Skip to main content

Advertisement

Log in

Energy-aware allocation for delay-sensitive multitask in mobile edge computing

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

With lower network latency and powerful hardware, mobile edge computing (MEC) is effective for computation-intensive and delay-sensitive tasks. The rising energy and low-latency demands of mobile applications for MEC pose challenges to task allocation. In this work, we consider computation offloading in MEC that is composed of a set of mobile devices, each with multiple tasks to offload to a nearby MEC server, with both single and multiple access points (APs). With multiple APs deployed, each mobile device can directly communicate with one or more APs, and their tasks can offload to different MEC servers that are within direct communication range. By considering binary computation offloading mode and limited subchannels, we formulate the multitask allocation problem as an integer programming problem, with the objective of minimizing the total energy consumption of all mobile devices while meeting deadline requirements. To solve this complicated problem, we propose efficient algorithms for single and multiple APs, and analyze related properties, including the approximation ratio and complexity. Experiments show that the algorithm can find high-quality solutions in a short time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Availability of data and materials

The datasets used or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Chunlin L, Zhang J (2020) Dynamic cooperative caching strategy for delay-sensitive applications in edge computing environment. J Supercomput 76:7549–7618

    Google Scholar 

  2. Mao Y, You C, Zhang J, Huang K, Letaief KB (2017) A survey on mobile edge computing: the communication perspective. IEEE Commun Surv Tutor 19(4):2322–2358

    Google Scholar 

  3. Wang F, Xing H, Xu J (2020) Real-time resource allocation for wireless powered multiuser mobile edge computing with energy and task causality. IEEE Trans Commun 68(11):7140–7155

    Google Scholar 

  4. Kai C, Zhou H, Yi Y, Huang W (2021) Collaborative cloud-edge-end task offloading in mobile-edge computing networks with limited communication capability. IEEE Trans Cogn Commun Netw 7(2):624–634

    Google Scholar 

  5. Zhou F, Hu QR (2020) Computation efficiency maximization in wireless-powered mobile edge computing networks. IEEE Trans Wirel Commun 19(5):3170–3184

    Google Scholar 

  6. Caprara A, Kellerer H, Pferschy U, Pisinger D (2000) Approximation algorithms for knapsack problems with cardinality constraints. Eur J Oper Res 123(2):333–345

    MathSciNet  MATH  Google Scholar 

  7. Keller H, Pferschy U, Pisinger D (2004) Knapsack problems. Springer, Berlin

    MATH  Google Scholar 

  8. Chandra AK, Chandra DS, Wong CK (1976) Approximate algorithms for some generalized knapsack problems. Theor Comput Sci 3(3):293–304

    MathSciNet  MATH  Google Scholar 

  9. Zhan W, Luo C, Min WC, Zhu Q, Duan H (2020) Mobility-aware multi-user offloading optimization for mobile edge computing. IEEE Trans Veh Technol 69(3):3341–3356

    Google Scholar 

  10. Huang J, Li S, Chen Y (2020) Revenue-optimal task scheduling and resource management for IoT batch jobs in mobile edge computing. Peer-to-Peer Netw Appl 13:1776–1787

    Google Scholar 

  11. Chen X (2015) Decentralized computation offloading game for mobile cloud computing. IEEE Trans Parallel Distrib Syst 26(4):974–983

    Google Scholar 

  12. Chen X, Jiao L, Li W, Fu X (2016) Efficient multi-user computation offloading for mobile-edge cloud computing. IEEE/ACM Trans Netw 24(5):2795–2808

    Google Scholar 

  13. Liu Y, Lee JM, Zheng Y (2016) Adaptive multi-resource allocation for cloudlet-based mobile cloud computing system. IEEE Trans Mob Comput 15(10):2398–2410

    Google Scholar 

  14. Lyu X, Ni W, Tian H, Liu PR, Wang X, Giannakis BG, Paulraj A (2017) Optimal schedule of mobile edge computing for internet of things using partial information. IEEE J Sel Areas Commun 35(11):2606–2615

    Google Scholar 

  15. Wang F, Xu J, Wang X, Cui S (2018) Joint offloading and computing optimization in wireless powered mobile-edge computing systems. IEEE Trans Wirel Commun 17(3):1784–1797

    Google Scholar 

  16. Chen M, Hao Y (2018) Task offloading for mobile edge computing in software defined ultra-dense network. IEEE J Sel Areas Commun 36(3):587–597

    Google Scholar 

  17. Lyu X, Tian H, Ni W, Zhang Y, Zhang P (2018) Energy-efficient admission of delay-sensitive tasks for mobile edge computing. IEEE Trans Commun 66(6):2603–2616

    Google Scholar 

  18. Chen Y, Zhang Y, Wu Y, Qi L, Chen X, Shen X (2020) Joint task scheduling and energy management for heterogeneous mobile edge computing with hybrid energy supply. IEEE Internet Things J 7(9):8419–8429

    Google Scholar 

  19. Zhang Y, Lan X, Ren J, Cai L (2020) Efficient computing resource sharing for mobile edge-cloud computing networks. IEEE/ACM Trans Netw 8(3):1227–1240

    Google Scholar 

  20. Chen Y, Li Z, Yang B, Nai K, Li K (2020) A stackelberg game approach to multiple resources allocation and pricing in mobile edge computing. Futur Gener Comput Syst 108:273–287

