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Abstract 

Real-world nonstationary data are usually characterized by high nonlinearity and complex patterns 

due to the effects of different exogenous factors that make prediction a very challenging task. An 

ensemble strategically combines multiple techniques and tends to be robust and more precise 

compared to a single intelligent algorithmic model. In this work, a dynamic particle swarm 

optimization-based empirical mode decomposition ensemble is proposed for nonstationary data 

prediction. The proposed ensemble implements an environmental change detection technique to 

capture concept drift occurring and the intrinsic nonlinearity in time series, hence improving 

prediction accuracy. The proposed ensemble technique was experimentally evaluated on electric 

time series datasets. The obtained results show that the proposed technique improves prediction 

accuracy and it outperformed several stateof- the-art techniques in several cases. For future work 

direction, a detailed empirical analysis of the proposed technique can be considered such as the 

effect of the cost of prediction errors, and the technique’s search capability. 
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1 Introduction  

Real-world nonstationary data such as time series are characterized by high nonlinearity and 

complex patterns due to the effects of different exogenous factors such as weather condition, and 

economic fluctuation that make prediction a very challenging task [1]. Usually, statistical-based 

modeling techniques are used for time series forecasting due to their strong expansion ability and 

simple features [2]. However, these techniques usually fail to forecast nonstationary time series, 

especially when there are great fluctuations and classical chaos in the series [3]. To overcome the 

challenges of statistical-based modeling, machine learning techniques such as support vector 

regression (SVR) have been introduced into time series forecasting. Nevertheless, the accuracy of 

machine learning techniques like SVR mainly depends on hyperparameter tuning and is usually 

prone to overfitting [2].    
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The short-term electric load and pricing time series can be considered as a stream of incoming 

data, as such, incremental learning is ideal to model such time series. The presence of concept 

drifting in time series poses challenges especially in incremental learning due to the random 

drifting of statistical properties of the target variable [4]. Incremental learning can take a passive 

or active approach. A passive approach is ideal if the environment is continuously drifting in which 

the induced model parameters are continuously adapted to produce a model that effectively depicts 

the current distribution. Conversely, an active approach adapts the learning model only if an 

environmental change is detected [5].  

The empirical mode decomposition (EMD), is an adaptive data processing technique tailored for 

nonlinear and nonstationary data [8].  The EMD decomposes data into intrinsic mode function 

(IMF) components and a residual. An ensemble technique is a combinatorial model that 

strategically combines multiple algorithms to yield a representational, computational, and 

statistically advantageous model [6]. The combinatorial model (hybrid) tends to be robust and 

more precise compared to a single intelligent algorithmic model [7]. Thus, EMD can be combined 

with a forecasting model in which each IMF component is modeled independently in anticipation 

of improved performance [9].   

The dynamic particle swarm optimization-based nonlinear autoregressive with exogenous inputs 

(NARX-QPSO) presented in [10] is an adaptive incremental learning technique. The NARX-

QPSO technique has strong generalization capability, copes with concept shifts in nonstationary 

data, and possesses good learning capabilities in which it takes into account the influence of 

exogenous factors. However, the predictive accuracy of NARX-QPSO was outperformed by the 

state-of-the-art techniques due to its inability to capture the intrinsic nonlinearity in the data [10].  

In this work, a particle swarm optimization-based empirical mode decomposition predictive 

technique is proposed to improve on the predictive accuracy of NARX-QPSO. The proposed 

ensemble is build on NARX-QPSO in which it combines EMD to capture the intrinsic nonlinearity 

in time series, NARX-QPSO, and an environmental change detection technique to detect concept 

drift occurring. The EMD decomposes a time series into IMF components which are modeled 

independently by NARX-QPSO to construct an ensemble prediction technique. The proposed 

ensemble dynamically adapts when a concept shift is detected.  Thus, this work experimentally 

evaluates the effectiveness of:   
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a) Hybridizing an EMD with NARX-QPSO, on improving forecasting performance;  

b) Using the base regressors, namely the least-squares approximation and SVR in NARX-

QPSO to induce a predictive model; and  

c) Ensemble combining techniques, namely averaging and weighted average to the overall 

algorithm performance.  

Also, the best performing technique is compared to EMD-based state-of-the-art ensemble 

techniques.  

This work is organized as follows: Section 2 provides a discussion of related literature and Section 

3 presents the proposed ensemble technique and experimental setup. Section 4 presents and 

discusses the obtained results. The conclusion and future work directions are discussed in Section 

5.  

2  Related Literature 

2.1 Time Series Modeling 

The purpose of time series modeling is to gather and analyze historical data to fit a model that 

describes the internal structure of a time series such as autocorrelation, trend, or seasonality. The 

created model is then used to forecast future values of the series in which the AR, ARX, and 

ARIMA models are among the most widely utilized models [11].  

Three classes of time-series forecasting models are statistical, machine learning, and hybrids [12]. 

When there is a lack of knowledge and information about the data generating process and the 

factors that influence it, statistical models are used [11]. A statistical model fits a model to the data 

using calculated parameters, expressed as a mathematical function. Typically, statistical models 

are characterized by numerous computational possibilities which entail high complexity, 

especially for data patterns that exhibit nonlinearity.  

Machine learning techniques use artificial intelligence (AI)  algorithms to model time series data 

and its forecasting accuracy usually outperforms statistical models though exhibits several 

drawbacks such as overfitting and being trapped in local minima [15] [16] [5] [17]. As black-

box models in AI are increasingly being implemented to make significant predictions in vital 

contexts, the demand for explainability and transparency is increasing in AI [13].  The challenge 

happens if the decision that are created are not justifiable, legitimate, or simply do not allow to 
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obtain detailed explanations of their behavior [14] [20]. Conversely, it is usually easier to put 

everything into a black-box and optimize for the highest performance possible. Hybridization 

harnesses the strength of two or more techniques to improve on effectiveness and accuracy of the 

induced model. However, hybrid models are usually computationally expensive [18] [19].   

