Abstract
In the modern era, advances in CMOS technology have increased the number of transistors and the complexity of computations that can be performed on each chip. Due to the many limitations of this technology, to reduce the size of the chips to the nanotechnology level and to continue Moore’s law, the unique properties of quantum cellular automata have made it a candidate for future integrated circuits. Operational units such as logic and arithmetic units are the main components of processors, among which the operation of addition and subtraction is the most widely used arithmetic operator, and the design of redundant ternary adder without publishing the carry affects the performance of processors. The main aim of this paper is to design a redundant full adder and full subtractor by employing a carry and borrow bit generator module based on ternary QCA (TQCA) innovation. Based on this, the block diagram structure of the ternary redundant adder/subtractor-based TQCA circuit is presented, which includes a proposed new carry/borrow generator gate based on TQCA. The proposed full adder design has 423 ternary cells, area 0.09 µm2 and cost 647.19, and the full subtractor has 431 ternary cells, area 0.09 µm2 and cost 710.7. For validation, the circuits were simulated with the TQCAsim software. The results of this innovation show that the proposed architecture has significant advantages.






























Similar content being viewed by others
Data availability
Data will be made available on reasonable request.
References
Moore GE (1965) Cramming more components onto integrated circuits. Reprinted from Electronics 38(8):114. https://doi.org/10.1109/N-SSC.2006.4785860
Adan AO, Higashi K, Fukushima Y (1999) Analytical threshold voltage model for ultrathin SOI MOSFETs including short-channel and floating-body effects. IEEE Trans Electron Devices 46(4):729–737. https://doi.org/10.1109/16.753707
Chiang MH, Kim K, Chuang CT, Tretz C (2006) High-density reduced-stack logic circuit techniques using independent-gate controlled double-gate devices. IEEE Trans Electron Devices 53(9):2370–2377. https://doi.org/10.1109/TED.2006.881052
Bobba S, Hajj IN (1999) Maximum leakage power estimation for CMOS circuits. In Proceedings IEEE Alessandro Volta memorial workshop on low-power design (pp. 116–124). IEEE. https://doi.org/10.1109/LPD.1999.750412
Khouri KS, Jha NK (2002) Leakage power analysis and reduction during behavioral synthesis. IEEE Trans Very Large Scale Integr Syst 10(6):876–85. https://doi.org/10.1109/TVLSI.2002.808436
Moaiyeri MH, Doostaregan A, Navi K (2011) Design of energy-efficient and robust ternary circuits for nanotechnology. IET Circuits Devices Syst 5(4):285–296. https://doi.org/10.1049/iet-cds.2010.0340
Thompson SE, Parthasarathy S (2006) Moore’s law: the future of Si microelectronics. Mater Today 9(6):20–25. https://doi.org/10.1016/S1369-7021(06)71539-5
Abu El-Seoud AK, El-Banna M, Hakim MA (2007) On modelling and characterization of single electron transistor. Int J Electron 94(6):573–585. https://doi.org/10.1080/00207210701295061
Seminario JM, Derosa PA, Cordova LE, Bozard BH (2004) A molecular device operating at terahertz frequencies: theoretical simulations. IEEE Trans Nanotechnol 3(1):215–218. https://doi.org/10.1109/TNANO.2004.824012
Meng H, Wang J, Wang JP (2005) A spintronics full adder for magnetic CPU. IEEE Electron Device Lett 26(6):360–362. https://doi.org/10.1109/LED.2005.848129
Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354(6348):56–58. https://doi.org/10.1038/354056a0
