1–17

    Article  Google Scholar 

  32. Gu Q-P, Peng S (1996) An efficient algorithm for node-to-node routing in hypercubes with faulty clusters. Comput J 39:14–19

    Article  Google Scholar 

  33. Gu Q-P, Peng S (1997) \(k\)-pairwise cluster fault tolerant routing in hypercubes. IEEE Trans Comput 46:1042–1049

    Article  MathSciNet  Google Scholar 

  34. Gu Q-P, Peng S (1998) Node-to-set and set-to-set cluster fault tolerant routing in hypercubes. Parallel Comput 24:1245–1261

    Article  MathSciNet  Google Scholar 

  35. Kung T-L, Lin C-K (2021) Cluster connectivity of hypercube-based networks under the super fault-tolerance condition. Discret Appl Math 293:143–156

    Article  MathSciNet  MATH  Google Scholar 

  36. Efe K (1992) The crossed cube architecture for parallel computing. IEEE Trans Parallel Distrib Syst 3:513–524

    Article  Google Scholar 

  37. Chang C-P, Sung T-Y, Hsu L-H (2000) Edge congestion and topological properties of crossed cubes. IEEE Trans Parallel Distrib Syst 11(1):64–80

    Article  Google Scholar 

  38. Chen H-C, Kung T-L, Hsu L-H (2011) Embedding a hamiltonian cycle in the crossed cube with two required vertices in the fixed positions. Appl Math Comput 217:10058–10065

    MathSciNet  MATH  Google Scholar 

  39. Chen H-C, Kung T-L, Hsu L-Y (2015) 2-disjoint-path-coverable panconnectedness of crossed cubes. J Supercomput 71:2767–2782

    Article  Google Scholar 

  40. Chen H-C (2018) The panpositionable panconnectedness of crossed cubes. J Supercomput 74(6):2638–2655

    Article  Google Scholar 

  41. Kung T-L, Chen H-C (2018) Optimizing hamiltonian panconnectedness for the crossed cube architecture. Appl Math Comput 331:287–296

    MathSciNet  MATH  Google Scholar 

  42. Pan Z, Cheng D (2020) Structure connectivity and substructure connectivity of the crossed cube. Theor Comput Sci 824–825:67–80

    Article  MathSciNet  MATH  Google Scholar 

  43. Yang M-C, Li T-K, Tan JJM, Hsu L-H (2003) Fault-tolerant cycle embedding of crossed cubes. Inf Process Lett 88:149–154

    Article  MathSciNet  MATH  Google Scholar 

  44. Hung C-N, Lin C-K, Lin L-H, Cheng E, Lipták L (2017) Strong fault-hamiltonicity for the crossed cube and its extensions. Parallel Process Lett 27(2):1750005

    Article  MathSciNet  MATH  Google Scholar 

  45. Kulasinghe P (1997) Connectivity of the crossed cube. Inf Process Lett 61:221–226

    Article  MathSciNet  MATH  Google Scholar 

  46. Fábrega J, Fiol MA (1996) On the extraconnectivity of graphs. Discret Math 155:49–57

    Article  MathSciNet  MATH  Google Scholar 

  47. Chen Y-C, Tan JJM (2007) Restricted connectivity for three families of interconnection networks. Appl Math Comput 188(2):1848–1855

    MathSciNet  MATH  Google Scholar 

  48. Wang S, Ma X (2018) The \(g\)-extra connectivity and diagnosability of crossed cubes. Appl Math Comput 336:60–66

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported in part by the Ministry of Science and Technology, Taiwan, under Grant No. MOST 109-2221-E-468-009-MY2. The author would like to express the most immense gratitude to the anonymous referees and the editor for their constructive suggestions and efforts in improving the quality of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tzu-Liang Kung.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kung, TL. Exact assessment of the super \(P_k\)-connectivity for the crossed cube interconnection network. J Supercomput 78, 15857–15881 (2022). https://doi.org/10.1007/s11227-022-04494-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-022-04494-4

Keywords

Navigation