Skip to main content
Log in

Embedded connectivity of some BC networks

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

Many interconnection networks in large-scale parallel computing have hierarchical and recursive structures. The presence of vertex failures may disconnect the entire network, but every fault-free processor still lies in an undamaged sub-network, which is a smaller network with the same topological properties as the original one. For an n-dimensional recursive network \(G_{n}\), the h-embedded connectivity \(\zeta _{h}\) of \(G_{n}\) is the minimum number of vertices whose removal disconnects \(G_n\) and each vertex in the resulting network is contained in an h-dimensional undamaged sub-network. The bijective connection networks (BC networks for short) are a class of cube-based networks. They have recursive structures and contain many known networks, such as the hypercube, the Crossed cube, and the Möbius cube. This paper focuses on the structures of the Crossed cube and the Möbius cube. We prove that these two networks are generalized product graphs, using these results to determine the \(\zeta _{h}\) of them for \(h\le n-2\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability Statement

All data generated or analysed during this study are included in this published article.

References

  1. Akers SB, Krishnamurthy B (1989) A group-theoretic model for symmetric interconnection networks. IEEE Trans Comput 38(4):555–566

    Article  MathSciNet  MATH  Google Scholar 

  2. Bermond JC, Delorme C, Farhi G (1984) Large graphs with given degree and diameter. II. J Combin Theory Ser B 36:32–48

    Article  MathSciNet  MATH  Google Scholar 

  3. Chang C-P, Wu C-C (2009) Conditional fault diameter of crossed cubes. J Parallel Distrib Comput 69(1):91–99

    Article  MathSciNet  MATH  Google Scholar 

  4. Chang N-W, Hsieh S-Y (2013) 2,3-Extraconnectivities of hypercube-like networks. J Comput Syst Sci 79(5):669–688

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen H-C, Zou Y-H, Wang Y-L, Pai K-J (2017) A note on path embedding in crossed cubes with faulty vertices. Inf Process Lett 121:34–38

    Article  MathSciNet  MATH  Google Scholar 

  6. Cheng B, Fan J, Lyu Q, Zhou J, Liu Z (2018) Constructing independent spanning trees with height \(n\) on the \(n\)-dimensional crossed cube. Future Gener Comput Syst 87:404–415

    Article  Google Scholar 

  7. Cull P, Larson SM (1995) The Möbius cubes. IEEE Trans Comput 44(5):647–659

    Article  MathSciNet  MATH  Google Scholar 

  8. Efe K (1991) A variation on the hypercube with lower diameter. IEEE Trans Comput 40(11):1312–1316

    Article  Google Scholar 

  9. Efe K (1992) The crossed cube architecture for parallel computation. IEEE Trans Parallel Distrib Syst 3(5):513–524

    Article  Google Scholar 

  10. El-Amawy A, Latifi S (1991) Properties and performance of folded hypercubes. IEEE Trans Parallel Distrib Syst 2(1):31–42

    Article  Google Scholar 

  11. Esfahanian AH (1989) Generalized measures of fault tolerance with application to \(n\)-cube networks. IEEE Trans Comput 38(11):1586–1591

    Article  Google Scholar 

  12. Fàbrega J, Fiol MA (1996) On the extra connectivity of graphs. Discrete Math 155:49–57

    Article  MathSciNet  MATH  Google Scholar 

  13. Fan J (2002) Diagnosability of crossed cubes under the comparison diagnosis model. IEEE Trans Parallel Distrib Syst 13(7):687–692

    Article  Google Scholar 

  14. Fan J, He L (2003) BC interconnection networks and their properties. Chin J Comput 26(1):84–90

    MathSciNet  Google Scholar 

  15. Fan J, Jia X (2007) Edge-pancyclicity and path-embeddability of bijective connection graphs. Inform Sci 178(2):340–351

    Article  MathSciNet  MATH  Google Scholar 

  16. Fan J, Jia X, Liu X, Zhang S, Yu J (2011) Efficient unicast in bijective connection networks with the restricted faulty node set. Inform Sci 181(11):2303–2315

    Article  MathSciNet  MATH  Google Scholar 

  17. Fan J, Lin X, Jia X (2005) Optimal path embedding in crossed cubes. IEEE Trans Parallel Distrib Syst 16(12):1190–1200

    Article  Google Scholar 

  18. Harary F (1983) Conditional connectivity. Networks 13(3):347–357

    Article  MathSciNet  MATH  Google Scholar 

  19. Hilbers PAJ, Koopman MRJ, van de Snepscheut JLA (1987) The twisted cube. Lect Notes Comput Sci 258(1):152–159

    Article  Google Scholar 

  20. Hung R-W (2015) The property of edge-disjoint Hamiltonian cycles in transposition networks and hypercube-like networks. Discrete Appl Math 181:109–122

    Article  MathSciNet  MATH  Google Scholar 

  21. Kulasinghe P (1997) Connectivity of the crossed cube. Inf Process Lett 61(4):221–226

    Article  MathSciNet  MATH  Google Scholar 

  22. Latifi S, Hegde M, Naraghi-Pour M (1994) Conditional connectivity measures for large multiprocessor systems. IEEE Trans Comput 43(2):218–222

    Article  Google Scholar 

  23. Leighton FT (1992) Introduction to parallel algorithms and architecture: arrays, trees, hypercubes. Morgan Kaufman, San Mateo

