Skip to main content

Advertisement

Log in

Node-importance ranking in scale-free networks: a network metric response model and its solution algorithm

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

A new node-importance ranking model and its solution algorithm for scale-free networks are proposed. The general idea is as follows: first, we construct a node-importance ranking model targeting the fastest network collapse, which is identified by the maximal variation in integrated network metrics. We then combine the genetic algorithm and variable neighbourhood search and improve it in initial population generation, neighbourhood search, and fitness evaluation. Finally, we investigate the BA network and container-shipping network. By comparison, the proposed method demonstrates a 7.9 and 16.8% improvement in effectiveness over betweenness and degree, respectively, in the BA network. The above indexes come to 15.1 and 41.3% in the container-shipping network. Moreover, the proposed algorithm reveals an 8.1 and 6.3% improvement in effectiveness, and a 63.7 and 67.1% reduction in computation time in the two cases, respectively. The research sheds new lights on not only analytical methods of complex theory but also practical application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The data used to support the findings of this study are available from the corresponding author upon request.

References

  1. Barabasi AL, Albert R (1999) Emergence of scaling in random networks. Science 286:509–512. https://doi.org/10.1126/science.286.5439.509

    Article  MathSciNet  MATH  Google Scholar 

  2. Callaway DS, Newman MEJ, Strogatz SH, Watts DJ (2011) Network robustness and fragility: percolation on random graphs. Phys Rev Lett 85(25):510–513. https://doi.org/10.1515/9781400841356.510

    Article  Google Scholar 

  3. Aslan E, Çelik M (2019) Pre-positioning of relief items under road/facility vulnerability with concurrent restoration and relief transportation. IISE Trans 51:847–868. https://doi.org/10.1080/24725854.2018.1540900

    Article  Google Scholar 

  4. Fasino D, Tonetto A, Tudisco F (2021) Generating large scale-free networks with the chung-lu random graph model. Networks 78:174–187. https://doi.org/10.1002/net.22012

    Article  MathSciNet  Google Scholar 

  5. Ma F, Wang X, Wang P, Luo X (2020) Dense networks with scale-free feature. Phys Rev E 101:052317. https://doi.org/10.1103/physreve.101.052317

    Article  MathSciNet  Google Scholar 

  6. Alves C, Ribeiro R, Sanchis R (2016) Large communities in a scale-free network. J Stat Phys 166:137–149. https://doi.org/10.1007/s10955-016-1676-8

    Article  MathSciNet  MATH  Google Scholar 

  7. Krasnytska M, Berche B, Holovatch Y, Kenna R (2021) Generalized Ising model on a scale-free network: An interplay of power laws. Entropy 23:1175. https://doi.org/10.3390/e23091175

    Article  MathSciNet  Google Scholar 

  8. Gao J, Barzel B, Barabási AL (2016) Universal resilience patterns in complex networks. Nature 530:307–312. https://doi.org/10.1038/nature16948

    Article  Google Scholar 

  9. Zhang Y, Shao C, He S, Gao J (2020) Resilience centrality in complex networks. Phys Rev E 101:022304. https://doi.org/10.1103/physreve.101.022304

    Article  MathSciNet  Google Scholar 

  10. Fu G, Wilkinson S, Dawson RJ et al (2018) Integrated approach to assess the resilience of future electricity infrastructure networks to climate hazards. IEEE Syst J 12:3169–3180. https://doi.org/10.1109/jsyst.2017.2700791

    Article  Google Scholar 

  11. O’Kelly ME (2014) Network Hub Structure and resilience. Netw Spat Econ 15(2):235–251. https://doi.org/10.1007/s11067-014-9267-1

    Article  MathSciNet  Google Scholar 

  12. Chattopadhyay S, Dai H, Young ED (2020) Maximization of robustness of interdependent networks under budget constraints. IEEE Trans Netw Sci Eng. 7(3):1441–1452. https://doi.org/10.1109/tnse.2019.2935068

    Article  MathSciNet  Google Scholar 

  13. Zhong J, Sanhedrai H, Zhang FM et al (2020) Network endurance against cascading overload failure. Reliab Eng Syst Saf 201:106916. https://doi.org/10.1016/j.ress.2020.106916

