Abstract
Three-dimensional full-annulus Unsteady Reynolds Averaged Navier–Stokes (URANS) simulations play a crucial role in predicting the aerodynamic performance of the transonic axial compressor rotor. In this paper, we report our work, SunwayURANS, which can bring the transonic axial compressor rotor simulation a step closer to practical application. Multi-level parallel techniques are proposed to boost the simulation speed, including a process-level domain decomposition and a process mapping scheme, a thread-level solution to improve pipeline efficiency using DMA and register communication, and a processor-specific vectorization scheme. Aiming to perform the correct and stable simulation, we present a software framework, which includes the pre-processing module, solver module, and IO module. When using 7.2 billion grid points with 450 thousand cores, the simulation achieves 611.53 million grid points to be updated per second and performance of 95.805TFlops. Running in Sunway TaihuLight, experiments show that SunwayURANS does not change the accuracy of the original simulation software, and can be used in the actual simulation.













Similar content being viewed by others
Data Availability
The data used to support the findings of this study are available from the corresponding author upon request.
References
Schuster DM (2011) The expanding role of applications in the development and validation of CFD at NASA. Comput Fluid Dyn 2010:3–29. https://doi.org/10.1007/978-3-642-17884-9_1
Asgari H, Chen X, Morini M, Pinelli M, Sainudiin R, Spina PR, Venturini M (2016) NARX models for simulation of the start-up operation of a single-shaft gas turbine. Appl Therm Eng 93:368–376. https://doi.org/10.1016/j.applthermaleng.2015.09.074
Morini M, Pinelli M, Venturini M (2007) Development of a one-dimensional modular dynamic model for the simulation of surge in compression systems. J Turbomach 129:437–447. https://doi.org/10.1115/1.2447757
Liu A, Ju Y, Zhang C (2021) Parallel rotor/stator interaction methods and steady/unsteady flow simulations of multi-row axial compressors. Aerosp Sci Technol 34:1561–1573. https://doi.org/10.2514/1.B37038
Fu H, Liao L, Ding N, Duan X, Gan L, Liang Y, Wang X, Yang J, Zheng Y, Liu W, Wang L, Yang G (2017) Redesigning CAM-SE for peta-scale climate modeling performance and ultra-high resolution on Sunway TaihuLight, In: The International Conference for High Performance Computing, Networking, Storage and Analysis, pp 1:1–1:12, https://doi.org/10.1145/3126908.3126909
Fu H, He C, Chen B, Yin Z, Zhang Z, Zhang W, Zhang T, Xue W, Liu W, Yin W, Yang G, Chen X (2017) 18.9-Pflops nonlinear earthquake simulation on Sunway TaihuLight: enabling depiction of 18-Hz and 8-meter scenarios, In: The International Conference for High Performance Computing, Networking, Storage and Analysis, pp 2:1–2:12, https://doi.org/10.1145/3126908.3126909
Yao J, Davis RL, Alonso JJ, Jameson A (2002) Massively parallel simulation of the unsteady flow in an axial turbine stage. J Propul Power 18(2):465–471. https://doi.org/10.2514/2.5957
Gourdain N, Wlassow F, Ottavy X (2012) Effect of tip clearance dimensions and control of unsteady flows in a multi-stage high-pressure compressor. J Turbomach 134(5):051005. https://doi.org/10.1115/1.4003815
Chen J, Hathaway MD, Herrick GP (2008) Prestall behavior of a transonic axial compressor stage via time-accurate numerical simulation. J Turbomach 130(4):041014. https://doi.org/10.1115/1.2812968
Gan J, Im H, Zha G (2008) Simulation of Stall Inception of a High Speed Axial Compressor with Rotor-Stator Interaction, In: 51st AIAA/SAE/ASEE Joint Propulsion Conference, p 3932, https://doi.org/10.2514/6.2015-3932