A statistical learning model consists of measured variables inputs (𝑋𝑘) as well as a target variable, 

outputs (𝑌𝑘) [11]. The assumption is that there is a connection between the 𝑋𝑘 and the 𝑌𝑘, and the 

statistical model tries to figure out how to mathematically describe it. Thus, creating a process 

model based on the information given. A commonly used statistical learning model for nonlinear 

data is a nonlinear autoregressive model with exogenous inputs (NARX).  

The NARX model connects the current value of output to both prior values of the same output and 

current and previous values of externally influencing inputs [11]. The NARX model usually 

provides accurate predictions though it is one of the most computationally expensive statistical 

models and the least durable [21].  The NARX model can be described using a linear difference 

equation as follows [21]:  

𝑦(𝑡) = 𝑎1𝑦(𝑡 − 1) + ⋯ + 𝑎𝑘𝑦(𝑡 − 𝑘) + 𝑏 + 𝑏0𝑥(𝑡) + ⋯ + 𝑏𝑙𝑥(𝑡 − 𝑙) (1) 

where y(t) is the variable of interest, x(t) is exogenous input at time t, a and b are estimated 

parameters, and (k, l) is the maximum time lag of the two variables important to the model.  

The autoregressive component of the model is represented by the dependency on lagged versions 

of y, while the exogenous or additional variable is represented by x's. Time is discretized, and at 

each sampling period, t varies by one unit [21]. 

2.2 Dynamic QPSO-based NARX Technique 

Particle swarm optimization is a population-based metaheuristic algorithm that converges faster 

compared to several metaheuristic techniques [26]. However, PSO can easily be trapped into local 

optima [22].  A charged particle swarm optimization algorithm (PSO), referred to as quantum-

inspired PSO (QPSO) is an optimization algorithm designed for dynamic environments [23]. The 

QPSO consists of both neutral and quantum particles [24] [25].  Neutral particles promote 

exploitation in the search space whereas quantum particles explore new optima, facilitating 

exploration. The literature suggests that QPSO can adapt in the presence of a concept drift 
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occurring environment [27]. The PSO and its variants such as QPSO have been successfully 

implemented in hybrid with other techniques as an optimizer of either the inherent parameters of 

the other technique(s) or the induced model [50][51][52]. 

A dynamic QPSO-based regression technique (DynQPSO) was proposed in [10]. The DynQPSO 

is a data-driven predictive technique that can adapt the predictive model in an environment with 

concept shifts occurring to cope with uncertainty in the presence of change. The DynQPSO 

combines the NARX model and QPSO. Firstly, NARX estimates the model parameters and QPSO 

optimizes both the parameters and the structure of the induced model. The NARX uses the 

unconstrained least-squares technique which strives to minimize the prediction error. The fitness 

of each QPSO particle is measured using mean square error. A sliding window of analysis is used 

to model real-world streaming data. The sliding window of analysis is partitioned into training 

which consists of the first 80% of data points and testing, the remaining data points. Algorithm 1 

summarizes the DynQPSO technique.  

Algorithm 1 Dynamic QPSO-based Regression Algorithm 

Set analysis_ window to ws data points 

BEGIN  

    Estimate model coefficients using NARX  

  DO  
   Move analysis_window  

   Run QPSO n iterations 

   If environmental change is detected  

         Update the coefficients of term-coefficient mappings of each particle 

        Run QPSO n iterations 

 REPEAT until no further data to analyze. 

 END 

2.3 Empirical Mode Decomposition  

Decomposing the original data stream into separate different components to deal with each 

component separately and combining the results usually improve predictive performance [7]. 

However, decomposing the data stream increases the prediction burden and brings multiple 

random mistakes. An example of a technique that can decompose a data stream is Discrete-wavelet 



6 
 

transform (DWT) [7]. The DWT transforms nonlinear and nonstationary signals into separate 

different components.  However, DWT fails to achieve fine resolutions for both time-domain and 

time-frequency which poses a significant challenge for short-term time series analysis [7]. 

Instead of decomposing signals based on wavelet basis and prior harmonic functions as in DWT 

and Fourier decomposition techniques respectively, a novel signal processing method, empirical 

mode decomposition (EMD) was proposed to decompose signals based on the time scale properties 

of the data [28]. The EMD approach, in contrast to wavelet decomposition, is intuitive, direct, 

posterior, and adaptive, allowing it to theoretically break down any form of signal to yield 

considerable benefits when working with non-linear and non-stationary data [29]. Thus, EMD 

extracts instantaneous frequency data from nonlinear and nonstationary data using an empirical 

approach to decompose a signal into multiple IMFs and a remnant that represents the trend. An 

IMF can be considered as a function with a single extreme between zero crossings and a mean 

value of zero [30]. 

The EMD technique employs multi-resolution to solve the problem of choosing a wavelet basis 

function in wavelet transformation. By drilling down non-linear or non-stationary time series into 

singular values independent IMFs and calculating the overall trend of the data series, the EMD 

approach can help determine its features. Also, EMD can efficiently decompose pixel value and 

avoid entrapment in a local optimum, resulting in improved model reliability and performance 

[31].  