Tougaw PD, Lent CS (1994) Logical devices implemented using quantum cellular automata. J Appl Phys 75(3):1818–1825. https://doi.org/10.1063/1.356375
Gorter CJ (1951) A possible explanation of the increase of the electrical resistance of thin metal films at low temperatures and small field strengths. Physica 17(8):777–780. https://doi.org/10.1016/0031-8914(51)90099-7
Fulton TA, Dolan GJ (1987) Observation of single-electron charging effects in small tunnel junctions. Phys Rev Lett 59(1):109. https://doi.org/10.1103/PhysRevLett.59.109
Zhuang L, Guo L, Chou SY (1998) Silicon single-electron quantum-dot transistor switch operating at room temperature. Appl Phys Lett 72(10):1205–1207. https://doi.org/10.1063/1.121014
Khademhosseini V, Dideban D, Ahmadi MT, Ismail R (2019) The impact of vacancy defects on the performance of a single-electron transistor with a carbon nanotube island. J Comput Electron 18(2):428–435. https://doi.org/10.1007/s10825-018-01290-3
Zhang R, Walus K, Wang W, Jullien GA (2004) A method of majority logic reduction for quantum cellular automata. IEEE Trans Nanotechnol 3(4):443–450. https://doi.org/10.1109/TNANO.2004.834177
Linn E, Rosezin R, Tappertzhofen S, Böttger U, Waser R (2012) Beyond von Neumann—logic operations in passive crossbar arrays alongside memory operations. Nanotechnology 23(30):305205. https://doi.org/10.1088/0957-4484/23/30/305205
Pershin YV, Di Ventra M (2011) Neuromorphic, digital, and quantum computation with memory circuit elements. Proc IEEE 100(6):2071–2080. https://doi.org/10.1109/JPROC.2011.2166369
Wu XW, Prosser FP (1990) CMOS ternary logic circuits. IEE Proc G-Circuits Devices Syst 137(1):21–27
Moaiyeri MH, Mirzaee RF, Doostaregan A, Navi K, Hashemipour O (2013) A universal method for designing low-power carbon nanotube FET-based multiple-valued logic circuits. IET Comput Digital Tech 7(4):167–181
Modi S, Tomar AS (2010) Logic gate implementations for quantum dot cellular automata. In 2010 International Conference on Computational Intelligence and Communication Networks, (pp 565–567), IEEE. https://doi.org/10.1109/CICN.2010.111
Mohaghegh SM, Sabbaghi-Nadooshan R, Mohammadi M (2018) Designing ternary quantum-dot cellular automata logic circuits based upon an alternative model. Comput Electr Eng 71:43–59. https://doi.org/10.1016/j.compeleceng.2018.07.001
Bajec IL, Zimic N, Mraz M (2006) The ternary quantum-dot cell and ternary logic. Nanotechnology 17(8):1937. https://doi.org/10.1088/0957-4484/17/8/023
Pecar P, Bajec IL (2011) The key elements of logic design in ternary quantum-dot cellular automata. In: Calude CS, Kari J, Petre I, Rozenberg G (eds) Unconventional computation. Springer, Berlin, pp 177–188. https://doi.org/10.1007/978-3-642-21341-0_21
Mohaghegh S, Sabbaghi-Nadooshan R (2018) Innovative model for ternary QCA gates. IET Circ Devices Syst 12(2):189–195. https://doi.org/10.1049/iet-cds.2017.0276
Pain P, Sadhu A, Das K, Kanjilal MR (2020) Physical proof and simulation of ternary logic gate in ternary quantum dot cellular automata. In: Maharatna K, Kanjilal MR, Konar SC, Nandi S, Das K (eds) Computational advancement in communication circuits and systems. Springer, Singapore, pp 375–385. https://doi.org/10.1007/978-981-13-8687-9_34
Mohammadi Mohaghegh S, Sabbaghi-Nadooshan R, Mohammadi M (2019) Design of a ternary QCA multiplier and multiplexer: a model-based approach. Analog Integr Circ Sig Process 101(1):23–29. https://doi.org/10.1007/s10470-019-01465-3
Bhoi BK, Misra NK, Pradhan M (2017) A universal reversible gate architecture for designing n-bit comparator structure in quantum-dot cellular automata. Int J Grid Distrib Comput 10(9):33–46. https://doi.org/10.14257/ijgdc.2017.10.9.03