    Google Scholar 

  21. Liu X, Liu J (2021) Truthful double auction mechanism for multi-resource allocation in crowd sensing systems. IEEE Trans Serv Comput. https://doi.org/10.1109/TSC.2021.3075541

    Article  Google Scholar 

  22. Chen X, Zhang J, Liu B, Chen Z, Wolter K, Min G (2022) Energy-efficient offloading for DNN-based smart IoT systems in cloud-edge environments. IEEE Trans Parallel Distrib Syst 33(3):683–697

    Google Scholar 

  23. Apostolopoulos AP, Tsiropoulou EE, Papavassiliou S (2020) Risk-aware data offloading in multi-server multi-access edge computing environment. IEEE/ACM Trans Netw 28(3):1405–1418

    Google Scholar 

  24. Hao Y, Chen M, Hu L, Hossain MS, Ghoneim A (2018) Energy efficient task caching and offloading for mobile edge computing. IEEE Access 6:11365–11373

    Google Scholar 

  25. Wang K, Yang K, Magurawalage CS (2018) Joint energy minimization and resource allocation in C-RAN with mobile cloud. IEEE Trans Cloud Comput 6(3):760–770

    Google Scholar 

  26. Kang J, Yu R, Huang X, Wu M, Maharjan S, Xie S, Zhang Y (2019) Blockchain for secure and efficient data sharing in vehicular edge computing and networks. IEEE Internet Things J 6(3):4660–4670

    Google Scholar 

  27. Merluzzi M, Lorenzo PD, Barbarossa S, Frascolla V (2020) Dynamic computation offloading in multi-access edge computing via ultra-reliable and low-latency communications. IEEE Trans Signal Inf Process Netw 6:342–356

    MathSciNet  Google Scholar 

  28. Bozorgchenani A, Mashhadi F, Tarchi D, Monroy SAS (2021) Multi-objective computation sharing in energy and delay constrained mobile edge computing environments. IEEE Trans Mob Comput 20(10):2992–3005

    Google Scholar 

  29. Bai Y, Chen L, Song L, Xu J (2020) Risk-aware edge computation offloading using bayesian stackelberg game. IEEE Trans Netw Serv Manag 17(2):1000–1012

    Google Scholar 

  30. Xia J, Fan L, Ynag N, Deng Y, Duong TQ, Karagiannidis GK, Nallanathan A (2021) Opportunistic access point selection for mobile edge computing networks. IEEE Trans Wirel Commun 20(1):695–709

    Google Scholar 

  31. Park C, Lee J (2021) Mobile edge computing-enabled heterogeneous networks. IEEE Trans Wirel Commun 20(2):1038–1051

    Google Scholar 

  32. de Farias JIR, Nemhauser GL (2003) A polyhedral study of the cardinality constrained knapsack problem. Math Program 96:439–467

    MathSciNet  MATH  Google Scholar 

  33. Ghasemi T, Razzazi M (2011) Development of core to solve the multidimensional multiple-choice knapsack problem. Comput Ind Eng 60(2):349–360

    Google Scholar 

  34. Elgendy AT, Zhang W, Zeng Y, He H, Tian Y, Yang Y (2020) Efficient and secure multi-user multi-task computation offloading for mobile-edge computing in mobile IoT networks. IEEE Trans Netw Serv Manag 17(4):2410–2422

    Google Scholar 

  35. Chen M, Liang B, Dong M (2018) Multi-user multi-task offloading and resource allocation in mobile cloud systems. IEEE Trans Wirel Commun 17(10):6790–6805

    Google Scholar 

  36. Chen W, Wang D, Li K (2019) Multi-user multi-task computation offloading in green mobile edge cloud computing. IEEE Trans Serv Comput 12(6):726–738

    Google Scholar 

  37. Huang L, Feng X, Zhang L, Qian L, Wu Y (2019) Multi-server multi-user multi-task computation offloading for mobile edge computing networks. Sensors (Basel) 19(6):1446

    Google Scholar 

  38. Liu X, Liu J, Wu H (2021) Energy-efficient task allocation of heterogeneous resources in mobile edge computing. IEEE Access 9:119700–119711

    Google Scholar 

  39. Bai T, Pan C, Deng Y, Elkashlan M, Nallanathan A, Hanao L (2020) Latency minimization for intelligent reflecting surface aided mobile edge computing. IEEE J Sel Areas Commun 38(11):2666–2682

    Google Scholar 

  40. Khan AR, Othman M, Madani SA, Khan SU (2014) A survey of mobile cloud computing application models. IEEE Commun Surv Tutor 16(1):393–413

    Google Scholar 

  41. Lin X, Wang Y, Xie Q, Pedram M (2015) Task scheduling with dynamic voltage and frequency scaling for energy minimization in the mobile cloud computing environment. IEEE Trans Serv Comput 8(2):175–186

    Google Scholar 

  42. Garfinkel SR, Nemhauser LG (1972) Integer programming. Wiley, New York

    MATH  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Chinese Natural Science Foundation under Grant 11361048, in part by the Yunnan Natural Science Foundation under Grant 2017FH001-014, in part by the Yunnan Science Foundation under Grant 2019J0613, and in part by the Qujing Normal University Science Foundation under Grant ZDKC2016002.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Liu, J. & Wu, H. Energy-aware allocation for delay-sensitive multitask in mobile edge computing. J Supercomput 78, 16621–16646 (2022). https://doi.org/10.1007/s11227-022-04550-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-022-04550-z

Keywords

Navigation