Decomposing a time series using EMD produces IMFs that reduce the number of variables in the 

predictive model to yield a high degree of fit. However, high volatility still exists for a lower-order 

IMF component which happens to have valuable information from the time series that makes it 

difficult to simply discard the component to reduce noise [2]. Also, the mode mixing problem is a 

significant disadvantage of EMD. One IMF may include signals from a wide range of frequencies, 

or multiple IMF signals in a comparable frequency band may be present. [32]. This problem is 

typically solved by the ensemble EMD (EEMD) [33]. The EEMD is based on repeatedly applying 

EMD to a time series signal with uncorrelated Gaussian noise and merging the results to remove 

the noise. The robustness of EEMD is realized by a noise-assisted technique that slightly perturbed 

signals from their initial position to perform several decompositions. The noise cancels each other 

to produce a pure decomposition when averaging the results of all IMFs [33]. 
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The electric load is a nonstationary and nonlinear time series that consists of independent 

components. A variety of factors tend to influence electric load behavior such as random impacts, 

economic considerations, time, day, season, and weather. As a result, the EMD algorithm has the 

potential to be extremely useful for forecasting demand for an electric load.  

2.4 EMD-based Ensemble Techniques  

Ensemble learning approaches, often known as hybrid methods, aim to improve predicting 

performance by strategically combining various algorithms to realize representational, 

computational, and statistical effectiveness [6] [34]. An ensemble can either be parallel or 

sequential [35]. A parallel approach splits the dataset in which each sub-dataset is trained 

independently and the final model is the combination of each sub-dataset induced model. In a 

sequential approach, the results of a given technique become the input of the next technique [34]. 

Numerous parallel ensemble approaches have been proposed in the literature, including EMD and 

wavelet decomposition [36] [18] [37] [28]. 

A sequential ensemble learning strategy for a short-term electric load that combines EMD and 

random vector functional link network (RVFL) was proposed in the literature [38]. Five AEMO 

electric load datasets and six benchmark techniques were used in the experiments. The presented 

results suggest that EMD-based ensemble techniques, EMD-SVR, EMD-SLFN, and EMD-RVFL, 

were superior in performance compared to single structure models. Also, the proposed EMD-

RVFL outperformed all other techniques under study.  

An EMD-based incremental time series forecasting ensemble technique (DWT-EMD-RVFL) was 

proposed in the literature that combines three techniques, namely DWT, EMD, and RVFL [5].  

The DWT deals with the frequency of the series, EMD decomposes the series, and the RVFL 

models each IMFs and a residue. The incremental RVFL creates the final ensemble predictive 

model. The DWT-EMD-RVFL technique was used to forecast AEMO electric load in which the 

proposed incremental forecasting technique outperformed several techniques under study.  

Another EMD-based incremental ensemble, H-EMD-SVR-PSO was proposed in the literature to 

forecast electric load [17]. Instead of modeling each IMF, H-EMD-SVR-PSO defined four 

components: ‘A’ consists of the middle and random terms; ‘B’ consists of the residual and middle 

terms, and ‘C’ consists of the middle terms. The first three components are modeled independently 

using SVR-PSO and the last component, ‘D’ is computed as: 
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                            𝐷 = 𝐴 + 𝐵 − 𝐶                                                                                (2) 

The AEMO electric load dataset was used in the experiments and the presented results suggest that 

the proposed EMD-based ensemble technique was capable to forecast time series data 

characterized with inherent nonlinearity and residual interactive effects to outperform several 

EMD-based ensemble techniques under study. 

An ensemble kernel machine technique was proposed in the literature which consists of EMD, 

Kernel Ridge Regression (KRR), and SVR [39] The EMD decomposes the time series and a KRR 

models the extracted components, and SVR was used to combine the models. The performance of 

the suggested technique was evaluated using AEMO electricity pricing datasets. Furthermore, six 

benchmark techniques were used to perform a comparative study of the proposed model. The 

following conclusions were drawn from the presented results: hybrid techniques based on EMD, 

such as EMD-SVR, EMD-SLFN, and the EMD-KRR-SVR, outperform single structure models, 

KRR has the quickest computing time, and the proposed EMD-KRR-SVR yields the best 

prediction performance. 

Several EMD-based ensemble approaches for various research domains have been presented in 

the literature. For example, for wind speed forecasting, EMD and upgraded variants were paired 

with SVR and ANN [2], a self-adapting EMD-based learning model for multi-step-ahead 

forecasting was proposed in [53]. EMD-based ensemble techniques to predict wind speed and to 

forecast tourism demand were proposed in the literature [40] [32]. An EMD-based forecasting 

model was proposed in [41] which hybridized least-squares SVMs and EMD.  The presented 

results suggest that EMD-based techniques outperformed single classifier models.  Readers who 

are interested in ensemble methods should read the survey paper [35].  

3 Proposed Technique and Experimental Setup 

The proposed technique combines EEMD, NARX-QPSO and concept drift detection technique. 

The EEMD decompose the series to yield IMFs which are modeled independently using NARX. 

The QPSO is tasked to optimize both the NARX parameters and the structure of the induced 

predictive model [10]. The induced models for each IMF are combined to create an ensemble. 

Algorithm 2 summarizes the proposed particle swarm optimization-based empirical mode 

decomposition technique (EMD-NARX-QPSO).  
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Algorithm 2 EMD-NARX-QPSO  

 Set sliding_window (data_window) to ws data patterns 

 Ensemble = { } 

BEGIN 

 Do 

     Slide a data_window 

     IF a change in the environment is detected (gBest_deterioration > 𝑒) 

  Decompose the data into its respective IMFs using EEMD 

  FOR each IMF 

   Induce a predictive model (p_model) using NARX-QPSO 

   Append p_model to Ensemble 

  Combine elements in Ensemble to produce y_model   

  Let y_model becomes the current_model  

  Perform forecasting using current_model 

     ELSE 

  Perform forecasting using the current_model 

 REPEAT until no further data to analyze. 