Bubna M, Mazumdar S, Roy S, Mall R (2007) Designing cellular automata structures using quantum-dot cellular automata. In 14th Annual IEEE Internationsl Conference on High Perference Compufing. https://doi.org/10.1007/s10470-019-01465-3
Lakshmi SK (2010) Efficient design of logical structures and functions using nanotechnology based quantum dot cellular automata design. Int J Comput Appl 3:31–33. https://doi.org/10.5120/726-1019
Akbari-Hasanjani R, Sabbaghi-Nadooshan R, Tanhayi MR (2021) New polarization and power calculations with error elimination in ternary QCA. Comput Electr Eng 96:107557. https://doi.org/10.1016/j.compeleceng.2021.107557
Usha M, Dhare V (2017) Quantum-dot cellular automata (QCA): a survey. arXiv preprint arXiv:1711.08153. https://doi.org/10.48550/arXiv.1711.08153
Dysart TJ, Kogge PM(2008) System reliabilities when using triple modular redundancy in quantum-dot cellular automata. In 2008 IEEE International Symposium on defect and fault tolerance of VLSI systems, (pp 72–80), IEEE. https://doi.org/10.1109/DFT.2008.25
Ahmadpour SS, Mosleh M, Heikalabad SR (2020) An efficient fault-tolerant arithmetic logic unit using a novel fault-tolerant 5-input majority gate in quantum-dot cellular automata. Comput Electr Eng 1(82):106548
Navidi A, Sabbaghi-Nadooshan R, Dousti M (2021) TQCAsim: an accurate design and essential simulation tool for ternary logic quantum-dot cellular automata. Sci Iranica 0(0):0–0. https://doi.org/10.24200/sci.2021.53471.3256
Macucci M, Iannaccone G, Francaviglia S, Pellegrini B (2001) Semiclassical simulation of quantum cellular automaton circuits. Int J Circuit Theory Appl 29(1):37–47. https://doi.org/10.1002/1097-007X
Bajec IL, Mraz M (2005) Towards multi-state based computing using quantum-dot cellular automata. In: Teucher C, Adamatzky A (eds) Unconventional computing: from cellular automata to Wetware. Luniver Press, Beckington, pp 105–116
Tehrani MA, Bahrami S, Navi K (2014) A novel ternary quantum-dot cell for solving majority voter gate problem. Appl Nanosci 4(3):255–262. https://doi.org/10.1007/s13204-013-0208-y
Khan A, Arya R (2021) Optimal demultiplexer unit design and energy estimation using quantum dot cellular automata. J Supercomput 77(2):1714–1738. https://doi.org/10.1007/s11227-020-03320-z
Blair E, Lent C (2018) Clock topologies for molecular quantum-dot cellular automata. J Low Power Electron Appl 8(3):31. https://doi.org/10.3390/jlpea8030031
Huang J, Momenzadeh M, Schiano L, Ottavi M, Lombardi F (2015) Tile-based QCA design using majority-like logic primitives. ACM J Emerg Technol Comput Syst (JETC) 1(3):163–185. https://doi.org/10.1145/1116696.1116697
Shankar R (2020) Fundamentals of physics II: electromagnetism, optics, and quantum mechanics. Yale University Press, New Haven
McDermott LC (1984) Research on conceptual understanding in mechanics. Phys Today 37(7):24–32
Li B, Wang J, Ding G, Fu H, Lei B, Yang H, Bi J, Lei S (2021) A high-performance and low-cost montgomery modular multiplication based on redundant binary representation. IEEE Trans Circuits Syst II Express Briefs 68(7):2660–2664. https://doi.org/10.1109/tcsii.2021.3053630
He Y, Chang CH (2008) A power-delay efficient hybrid carry-lookahead/carry-select based redundant binary to two’s complement converter. IEEE Trans Circuits Syst I Regul Pap 55(1):336–346. https://doi.org/10.1109/tcsi.2007.913610
Abid Z, Wang W (2008) New designs of redundant-binary full adders and its applications. In 2008 IEEE international symposium on circuits and systems, (pp 3366–3369), IEEE. https://doi.org/10.1109/iscas.2008.4542180