    MATH  Google Scholar 

  24. Li P, Xu M (2019) Edge-fault-tolerant strong Menger edge connectivity on the class of hypercube-like networks. Discrete Appl Math 259:145–152

    Article  MathSciNet  MATH  Google Scholar 

  25. Li X-J, Dong Q-Q, Yan Z, Xu J-M (2016) Embedded connectivity of recursive networks. Theor Comput Sci 653:79–86

    Article  MathSciNet  MATH  Google Scholar 

  26. Li X-J, Xu J-M (2014) Generalized measures for fault tolerance of star networks. Networks 63(3):225–230

    Article  MathSciNet  MATH  Google Scholar 

  27. Niu R, Xu M (2022) The unpaired many-to-many \(k\)-disjoint paths in bipartite hypercube-like networks. Theor Comput Sci 911:26–40

    Article  MathSciNet  MATH  Google Scholar 

  28. Oh AD, Choi H (1993) Generalized measures of fault tolerance in \(n\)-cube networks. IEEE Trans Parallel Distrib Syst 4:702–703

    Article  Google Scholar 

  29. Pai K-J, Chang R-S, Chang J-M (2020) A protection routing with secure mechanism in Möbius cubes. J Parallel Distrib Comput 140:1–12

    Article  Google Scholar 

  30. Saad Y, Schultz MH (1988) Topological properties of hypercubes. IEEE Trans Comput 37(7):867–872

    Article  Google Scholar 

  31. Tan X, Yu S-Z, Park JH (2008) A note about some properties of BC graphs. Inf Process Lett 108(6):398–401

    Article  MathSciNet  MATH  Google Scholar 

  32. Tzeng N-F, Wei S (1991) Enhanced hypercubes. IEEE Trans Comput 40(3):284–294

    Article  Google Scholar 

  33. Vaidya AS, Rao PSN, Shankar SR (1993) A class of hypercube-like networks. In: Proceedings of the 5th symposium on parallel and distributed processing. IEEE Computer Soc. Los Alamitos, pp 800–803

  34. Wang D (2012) Constructing optimal subnetworks for the crossed cube network. Networks 60(2):86–93

    MathSciNet  MATH  Google Scholar 

  35. Wang S (2022) The diagnosability of Möbius cubes for the \(g\)-extra condition. Theor Comput Sci 908:76–88

    Article  MATH  Google Scholar 

  36. Wang S, Ma X (2018) The \(g\)-extra connectivity and diagnosability of crossed cubes. Appl Math Comput 336:60–66

    MathSciNet  MATH  Google Scholar 

  37. Wu J, Guo G (1998) Fault tolerance measures for \(m\)-ary \(n\)-dimensional hypercubes based on forbidden faulty sets. IEEE Trans Comput 47:888–893

    MathSciNet  MATH  Google Scholar 

  38. Xu J-M (2001) Topological structure and analysis of interconnection networks. Kluwer Academic Publishers, Dordrecht, Boston, London

    Book  MATH  Google Scholar 

  39. Xu M, Naik K, Thulasiraman K (2020) Fault tolerance of hypercube like networks: spanning laceability under edge faults. Theor Comput Sci 835:44–57

    Article  MathSciNet  MATH  Google Scholar 

  40. Yang W, Lin H (2014) Reliability evaluation of BC networks in terms of the extra vertex- and edge-connectivity. IEEE Trans Comput 63(10):2540–2548

    Article  MathSciNet  MATH  Google Scholar 

  41. Yang W, Lin H, Qin C (2013) On the \(t/k\)-diagnosability of BC networks. Appl Math Comput 225:366–371

    MathSciNet  MATH  Google Scholar 

  42. Yang Y (2021) Embedded connectivity of tenary \(n\)-cubes. Theor Comput Sci 871:121–125

    Article  MATH  Google Scholar 

  43. Yang Y, Wang S (2012) Conditional connectivity of star graph networks under embedded restriction. Inform Sci 199:187–192

    Article  MathSciNet  MATH  Google Scholar 

  44. Ye L, Liang J (2016) On conditional \(h\)-vertex connectivity of some networks. Chin J Electron 25(3):556–560

    Article  Google Scholar 

  45. Yuan J, Liu A, Qin X, Zhang J, Li J (2016) g-Good-neighbor conditional diagnosability measures for \(3\)-ary \(n\)-cube networks. Theor Comput Sci 626:144–162

    Article  MathSciNet  MATH  Google Scholar 

  46. Zhou J-X (2017) On \(g\)-extra connectivity of hypercube-like networks. J Comput Syst Sci 88:208–219

    Article  MathSciNet  MATH  Google Scholar 

  47. Zhu Q, Wang X-K, Cheng G (2013) Reliability evaluation of BC networks. IEEE Trans Comput 62(11):2337–2340

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank anonymous referees for their kind suggestions and corrections that helped improve the original manuscript.

Funding

This work was supported by National Natural Science Foundation of China (11871118, 62076039) and Shandong Provincial Natural Science Foundation (ZR2021MF012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang-Jun Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, YZ., Li, XJ. & Ma, M. Embedded connectivity of some BC networks. J Supercomput 78, 16605–16618 (2022). https://doi.org/10.1007/s11227-022-04522-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-022-04522-3

Keywords

Navigation