    Article  Google Scholar 

  14. Xu Z, Julius AA, Chow JH (2018) Robust testing of cascading failure mitigations based on power dispatch and quick-start storage. IEEE Syst J 12:3063–3074. https://doi.org/10.1109/jsyst.2017.2686401

    Article  Google Scholar 

  15. Fu X, Yang Y, Postolache O (2019) Invulnerability of clustering wireless sensor networks against cascading failures. IEEE Syst J 13:1431–1442. https://doi.org/10.1109/jsyst.2018.2849779

    Article  Google Scholar 

  16. Hu S, Li G (2020) TMSE: a topology modification strategy to enhance the robustness of scale-free wireless sensor networks. Comput Commun 157:53–63. https://doi.org/10.1016/j.comcom.2020.04.007

    Article  Google Scholar 

  17. Strisciuglio N, Lopez-Antequera M, Petkov N (2020) Enhanced robustness of convolutional networks with a push–pull inhibition layer. Neural Comput Appl 32:17957–17971. https://doi.org/10.1007/s00521-020-04751-8

    Article  Google Scholar 

  18. Chiou SW (2020) A resilience-based signal control for a time-dependent road network with hazmat Transportation. Reliab Eng Syst Saf 193:106570. https://doi.org/10.1016/j.ress.2019.106570

    Article  Google Scholar 

  19. Faramondi L, Oliva G, Panzieri S et al (2019) Network structural vulnerability: a multiobjective attacker perspective. IEEE Trans Sys Man Cybern-Syst 49:2036–2049. https://doi.org/10.1109/tsmc.2018.2790438

    Article  Google Scholar 

  20. Shooshtarian L, Safaei F (2019) A maximally robustness embedding algorithm in virtual data centers with multi-attribute node ranking based on Topsis. J Supercomput 75:8059–8093. https://doi.org/10.1007/s11227-019-02981-9

    Article  Google Scholar 

  21. Qiao T, Shan W, Yu G, Liu C (2018) A novel entropy-based centrality approach for identifying vital nodes in weighted networks. Entropy 20:261. https://doi.org/10.3390/e20040261

    Article  Google Scholar 

  22. Brandes U (2001) A faster algorithm for betweenness centrality. J Math Sociol 25:163–177. https://doi.org/10.1080/0022250x.2001.9990249

    Article  MATH  Google Scholar 

  23. Jalili M (2011) Error and attack tolerance of small-worldness in complex networks. J Informetr 5:422–430. https://doi.org/10.1016/j.joi.2011.03.002

    Article  Google Scholar 

  24. Bellingeri M, Cassi D, Vincenzi S (2014) Efficiency of attack strategies on complex model and real-world networks. Phys A 414:174–180. https://doi.org/10.1016/j.physa.2014.06.079

    Article  Google Scholar 

  25. Fu CQ, Wang Y, Wang XY, Gao YJ (2018) Multi-node attack strategy of complex networks due to cascading breakdown. Chaos Solitons Fractals 106:61–66. https://doi.org/10.1016/j.chaos.2017.11.009

    Article  MathSciNet  MATH  Google Scholar 

  26. Schneider CM, Moreira AA, Andrade JS et al (2011) Mitigation of malicious attacks on networks. Proc Natl Acad Sci U S A 108:3838–3841. https://doi.org/10.1073/pnas.1009440108

    Article  Google Scholar 

  27. Nie T, Guo Z, Zhao K, Lu ZM (2015) New attack strategies for complex networks. Phys A 424:248–253. https://doi.org/10.1016/j.physa.2015.01.004

    Article  Google Scholar 

  28. Costa LD, Rodrigues FA, Travieso G, Villas Boas PR (2007) Characterization of complex networks: a survey of measurements. Adv Phys 56:167–242. https://doi.org/10.1080/00018730601170527

    Article  Google Scholar 

  29. Wang N, Wu N, Dong LL et al (2016) A study of the temporal robustness of the growing global container-shipping network. Sci Rep 6:3421. https://doi.org/10.1038/srep34217

    Article  Google Scholar 

  30. Yu A, Wang N, Wu N (2021) Scale-free networks: Characteristics of the time-variant robustness and vulnerability. IEEE Syst J 15:4082–4092. https://doi.org/10.1109/jsyst.2020.3022169