Gladshtein M (2011) Quantum-dot cellular automata serial decimal adder. IEEE Trans Nanotechnol 10(6):1377–1382. https://doi.org/10.1109/TNANO.2011.2138714
Kharbash F, Chaudhry GM (2008) The design of quantum-dot cellularautomata decimal adder. In 2008 IEEE International Multitopic Conference (pp 71–75), IEEE. https://doi.org/10.1109/INMIC.2008.4777710
Gladshtein MA (2009) Algorithmic synthesis of a combinational adder of decimal digits encoded by the Johnson-Mobius code. Autom Control Comput Sci 43(5):233–240. https://doi.org/10.3103/S0146411609050022
Gladshtein MA (2010) (2010) The signal propagation delay reduction of the combinational adder of decimal digits encoded by the Johnson-Mobius code. Autom Control Comput Sci 44(2):103–109. https://doi.org/10.3103/S0146411610020069
Janez MI, Bajec IL, Pecar P, Jazbec AN, Zimic N, Mraz M (2008) Automatic design of optimal logic circuits based on ternary quantum-dot cellular automata. WSEAS Trans Cir and Sys 7:919–928
Pecar P, Janez M, Zimic N, Mraz M, Bajec IL (2009) The ternary quantum-dot cellular automata memorizing cell. In2009 IEEE Computer Society Annual Symposium on VLSI. (pp. 223–228). IEEE. https://doi.org/10.1109/ISVLSI.2009.32
Pecar P (2011) Introducing interconnection crossing in ternary quantum-dot cellular automata. Proceedings of the ICQNM (pp 1–5)
Arjmand MM, Soryani M, Navi K, Tehrani MA (2012) A novel ternary-to-binary converter in quantum-dot cellular automata. In 2012 IEEE Computer society annual symposium on VLSI. (pp 147–152). IEEE. https://doi.org/10.1109/ISVLSI.2012.41
Das K, De D (2013) Realisation of semiconductor ternary quantum dot cellular automata. Micro Nano Lett 8(5):258–263. https://doi.org/10.1049/MNL.2012.0618
Bajec IL, Pečar P (2012) Two-layer synchronized ternary quantum-dot cellular automata wire crossings. Nanoscale Res Lett 7(1):1–6. https://doi.org/10.1186/1556-276X-7-221
Arjmand MM, Soryani M, Navi K (2013) Coplanar wire crossing in quantum cellular automata using a ternary cell. IET Circuits Devices Syst 7(5):263–272. https://doi.org/10.1166/jctn.2015.3942
Bhattacharjee P, Das K, De M, De D (2015) SPICE modeling and analysis for metal island ternary QCA logic device. In: Mandal JK, Satapathy SC, Sanyal MK, Sarkar PP, Mukhopadhyay A (eds) Information systems design and intelligent applications. Springer, New Delhi, pp 33–41. https://doi.org/10.1007/978-81-322-2250-7_4
Das K, De D, De M (2016) Modified ternary Karnaugh map and logic synthesis in ternary quantum dot cellular automata. IETE J Res 62(6):774–785. https://doi.org/10.1080/03772063.2016.1176541
Kamali SF, Tabrizchi S, Mohammadyan S, Rastgoo M, Navi K (2020) Designing positive, negative and standard gates for ternary logics using quantum dot cellular automata. Comput Electr Eng 83:106590. https://doi.org/10.1016/j.compeleceng.2020.106590
Ronaghi N, Faghih Mirzaee R, Sayedsalehi S (2020) Triangular quantum-dot cellular automata wire for standard ternary logic. Int J Theor Phys 59(12):3821–3839. https://doi.org/10.1007/s10773-020-04634-7
Dehbozorgi L, Sabbaghi-Nadooshan R, Kashaninia A (2021) Realization of processing-in-memory using binary and ternary quantum-dot cellular automata. J Supercomput. https://doi.org/10.1007/s11227-021-04152-1
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Ghadamgahi, S.M., Sabbaghi-Nadooshan, R. & Navi, K. Novel ternary adders and subtractors in quantum cellular automata. J Supercomput 78, 18454–18496 (2022). https://doi.org/10.1007/s11227-022-04593-2
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11227-022-04593-2