 END 

A sliding window of analysis technique is adopted to model a nonstationary environment. A sliding 

window slides through the dataset to mimic a stream of incoming data. If the algorithm detects an 

environmental change in the current window, then the data is decomposed into its respective IMFs 

in which each IMF is modeled independently using a NARX-QPSO. The algorithm re-trains if and 

only if an environmental change is detected else it uses the current model to predict the incoming 

data.  

The fitness function of each QPSO particle is computed using a root mean square error (RMSE). 

An environmental change technique used in NARX-QPSO is adapted in this work that makes use 

of a global best particle (gBest) in QPSO which is re-evaluated before being updated [10].  A 

significant fitness deterioration (> 𝑒) of gBest implies an environmental change (presence of 

concept drift in the data pattern). The parameter 𝑒 is a user-defined parameter.  For example, a 

value of 𝑒 > 10 implies that a gBest fitness deterioration of more than 10% signifies concept drift 

occurring in the data. 

Two base regressor techniques model are used independently in NARX: unconstraint least-squares 

approximation [10] and the popular nonlinear regression technique, SVR [42]. Three ensemble 
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combining techniques are adopted in EMD-NARX-QPSO, namely averaging (A), weighted 

averaging (W), and an additive (H) proposed in [17]. Therefore,  considering two base regressors, 

least-squares approximation (R) and SVR (S), and three ensemble combining techniques: A,W, 

and H, six variants of EMD-NARX-QPSO are derived. Table 1 presents the proposed variants.  

Table 1: EMD-NARX-QPSO (ENQ) Variants 

Base Technique Variants 

NARX-QPSO NARX_R NARX_S  

EMD-NARX-QPSO (based on R) ENQ _R_A ENQ _R_W ENQ _R_H 

EMD-NARX-QPSO (based on S) ENQ_S_A ENQ _S_W ENQ _S_H 

The averaging technique computes the average model from each IMF to yield an overall model. 

The weighted averaging technique considers the inverse of the training accuracy (RMSE) of each 

model as the weight of that model. As such, the component with the highest precision contributes 

much to the overall model.  

3.1 Performance Measure 

The error metrics, root mean square error (RMSE) and mean absolute percentage error (MAPE), 

are used to ascertain the prediction accuracy of the induced model. The RMSE and MAPE are 

computed as: 

                                 𝑅𝑀𝑆𝐸 = √
∑ (𝑦𝑖

, − 𝑦𝑖)2𝑛
𝑖=1

𝑛
                                                       (3) 

                                   𝑀𝐴𝑃𝐸 = ∑ |
𝑦𝑖

, − 𝑦𝑖)

𝑦𝑖
|

𝑛

𝑖=1

× 100,                                             (4) 

where 𝑛 is the testing data patterns, 𝑦𝑖
,
 is forecasted, and 𝑦𝑖 is the actual values. 

The RMSE indicates the degree of dispersion of error, as such, smaller values reflect favorable 

prediction stability [7]. Large errors are highly penalized in RMSE since the prediction errors are 

squared. The MAPE reflects the overall level of deviation between the actual value and the induced 

model prediction value [7].  As in RMSE, smaller values of MAPE entail a higher prediction 

accuracy. The RMSE and MAPE are used as performance measures that have the advantage of 

expressing the prediction error of the model in the same units as the predicted variable [45].  
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Statistical tests are performed using the non-parametric Friedman test based on the null hypothesis 

(H0) – ‘all techniques yield the same performance’.  Friedman's test is ideal to find differences in 

performance across multiple algorithms. The algorithms (techniques) are ranked separately and 

for tie cases, average ranks are assigned. The post-hoc Nemenyi test is used to infer a statistically 

significant difference if the H0 is rejected. A statistically significant difference exists if the 

difference of mean rank of the pair of techniques was greater than Nemenyi test critical distance 

(CD) [46].  

3.2 Dataset 

The proposed model implements a nonlinear autoregressive model with exogenous inputs. 

Therefore, the datasets with exogenous variables are selected to experimentally evaluate the 

performance of the proposed model. Sixteen electric datasets from the Australian Energy Market 

Operator (AEMO) that consist of fifteen electric load [5] and one electric pricing datasets are used 

in the experiments [47]. The electric pricing dataset was sampled at a half-hour interval for the 

period 7th May 1996 - 5th December 1998 [48]. The electric pricing dataset exhibits short-term 

irregular changes due to seasonal changes, and long-term regular changes due to weather 

fluctuations.  

The fifteen electric load datasets from AEMO consist of five Australian states, namely New South 

Wales (NSW), Victoria (VIC), South Australia (SA), Tasmania (TAS), and Queensland (QLD) for 

three years (2013-2015) [47]. The data points were sampled at a half-hour interval to give 48 data 

points for a day and 17 520 data points for a year. Daily temperatures (minimum and maximum) 

for the following places are considered as exogenous variables: Melbourne for VIC, Adelaide for 

SA, Brisbane for QLD, Hobart and Launceston airport for TAS, and Sydney and Canberra for 

NSW [49]. The statistics of AEMO datasets are summarized in Table 2.  

The dataset is split into training and testing sets. The last three months of each dataset constitute a 

testing set. The input features: the electric data’s (load and pricing) value 𝑥𝑡−48, hour, day, month, 

and the temperature data are used to build a multiple regression model to forecast 𝑥𝑡 for one-day 

horizon (48 steps). The predictive model is built using a training dataset whereas the forecasting 

performance of the built model is based on out-of-sample done using the testing dataset. Each 

dataset is linearly scaled to [0,1] computed as:  
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                                                       𝑥̅𝑖 =
𝑥𝑢 − 𝑥𝑡

𝑥𝑢 − 𝑥𝑙

                                                                                             (6)   

where 𝑥𝑢 and 𝑥𝑙 are max and min values respectively, 𝑥𝑡 is the data point and 𝑥̅𝑖 is the scaled value. 

