Skip to main content
Log in

A new multi-wave continuous action-set cellular learning automata for link prediction problem in weighted multi-layer social networks

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

One of the main research areas in social network analysis (SNA) is link prediction (LP). Social networks can be shown as a graph, and LP algorithms predict future links using the previous structure of the social network. A significant part of previous studies focuses on the LP problem with a homogeneous structure. On the contrary, real social networks include some heterogeneous interactions. Also, in the LP problem, the learning process must move on to the next stage with some particular order at the same time as convergence speed increases with no loss of accuracy. Therefore, there is a need for an algorithm that is compatible with heterogeneous social networks. This paper presents a new Continuous Action-Set Cellular Learning Automaton (CACLA), and we call it Multi-Wave CACLA (MWCACLA). MWCACLA has a connected structure, and there is a module of CALAs in each cell where a cell’s neighbors are its successors. We show that the model converges upon a stable and compatible configuration. Then we propose an MWCACLA model for considering the LP problem in a weighted multi-layer social network, and the proposed model is called MWCALA-WLP. The MWCALA-WLP merges the gained local information of different CALAs residents in a module related to a test link for estimating that the link will be appeared in the future or not. For the LP problem in the weighted multi-layer social networks, it has been demonstrated that MWCACLA produces much better results than other approaches and has an acceptable convergence rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data that support the findings of this study are available in Higgs Twitter Dataset at https://snap.stanford.edu/data/higgs-twitter.html [54], and DBLP at https://www.aminer.org/data/ [55] which are used in our experiments.

References

  1. Jalili M, Orouskhani Y, Asgari M, Alipourfard N, Perc M (2017) Link prediction in multiplex online social networks. Royal Soc Open Sci 4(2):160863

    Article  MathSciNet  Google Scholar 

  2. Martínez V, Berzal F, Cubero J-C (2016) A survey of link prediction in complex networks. ACM Comput Surv (CSUR) 49(4):1–33

    Article  Google Scholar 

  3. Li J-c, Zhao D-l, Ge B-F, Yang K-W, Chen Y-W (2018) A link prediction method for heterogeneous networks based on BP neural network. Physica A 495:1–17

    Article  Google Scholar 

  4. De Bacco C, Power EA, Larremore DB, Moore C (2017) Community detection, link prediction, and layer interdependence in multilayer networks. Phys Rev E 95(4):042317

    Article  Google Scholar 

  5. Moradabadi B, Meybodi MR (2018) Link prediction in weighted social networks using learning automata. Eng Appl Artif Intell 70:16–24

    Article  MATH  Google Scholar 

  6. Wolfram S (1983) Statistical mechanics of cellular automata. Rev Mod Phys 55(3):601

    Article  MathSciNet  MATH  Google Scholar 

  7. Das D A survey on cellular automata and its applications. In, 2011. Springer, pp 753–762

  8. Thathachar MAL, Sastry PS (2002) Varieties of learning automata: an overview. IEEE Trans Syst, Man, Cybernetics, Part B (Cybernetics) 32 (6):711–722

  9. Thathachar MAL, Sastry PS (2011) Networks of learning automata: Techniques for online stochastic optimization. Springer Science & Business Media

    Google Scholar 

  10. Beigy H, Meybodi MR (2004) A mathematical framework for cellular learning automata. Adv Complex Syst 7:295–319

    Article  MathSciNet  MATH  Google Scholar 

  11. Navid AHF, Aghababa AB (2013) Cellular learning automata and its applications. Emerg Appl Cellular Automata 1:85–111

    Google Scholar 

  12. Esnaashari M, Meybodi MR (2008) A cellular learning automata based clustering algorithm for wireless sensor networks. Sens Lett 6(5):723–735

    Article  Google Scholar 

  13. Ghavipour M, Meybodi MR (2017) Irregular cellular learning automata-based algorithm for sampling social networks. Eng Appl Artif Intell 59:244–259

    Article  Google Scholar 

  14. Zhao Y, Jiang W, Li S, Ma Y, Su G, Lin X (2015) A cellular learning automata based algorithm for detecting community structure in complex networks. Neurocomputing 151:1216–1226

    Article  Google Scholar 

  15. Manshad MK, Manshad AK, Meybodi MR (2012) Memory/search RCLA-EC: A CLA-EC for moving parabola problem. In: 2012. IEEE, pp 732–737

  16. Manshad MK, Meybodi MR, Salajegheh A A new irregular cellular learning automata-based evolutionary computation for time series link prediction in social networks.