Yamada K, Furukawa M, Tamura Y, Saito S, Matsuoka A, Nakayama K (2017) Large-scale detached-eddy simulation analysis of stall inception process in a multistage axial flow compressor. J Turbomach 139(7):071002. https://doi.org/10.1115/1.4035519
Zhao F, Dodds J, Vahdati M (2018) Poststall behavior of a multistage high speed compressor at off-design conditions. J Turbomach 140(12):121002. https://doi.org/10.1115/1.4041142
Cozzi L, Rubechini F, Marconcini M, Arnone A, Astrua P, Schneider A, Silingardi A (2017) Facing the challenges in CFD modelling of multistage axial compressors, In: Turbo Expo: Power for Land, Sea, and Air, p V02BT41A007, https://doi.org/10.1115/GT2017-63240
Liu A, Ju Y, Zhang C (2018) Parallel simulation of aerodynamic instabilities in transonic axial compressor rotor. J Propuls Power 116:106859. https://doi.org/10.1016/j.ast.2021.106859
He F, Dong X, Zou N, Wu W, Zhang X (2020) Structured mesh-oriented framework design and optimization for a coarse-grained parallel CFD solver based on hybrid MPI/OpenMP programming. J Supercomput 76(4):2815–41. https://doi.org/10.1007/s11227-019-03063-6
Asensio IA, Laguna AA, Aissa MH, Poedts S, Ozak N, Lani A (2019) A GPU-enabled implicit Finite Volume solver for the ideal two-fluid plasma model on unstructured grids. Comput Phys Commun 239:16–32. https://doi.org/10.1016/j.cpc.2019.01.019
Stone CP, Walden A, Zubair M, Nielsen EJ (2021) Accelerating unstructured-grid CFD algorithms on NVIDIA and AMD GPUs, In: 2021 IEEE/ACM 11th Workshop on Irregular Applications: Architectures and Algorithms (IA3), pp 19–26, https://doi.org/10.1109/IA354616.2021.00010
Walden A, Nielsen E, Diskin B, Zubair M (2019) A mixed precision multicolor point-implicit solver for unstructured grids on GPUs, In: 2021 IEEE/ACM 11th Workshop on Irregular Applications: Architectures and Algorithms (IA3), pp 22–30, https://doi.org/10.1109/IA354616.2021.00010
Ha S, Park J, You D (2021) A multi-GPU method for ADI-based fractional-step integration of incompressible Navier–Stokes equations. Comput Phys Commun 265:107999. https://doi.org/10.1016/j.cpc.2021.107999
Zhu X, Phillips E, Spandan V, Donners J, Ruetsch G, Romero J, Ostilla-Mónico R, Yang Y, Lohse D, Verzicco R, Fatica M (2018) AFiD-GPU: a versatile Navier-Stokes solver for wall-bounded turbulent flows on GPU clusters. Comput Phys Commun 229:199–210. https://doi.org/10.1016/j.cpc.2018.03.026
Ha S, Park J, You D (2018) A GPU-accelerated semi-implicit fractional-step method for numerical solutions of incompressible Navier-Stokes equations. J Comput Phys 352:246–64. https://doi.org/10.1016/j.jcp.2017.09.055
Wang YX, Zhang LL, Liu W, Cheng XH, Zhuang Y, Chronopoulos AT (2018) Performance optimizations for scalable CFD applications on hybrid CPU+ MIC heterogeneous computing system with millions of cores. Comput Fluids 173:226–236. https://doi.org/10.1016/j.compfluid.2018.03.005
Che Y, Xu C, Wang Z (2020) Load balancing a multi-block grids-based application on heterogeneous platform, In: 2020 IEEE 23rd International Conference on Computational Science and Engineering (CSE), pp 44–49, https://doi.org/10.1109/CSE50738.2020.00014
Nguyen MT, Castonguay P, Laurendeau E (2019) GPU parallelization of multigrid RANS solver for three-dimensional aerodynamic simulations on multiblock grids. J Supercomput 75(5):2562–2583. https://doi.org/10.1007/s11227-018-2653-6
Jude D, Baeder JD (2016) Extending a three-dimensional GPU RANS solver for unsteady grid motion and free-wake coupling, In: 54th AIAA Aerospace Sciences Meeting, p 1811, https://doi.org/10.2514/6.2016-1811
Mishra A, Jude D, Baeder JD (2018) A gpu accelerated adjoint solver for shape optimization, In: 2018 Fluid Dynamics Conference, p 3557. https://doi.org/10.2514/6.2018-3557