Table 2: Summary of AEMO Datasets 

Dataset Year Data points Min Max Mean Std. 

TAS 2013 17520 659.5 1650.3 1129.3 142.3 

2014 17520 569.1 1630.1 1109.7 139.0 

2015 17520 479.4 1667.2 1138.2 145.3 

QLD 2013 17520 4148.7 8278.4 5703.7 747.0 

2014 17520 4073.0 8445.3 5745.7 794.0 

2015 17520 4281.4 8808.7 6035.4 777.2 

VIC 2013 17520 9587.5 3551.6 5511.8 895.9 

2014 17520 3272.9 10240.0 5324.4 921.4 

2015 17520 3369.1 8579.9 5194.6 864.7 

NSW 2013 17520 5113.0 13788.0 7981.6 1190.9 

2014 17520 5138.1 11846.0 7917.8 1170.1 

2015 17520 5334.4 12602.0 7979.8 1232.7 

SA 2013 17520 728.6 2991.3 1426.6 301.7 

2014 17520 682.5 3245.9 1403.3 312.8 

2015 17520 696.3 2870.4 1398.5 306.0 

A sliding window (data_window) is set to 240 data points, the minimal possible data_window for 

the proposed model to induce a model. The data_window slides by 48 data points (one-day 

horizon). Thus, for each dataset, at least 90 slides are performed to forecast at least 4320 data 

points (testing set). When an environmental change is detected, the data_window is split:  the first 

80% to training and the remaining 20% to testing which is equivalent to one-day horizon. The 

order of the data points (𝑥𝑡 ) in data_window are not altered since t had an inherent meaning to the 

data pattern. 

3.3 Experimental Setup 

The experimental setup described in [5] is adopted in this work. Experimental work is done in a 

Python environment using Scikit learn [43] on an 8 GB RAM Intel Core i7 processor (3.20 GHz) 

desktop. The predictive performance of the proposed model is benchmarked by NARX-QPSO [10] 

using either unconstrained least squares or SVR as a base regressors. Parameters for QPSO in 

NARX-QPSO and EMD-NARX-QPSO are optimized using a Scikit learn function, GridSearch 

for the selected range of values from the literature. A cross-domain parameter optimization 

approach is adopted [44]. The following obtained optimal values are used in the experiments: 𝑒 =
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10, QPSO parameters: 𝑐1 = 𝑐2 = 0.496190, 𝜔 = 0.729844,  𝑛 = 100, 𝑠𝑤𝑎𝑟𝑚𝑠𝑖𝑧𝑒 = 30, and 

𝑞𝑢𝑎𝑛𝑡𝑢𝑚𝑟𝑎𝑑𝑖𝑢𝑠 = 2.  

4 Results and Discussion  

This section evaluates experimentally the proposed EMD-NARX-QPSO discussed in Section 3 

and presents the obtained generalization results on the evaluation of eight techniques presented in 

Table 1 using MAPE and RMSE. The statistical analysis was performed on the eight populations 

(techniques) at 𝛼 = 0.05 significance level.  

Table 3 presents the obtained median (MD), mean absolute deviation (MAD), and the mean rank 

(MR) among all populations over the samples based on Friedman Test. A significant difference 

between populations exists if the mean rank is greater than CD. 

Table 3:  Friedman Test Results 

Technique MD MAD MR 

Load MAPE RMSE MAPE RMSE MAPE RMSE 

ENQ_S_W 0.038±0.024 232.45±366.97 0.020 207.045 1.326 1.267 

ENQ_S_H  0.037±0.024 231.67±364.54 0.020 214.799 2.315 2.378 

ENQ_S_A  0.037±0.024 227.21±364.15 0.020 207.164 2.685 2.356 

NARX_S  0.013±0.024 0.212±0.336 0.019 0.181 3.761 4.044 

NARX_R  0.000±0.000 0.000±0.000 0.000 0.000 5.391 5.578 

ENQ_R_W  0.000±0.000 0.000±0.000 0.000 0.000 6.087 5.578 

ENQ_R_H  0.000±0.000 0.000±0.000 0.000 0.000 6.913 6.122 

ENQ_R_A  0.000±0.000 0.000±0.000 0.000 0.000 7.522 7.289 

Pricing       

NARX_R 0.075±0.096 0.000±0.005 0.022 0.000 1.000 3.500 

ENQ_S_A 0.006±0.002 0.000±0.000 0.001 0.000 2.778 1.167 

NARX_S 0.006±0.001 0.000±0.000 0.001 0.000 3.056 5.000 

ENQ_S_H 0.006±0.002 0.000±0.000 0.001 0.000 4.000 2.556 

ENQ_S_W 0.006±0.002 0.000±0.000 0.001 0.000 4.167 2.778 

ENQ_R_W 0.000±0.000 0.000±0.000 0.000 0.000 6.583 6.056 

ENQ_R_A 0.000±0.000 0.000±0.000 0.000 0.000 7.139 7.333 

ENQ_R_H 0.000±0.000 0.000±0.000 0.000 0.000 7.278 7.611 
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The following results were obtained for Electric load datasets: 𝐶𝐷 = 1.548 for MAPE and 𝐶𝐷 =

1.565 for RMSE. A value of 𝑝 = 0.000 was obtained for both MAPE and RMSE which implies 

that there was a significant difference between median values of the populations. The results 

obtained from post-hoc Nemenyi test indicates that there exists no significant difference among 

the following sets: {ENQ_S_W, ENQ_S_H, ENQ_S_A}; {ENQ_S_H, ENQ_S_A, NARX_S}; 

{NARX_R, ENQ_R_W, ENQ_R_H}; {ENQ_R_W, ENQ_R_H, ENQ_R_A} for MAPE and 

{ENQ_S_W, ENQ_S_A, ENQ_S_H}; {NARX_S, ENQ_R_W}; {ENQ_R_W, ENQ_R_H, 

ENQ_R_A}; {ENQ_R_H, ENQ_R_A, NARX_R} for RMSE. 