  17. Mirsaleh MR, Meybodi MR (2016) A Michigan memetic algorithm for solving the community detection problem in complex network. Neurocomputing 214:535–545

    Article  Google Scholar 

  18. Manshad MK, Manshad AK, Meybodi MR (2022) Memory/search RCLA-EC: A CLA-EC for moving parabola problem. In: 2011 6th International Conference on Computer Sciences and Convergence Information Technology (ICCIT), 2011. IEEE, pp 732–737

  19. Vafashoar R, Meybodi MR, Azandaryani AHM (2012) CLA-DE: a hybrid model based on cellular learning automata for numerical optimization. Appl Intell 36(3):735–748

    Article  Google Scholar 

  20. Patel DK, More SA (2013) Edge detection technique by fuzzy logic and Cellular Learning Automata using fuzzy image processing. In, 2013. IEEE, pp 1–6

  21. Moradabadi B, Meybodi MR (2018) Wavefront cellular learning automata. Chaos: An Int J Nonlinear Sci 28(2):021101

    Article  MathSciNet  MATH  Google Scholar 

  22. Rezvanian A, Moradabadi B, Ghavipour M, Khomami MMD, Meybodi MR (2019) Wavefront Cellular Learning Automata: A New Learning Paradigm. In: Learning Automata Approach for Social Networks. Springer, pp 51–74

  23. Murata T, Moriyasu S (2007) Link prediction of social networks based on weighted proximity measures. In, 2007. IEEE, pp 85–88

  24. Lü L, Zhou T (2011) Link prediction in complex networks: A survey. Physica A 390(6):1150–1170

    Article  Google Scholar 

  25. Al Hasan M, Chaoji V, Salem S, Zaki M (2006) Link prediction using supervised learning. In, 2006. pp 798–805

  26. Moradabadi B, Meybodi MR (2017) Link prediction in fuzzy social networks using distributed learning automata. Appl Intell 47(3):837–849

    Article  Google Scholar 

  27. Moradabadi B, Meybodi MR (2017) A novel time series link prediction method: Learning automata approach. Physica A 482:422–432

    Article  Google Scholar 

  28. Moradabadi B, Meybodi MR (2016) Link prediction based on temporal similarity metrics using continuous action set learning automata. Physica A 460:361–373

    Article  MathSciNet  MATH  Google Scholar 

  29. Moradabadi B, Meybodi MR (2018) Link prediction in stochastic social networks: learning automata approach. Journal of computational science 24:313–328

    Article  MathSciNet  MATH  Google Scholar 

  30. Manshad MK, Meybodi MR, Salajegheh A (2020) A new irregular cellular learning automata-based evolutionary computation for time series link prediction in social networks. Appl Int 51:1–14

    Google Scholar 

  31. Manshad MK, Meybodi MR, Salajegheh A (2021) A variable action set cellular learning automata-based algorithm for link prediction in online social networks. J Supercomput 77:1–29

    Google Scholar 

  32. Xiang R, Neville J, Rogati M (2010) Modeling relationship strength in online social networks. In: 2010. pp 981–990

  33. Zhou T, Lü L, Zhang Y-C (2009) Predicting missing links via local information. Eur Phys J B 71(4):623–630

    Article  MATH  Google Scholar 

  34. Pech R, Hao D, Pan L, Cheng H, Zhou T (2017) Link prediction via matrix completion. EPL (Europhysics Letters) 117(3):38002

    Article  Google Scholar 

  35. Ermiş B, Acar E, Cemgil AT (2015) Link prediction in heterogeneous data via generalized coupled tensor factorization. Data Min Knowl Disc 29(1):203–236