Mostafazadeh Davani B, Marti F, Pourghassemi B, Liu F, Chandramowlishwaran A (2017) Unsteady Navier–Stokes computations on GPU architectures, In: 23rd AIAA Computational Fluid Dynamics Conference, p 4508, https://doi.org/10.2514/6.2017-4508
Monfaredi M, Trompoukis X, Tsiakas K, Giannakoglou K (2021) Unsteady continuous adjoint to URANS coupled with FW-H analogy for aeroacoustic shape optimization. Comput Fluids 230:105136. https://doi.org/10.1016/j.compfluid.2021.105136
Mostafazadeh Davani B, Marti F, Pourghassemi B, Liu F, Chandramowlishwaran A (2017) Unsteady Navier–Stokes computations on GPU architectures. In: 23rd AIAA Computational Fluid Dynamics Conference 2017, p 4508, https://doi.org/10.2514/6.2017-4508
Savin GI, Benderskiy LA, Lyubimov DA, Rybakov AA (2019) RANS/ILES method optimization for effective calculations on supercomuter. Lobachevskii J Math 40(5):566–73. https://doi.org/10.1134/S1995080219050172
Wang Y, He X, Yang S, Tan G (2020) Towards a heterogeneous architecture solver for the incompressible Navier–Stokes equations. CCF Trans High Perf Comput 2(2):123–34. https://doi.org/10.1007/s42514-020-00034-9
Lei Y, Zhang X, Han L, Dong X, Li J (2019) MIC-THPCM: MIC-based heterogeneous parallel optimization for axial compressor rotor, In: IEEE Intl Conf on Parallel & Distributed Processing with Applications, Big Data & Cloud Computing, Sustainable Computing & Communications, Social Computing & Networking (ISPA/BDCloud/SocialCom/SustainCom), pp 646–653, https://doi.org/10.1109/ISPA-BDCloud-SustainCom-SocialCom48970.2019.00098
Liu Z, Chu X, Lv X, Meng H, Shi S, Han W, Xu J, Fu H, Yang G (2019) SunwayLB: enabling extreme-scale lattice Boltzmann method based computing fluid dynamics simulations on Sunway TaihuLight, In: 2019 IEEE International Parallel and Distributed Processing Symposium, IPDPS 2019, pp 557–566. https://doi.org/10.1109/IPDPS.2019.00065
Lin J, Wen M, Meng D, Liu X, Nukada A, Matsuoka S (2018) Optimizing preconditioned conjugate gradient on TaihuLight for OpenFOAM, In: 18th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing, CCGRID 2018, pp 273–282, https://doi.org/10.1109/CCGRID.2018.00042
Li M, Liu Y, Yang H, Luan Z, Gan L, Yang G, Qian D (2020) Accelerating sparse Cholesky factorization on Sunway manycore architecture. IEEE Trans Parallel Distrib Syst 31(7):1636–1650. https://doi.org/10.1109/TPDS.2019.2953852
Liu X, Lu Z, Yuan W, Ma W, Zhang J (2020) Massively parallel CFD simulation software: CCFD development and optimization based on Sunway TaihuLight. Sci Program 8847481(1–8847481):17. https://doi.org/10.1155/2020/8847481
Ao Y, Yang C, Liu F, Yin W, Jiang L, Sun Q (2018) Performance optimization of the HPCG benchmark on the Sunway TaihuLight supercomputer. ACM Trans Arch Code Optim 15(1):11:1-11:20. https://doi.org/10.1145/3182177
Liu F, Ji S (1996) Unsteady flow calculations with a multigrid Navier–Stokes method. AIAA J 34:2047–2053. https://doi.org/10.2514/3.13351
Spalart P, Allmaras S (1992) A one-equation turbulence model for aerodynamic flows. La Recherche Aérospatiale 1(1):5–21. https://doi.org/10.2514/6.1992-439
Zhou B, Huang Y, Xu J, Guo S, Qi H (2019) Memory latency optimizations for the elementary functions on the Sunway architecture. J Supercomput 75(7):3917–3944. https://doi.org/10.1007/s11227-018-02741-1
Acknowledgements
This work was supported by the National Key Research and Development Program of China under Grant number 2016YFB0200902.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Chen, H., Wang, Z., Xiao, X. et al. SunwayURANS: 3D full-annulus URANS simulations of transonic axial compressors on Sunway TaihuLight. J Supercomput 78, 19167–19187 (2022). https://doi.org/10.1007/s11227-022-04628-8
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11227-022-04628-8