The following results were obtained for Electric pricing datasets: 𝐶𝐷 = 2.475 for MAPE and 𝐶𝐷 =

2.497 for RMSE. A value of 𝑝 = 0.000 was obtained for both MAPE and RMSE which implies 

that there was a significant difference between median values of the populations. The results 

obtained from post-hoc Nemenyi test indicates that there exists no significant difference among 

the following sets: { NARX_R, ENQ_S_A, NARX_S}; {ENQ_S_A, NARX_S, ENQ_S_H, 

ENQ_S_W}; {ENQ_S_W, ENQ_R_W}; {ENQ_R_W, ENQ_R_A, ENQ_R_H} for MAPE and 

{ENQ_S_A, ENQ_S_H, ENQ_S_W, NARX_R}; {ENQ_S_H, ENQ_S_W, NARX_R, 

NARX_S}; {NARX_S, ENQ_R_W, ENQ_R_A}; {ENQ_R_W, ENQ_R_A, ENQ_R_H}  for 

RMSE. 

Figure 1 and Figure 2 are graphical illustrations of the obtained post-hoc Nemenyi test based on 

RMSE (top) and MAPE (bottom) for Electric load and pricing datasets.  

 
Figure 1: Electric Load Nemenyi Test for RMSE (top) and MAPE (bottom) 
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  Figure 2: Electric Pricing Nemenyi Test for RMSE (top) and MAPE (bottom) 

Table 4 presents the results for the eight techniques evaluated using Electric load and pricing 

datasets described in Section 3.2. The best value for each dataset is in boldface. A comparative 

study of the ensemble combining techniques was performed. As illustrated in Figure 1 and 2, there 

exists no statistically significant difference in performance among the ensemble combining 

techniques: averaging, weighted averaging, and additive. As such, the basic averaging technique 

may be ideal compared to the other two combining techniques.  

A comparative study of the base regressors of the NARX model (SVR and unconstrained least 

squares) was performed. As presented in Table 4, the least square technique outperformed the SVR 

technique on both electric load and pricing datasets. The decomposed IMFs were easily modeled 

using least squares technique which entails that the data is from the same data generating process. 

Given that each State was considered separately, for Vic, NARX_R obtained the best RMSE 

whereas the proposed ensemble ENQ _R_A obtained the best MAPE. For SA, the proposed 

ensemble technique ENQ_R_A yielded outstanding performance for all datasets. The NARX_R 

outperformed all other techniques for the NSW dataset on RMSE whereas ENQ_R_A yielded the 

best performance on MAPE. As observed for the NSW dataset, the same was also observed for 

QLD and TAS. The NARX_R obtained the best RMSE and ENQ _R_A the best MAPE for QLD 

and TAS datasets.  
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Table 4: Prediction results for Electric Load and Pricing datasets 

Dataset NARX_R NARX_S ENQ_R_W ENQ_R_A ENQ_R_H ENQ_S_W ENQ_S_A ENQ_S_H 

Electric Load         

VIC_2013_RMSE 9,73e-23 1,87e-01 9,94e-12 7,77e-12 8,39e-12 3,38e+02 3,23e+02 3,25e+02 

VIC_2013_MAPE 1,39e-05 9,32e-05 1,22e-05 1,79e-06 2,09e-06 4,10e-02 4,00e-02 4,01e-02 

VIC_2014_RMSE 2,64e-06 8,01e-01 4,59e-12 3,91e-12 4,00e-12 3,43e+02 3,40e+02 3,39e+02 

VIC_2014_MAPE 1,62e-15 4,73e-05 6,74e-16 5,78e-16 5,88e-16 4,49e-02 4,37e-02 4,39e-02 

VIC_2015_RMSE 1,34e-22 4,00e-04 7,82e-12 3,36e-12 3,93e-12 3,26e+02 3,14e+02 3,22e+02 

VIC_2015_MAPE 7,44e-16 5,50e-05 1,20e-15 3,51e-15 5,23e-16 4,59e-02 4,51e-02 4,54e-02 

SA_2013_RMSE 1,68e-05 8,47e-01 2,06e-12 2,06e-12 2,13e-12 1,53e+02 1,47e+02 1,48e+02 

SA_2013_MAPE 6,31e-03 4,22e-02 1,17e-15 1,17e-15 1,21e-15 8,03e-02 8,01e-02 8,02e-02 

SA_2014_RMSE 2,08e-01 2,03e-01 2,92e-12 2,59e-12 2,61e-12 1,27e+02 1,22e+02 1,22e+02 

SA_2014_MAPE 1,96e-02 3,59e-02 1,64e-15 1,48e-15 1,49e-15 8,10e-02 8,09e-02 8,09e-02 

SA_2015_RMSE 1,99e-01 5,49e-01 2,71e-12 2,16e-12 2,53e-12 1,38e+02 1,29e+02 1,32e+02 

SA_2015_MAPE 2,01e-02 4,02e-02 1,53e-04 4,89e-05 5,06e-05 8,12e-02 8,08e-02 8,11e-02 

NSW_2013_RMSE 2,35e-22 5,93e-01 7,50e-12 5,70e-12 5,77e-12 8,52e+02 8,46e+02 8,44e+02 