    Article  MathSciNet  Google Scholar 

  36. Yang Y, Chawla NV, Sun Y, Han J (2012) Link prediction in heterogeneous networks: Influence and time matters. In: Proceedings of The 12th IEEE International Conference on Data Mining, Brussels, Belgium

  37. Negi S, Chaudhury S (2016) Link prediction in heterogeneous social networks. In: Proceedings of the 25th ACM International on Conference on Information and Knowledge Management, pp 609–617

  38. Davis D, Lichtenwalter R, Chawla NV (2011) Multi-relational link prediction in heterogeneous information networks. In: 2011 International Conference on Advances in Social Networks Analysis and Mining. IEEE, pp 281–288

  39. Sun Y, Barber R, Gupta M, Aggarwal CC, Han J (2011) Co-author relationship prediction in heterogeneous bibliographic networks. In: 2011 International Conference on Advances in Social Networks Analysis and Mining. IEEE, pp 121–128

  40. Lichtenwalter RN, Lussier JT, Chawla NV (2010) New perspectives and methods in link prediction. In: Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery and data mining, pp 243–252

  41. Johnson RA, Yang Y, Aguiar E, Rider A, Chawla NV (2012) Alive: A multi-relational link prediction environment for the healthcare domain. Pacific-Asia Conference on Knowledge Discovery and Data Mining. Springer, pp 36–46

    Google Scholar 

  42. Katz L (1953) A new status index derived from sociometric analysis. Psychometrika 18(1):39–43

    Article  MATH  Google Scholar 

  43. Murata T, Moriyasu S (2007) Link prediction of social networks based on weighted proximity measures. In: IEEE/WIC/ACM International Conference on Web Intelligence (WI'07), IEEE, pp 85–88

  44. Al Hasan M, Zaki MJ (2011) A survey of link prediction in social networks. In: Social network data analytics. Springer, pp 243–275

  45. Jaccard P (1901) Étude comparative de la distribution florale dans une portion des Alpes et des Jura. Bull Soc Vaudoise Sci Nat 37:547–579

    Google Scholar 

  46. Newman ME (2001) Clustering and preferential attachment in growing networks. Phys Rev E 64(2):025102

    Article  Google Scholar 

  47. Adamic LA, Adar E (2003) Friends and neighbors on the web. Social networks 25(3):211–230

    Article  Google Scholar 

  48. Thathachar MA, Sastry PS (2002) Varieties of learning automata: an overview. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics) 32 (6):711–722

  49. Beigy H, Meybodi MR (2007) Open synchronous cellular learning automata. Adv Complex Syst 10(04):527–556

    Article  MathSciNet  MATH  Google Scholar 

  50. Esnaashari M, Meybodi MR (2014) Irregular cellular learning automata. IEEE Trans Cyber 45(8):1622–1632

    Article  Google Scholar 

  51. Beigy H, Meybodi MR (2008) Asynchronous cellular learning automata. Automatica 44(5):1350–1357

    Article  MathSciNet  MATH  Google Scholar 

  52. Saghiri AM, Meybodi MR (2017) A closed asynchronous dynamic model of cellular learning automata and its application to peer-to-peer networks. Genet Prog Evol Mach 18(3):313–349

    Article  Google Scholar 

  53. Thathachar MA, Sastry PS (2011) Networks of learning automata: Techniques for online stochastic optimization. Springer Science & Business Media

  54. De Domenico M, Lima A, Mougel P, Musolesi M (2013) The anatomy of a scientific rumor. Sci Rep 3(1):1–9

    Article  Google Scholar 

  55. Bose AJ, Jain A, Molino P, Hamilton WL (2019) Meta-graph: Few shot link prediction via meta learning. arXiv preprint arXiv:191209867

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mozhdeh Khaksar Manshad.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khaksar Manshad, M., Meybodi, M.R. & Salajegheh, A. A new multi-wave continuous action-set cellular learning automata for link prediction problem in weighted multi-layer social networks. J Supercomput 78, 18636–18665 (2022). https://doi.org/10.1007/s11227-022-04615-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-022-04615-z

Keywords

Navigation