    Article  Google Scholar 

  31. Schölkopf B, Smola A, Müller KR (1998) Nonlinear component analysis as a kernel eigenvalue problem. Neural Comput 10:1299–1319. https://doi.org/10.1162/089976698300017467

    Article  Google Scholar 

  32. Choi SW, Lee C, Lee JM et al (2005) Fault detection and identification of nonlinear processes based on kernel PCA. Chemom Intell Lab Syst 75:55–67. https://doi.org/10.1016/j.chemolab.2004.05.001

    Article  Google Scholar 

  33. Cho JH, Lee JM, Sang WC et al (2005) Fault identification for process monitoring using kernel principal component analysis. Chem Eng Sci 60:279–288. https://doi.org/10.1016/j.ces.2004.08.007

    Article  Google Scholar 

  34. Cochran JK, Horng SM, Fowler JW (2003) A multi-population genetic algorithm to solve multi-objective scheduling problems for parallel machines. Comput Oper Res 30:1087–1102. https://doi.org/10.1016/s0305-0548(02)00059-x

    Article  MathSciNet  MATH  Google Scholar 

  35. Fan X, Hu S, He J (2017) A target recognition method for maritime surveillance radars based on hybrid ensemble selection. Int J Syst Sci 48:3334–3345. https://doi.org/10.1080/00207721.2017.1381283

    Article  MATH  Google Scholar 

  36. Lai X, Hao JK, Fu ZH, Yue D (2021) Neighborhood decomposition-driven variable neighborhood search for capacitated clustering. Comput Oper Res 134:105362. https://doi.org/10.1016/j.cor.2021.105362

    Article  MathSciNet  MATH  Google Scholar 

  37. Friedrich C, Elbert R (2022) Adaptive Large neighborhood search for vehicle routing problems with transshipment facilities arising in City Logistics. Comput Oper Res 137:105491. https://doi.org/10.1016/j.cor.2021.105491

    Article  MathSciNet  MATH  Google Scholar 

  38. Luo Y, Pan Y, Li C, Tang H (2020) A hybrid algorithm combining genetic algorithm and variable neighborhood search for process sequencing optimization of large-size problem. Int J Comput Integr Manuf 33:962–981. https://doi.org/10.1080/0951192x.2020.1780318

    Article  Google Scholar 

  39. Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6:182–197. https://doi.org/10.1109/4235.996017

    Article  Google Scholar 

  40. Deng Y, Wu J, Tan YJ (2016) Optimal attack strategy of complex networks based on Tabu Search. Phys A 442:74–81. https://doi.org/10.1016/j.physa.2015.08.043

    Article  MathSciNet  MATH  Google Scholar 

  41. Earnest DC, Yetiv S, Carmel SM (2012) Contagion in the transpacific shipping network: international networks and vulnerability interdependence. Int Interact 38:571–596. https://doi.org/10.1080/03050629.2012.726151

    Article  Google Scholar 

  42. Ducruet C (2017) Multilayer dynamics of complex spatial networks: the case of global maritime flows (1977–2008). J Transp Geogr 60:47–58. https://doi.org/10.1016/j.jtrangeo.2017.02.007

    Article  Google Scholar 

  43. Busan Port Authority (2017) Container statistics of Busan Port, Busan

  44. China’s National Bureau of Statistics (2017) China Port Yearbook, China

  45. Shooshtarian L, Safaei F (2020) A maximally robustness embedding algorithm in virtual data centers with multi-attribute node ranking based on Topsis. J Supercomput 75:8059–8093. https://doi.org/10.1007/s11227-019-02981-9

    Article  Google Scholar 

  46. Bahutair M, Al Aghbari Z, Kamel I (2022) NodeRank: finding influential nodes in social networks based on interests. J Supercomput 78:2098–2124. https://doi.org/10.1007/s11227-021-03947-6

    Article  Google Scholar 

Download references

Funding

This work was supported by National Natural Science Foundation of China [Grant number: 72174034] and National Social Science Foundation of China [Grant number: 20&ZD070].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nuo Wang.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, A., Wang, N. Node-importance ranking in scale-free networks: a network metric response model and its solution algorithm. J Supercomput 78, 17450–17469 (2022). https://doi.org/10.1007/s11227-022-04544-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-022-04544-x

Keywords

Navigation