NSW_2013_MAPE 9,33e-16 5,22e-02 7,23e-16 5,47e-16 5,67e-16 7,57e-02 7,45e-02 7,45e-02 

NSW_2014_RMSE 3,88e-23 2,50e-01 5,80e-12 2,38e-12 3,83e-12 8,64e+02 8,45e+02 8,50e+02 

NSW_2014_MAPE 8,51e-16 3,88e-02 6,82e-16 5,28e-16 5,83e-16 8,00e-02 7,79e-02 7,79e-02 

NSW_2015_RMSE 2,10e-22 6,24e-01 1,30e-11 5,53e-12 5,77e-12 8,56e+02 8,50e+02 8,52e+02 

NSW_2015_MAPE 1,21e-15 4,36e-02 1,21e-15 5,33e-16 5,50e-16 7,51e-02 7,52e-02 7,53e-02 

QLD_2013_RMSE 1,22e-22 3,01e-01 5,91e-12 5,42e-12 5,46e-12 2,53e+02 2,50e+02 2,50e+02 

QLD_2013_MAPE 1,14e-15 1,29e-06 8,29e-16 6,72e-16 7,64e-16 3,58e-02 3,48e-02 3,50e-02 

QLD_2014_RMSE 9,91e-23 1,33e-01 6,57e-12 3,09e-12 3,23e-12 1,49e+02 1,37e+02 1,36e+02 

QLD_2014_MAPE 1,15e-15 3,53e-05 9,14e-16 4,34e-16 4,50e-16 1,47e-02 1,43e-02 1,44e-02 

QLD_2015_RMSE 7,87e-23 2,68e-01 7,33e-12 4,76e-12 4,69e-12 2,91e+02 2,72e+02 2,67e+02 

QLD_2015_MAPE 8,20e-16 6,10e-03 2,94e-15 6,75e-16 6,65e-16 3,71e-02 3,66e-02 3,65e-02 

TAS_2013_RMSE 7,93e-24 4,10e-01 1,30e-12 8,80e-13 8,67e-13 6,72e+01 6,41e+01 6,26e+01 

TAS_2013_MAPE 7,10e-05 1,45e-02 9,17e-16 2,70e-13 6,03e-16 3,68e-02 3,59e-02 3,58e-02 

TAS_2014_RMSE 1,87e-24 3,36e-01 1,23e-12 6,13e-13 6,47e-13 6,95e+01 6,84e+01 6,73e+01 

TAS_2014_MAPE 7,97e-16 2,04e-02 8,50e-16 4,27e-16 4,43e-16 3,27e-02 3,24e-02 3,41e-02 

TAS_2015_RMSE 3,00e-24 8,81e-02 1,27e-12 6,47e-13 6,73e-13 6,02e+01 6,01e+01 5,95e+01 

TAS_2015_MAPE 8,97e-16 3,29e-02 8,70e-16 4,47e-16 4,60e-16 3,53e-02 3,46e-02 3,48e-02 

Electric pricing         

NSW_RMSE 0.0001 5.52e-07 5.26e-07 3.95e-07 3.88e-07 0.0040 0.00379 0.0035 

NSW_MAPE 3.2e+02 0.0049 0.0003 0.0003 0.0003 0.0329 0.0328 0.0324 

Figure 3 is a graphical illustration of the prediction performance of the EMD-NARX-QPSO 

variants for the last 30 days for the NSW 2015 Electric load dataset and for the last 30 days for the 

NSW Electric pricing dataset. As illustrated in Figure 3, the prediction performance of all variants 

was very high, nearly resembling the actual values for both NSW Electric load and pricing datasets. 
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Figure 3: Prediction performance of the proposed technique on Electric Load and Pricing  

Figure 4 illustrates the computational time of the base regressors and the EMD-NARX-QPSO 

variants for NSW and TAS load datasets. The simple regression-based technique, NARX_R 

obtained the least computational time (fastest). The computational performance of NARX_S was 

superior to all the ensembles. As expected, the ensembles were computational intensive due to the 

extra load introduced by EMD decomposition and independent IMF modeling. However, the 

NARX_R-based ensembles obtained favorable performance due to the computational speed of 

NARX_R. 
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Figure 4: Computational Time for NSW and TAS Load Datasets 

The best performing EMD_NARX variant, ENQ_R_W was compared to the benchmark 

forecasting techniques: general linear model-based load forecaster-benchmark (GLMLF-B) and 

Persistence [5]. Table 5 presents the obtained results of the experiments performed as described in 

[5]. As observed in the results presented in Table 5, ENQ_R_W, outperformed the benchmark 

techniques by a significant margin in all cases. 

A comparative study was carried out to ascertain the performance of the proposed model with 

state-of-the-art techniques.  Table 6 presents the results of the best performing variant, EMD-

NARX-QPSO_R_A, and the EMD-based ensemble state-of-the-art techniques. The experiments 

were carried out as discussed in the literature [5]. 

The results presented in Table 6 show that the proposed ensemble technique, EMD-NARX-QPSO 

outperformed all state-of-the-art techniques on both RMSE and MAPE. Most of the state-of-the-

art techniques were built based on the false stationarity assumption. As such, the induced predictive 

model usually performs sub-optimally at best or fails at worst if a drift is present in the data. 

However, the outstanding performance of  EMD-NARX-QPSO is attributed to its ability to adapt 

the model whenever a drift is detected. 

Thus, if a time series is decomposed into its equivalent IMFs, then simple regression modeling 

techniques such as the least square technique can be used to model each IMF to yield a forecasting 

model of very high precision. 
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Table 5: Prediction results for comparative study using Forecasting Benchmark Techniques 

Dataset NARX_R NARX_S ENQ_R_W GLMLF-B Persistence 

Electric Load      

VIC_2013_RMSE 481.68 401.28 398.18 584.13 781.68 

VIC_2013_MAPE 5.91 3.75 2.84 9.16 10.71 

VIC_2014_RMSE 391.71 428.64 361.25 621.93 719.40 

VIC_2014_MAPE 6.79 7.58 5.86 10.08 11.25 

VIC_2015_RMSE 398.63 432.61 325.37 684.13 874.69 

VIC_2015_MAPE 6.98 8.01 4.88 10.16 12.89 

SA_2013_RMSE 153.26 201.93 138.68 167.37 206.10 

SA_2013_MAPE 9.78 11.60 9.53 10.12 12.62 

SA_2014_RMSE 141.93 198.74 118.14 179.00 242.36 

SA_2014_MAPE 9.70 10.28 7.98 11.66 14.32 

SA_2015_RMSE 179.68 418.52 132.64 244.25 365.14 

SA_2015_MAPE 9.74 4.55 5.91 12.68 18.40 

NSW_2013_RMSE 400.18 411.68 357.85 643.16 901.51 

NSW_2013_MAPE 4.00 3.99 2.87 6.43 8.66 

NSW_2014_RMSE 412.69 497.92 328.50 632.28 878.07 

NSW_2014_MAPE 3.67 5.37 2.39 6.07 8.60 

NSW_2015_RMSE 443.54 283.49 385.31 713.83 1055.41 

NSW_2015_MAPE 4.80 3.07 3.74 6.67 9.69 

QLD_2013_RMSE 221.96 343.16 202.96 355.50 492.59 

QLD_2013_MAPE 2.85 4.27 2.89 4.33 6.35 

QLD_2014_RMSE 275.00    328.19 281.38 399.91 588.71 

QLD_2014_MAPE 3.34 4.47 3.73 5.07 7.14 

QLD_2015_RMSE 286.70 326.38 249.31 369.41 553.08 

QLD_2015_MAPE 3.40 3.53 3.27 4.75 6.63 

TAS_2013_RMSE 57.09 67.90 51.06 84.10 97.86 

TAS_2013_MAPE 4.48 5.37 3.68 6.04 6.87 

TAS_2014_RMSE 57.81 72.68 49.81 82.19 86.86 

TAS_2014_MAPE 4.61 5.27 3.99 6.32 6.52 

TAS_2015_RMSE 58.61 68.93 59.23 75.81 83.99 

TAS_2015_MAPE 4.46 5.34 3.79 4.30 5.45 

 

Table 6: Prediction results for comparative study using NSW_2015 dataset 

Dataset DWT_EMD_RFVL  EMD_RFVL  EMD_RF  EMD_SLFN  EMD_NARX_QPSO 

Oct_RMSE 193.80 403.27 428.39 379.87 112.83 

Oct_MAPE 0.0186 0.0342 0.0333 0.0332 0.0101 

Jul_RMSE 212.70 411.82 441.05 400.46 123.65 

Jul_MAPE 0.0203 0.0386 0.0397 0.0403 0.0137 

Apr_RMSE 296.74 423.29 402.97 440.43 204.47 

Apr_MAPE 0.0296 0.0442 0.0414 0.0472 0.0117 

Jan_RMSE 659.41 987.33 911.77 913.70 417.05 

Jan_MAPE 0.0593 0.0704 0.0682 0.0722 0.0338 
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In some cases, the performance of EMD-NARX-QPSO was in the same error range with NARX-

QPSO which implies that signifinance performance improvement was evident for complex time 

series.  

The results from the previous studies shows that Electric load datasets exhibits nonlinearity and 

nonstationary behavior [5]. The comparative study of EMD-NARX-QPSO to the forecasting 

benchmark techniques presented in Table 6 indicates that EMD-NARX-QPSO had the ability to 

capture drifting concepts and adapts the forecasting model accordingly to yield an improved 

performance. The outstanding performance of EMD-NARX-QPSO could have been attributed to 

the ability to detect concepts drifts, dynamic adaptation of the model and independent modeling 

of each IMF. Also, the outstanding performance of EMD-NARX-QPSO compared to the state-of-

the-art techniques could have been attributed to the optimal predictive model induced by NARX 

using least-squares as its base regressor and also, the adaptive incremental learning ability of the 

proposed model to environmental changes due to concept shifts. 

Nevertheless, EMD formalism remains the one of the greatest challenges in the EMD-NARX-

QPSO and also, decomposing the times series into its respective IMFs posed a load on resources. 

Thus, the improved performance was realized at the expense of interpretable, transparency 

computational complexity of the induced model. Alternatively, deep learning techniques could 

yield comparative results to EMD-NARX-QPSO. The scope of the study was limited to electricity 

load and pricing time series data. 

5 Conclusion and Future Work 

Electric load and pricing time series can be considered as a stream of incoming data; therefore, 

adaptive incremental learning becomes ideal. One of the most significant challenges in incremental 

learning is concept drift, which occurs when the statistical properties of the target variable drift in 

unexpected ways. This work proposed an ensemble technique that combines EMD and NARX-

QPSO to capture changes due to concept drifting and inherent nonlinearity in time series. The 

experiments conducted in this work led to the following conclusions: hybridizing EMD with 

NARX-QPSO improves predictive accuracy. The performance measure used in the proposed 

technique promoted the induction of models with lower error dispersion and improved predictive 

accuracy. The extracted IMFs were modeled to a higher degree of accuracy using a simple base 
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regressor, unconstrained least-squares approximation. The effects of ensemble combining 

techniques on the overall performance of the induced predictive model were insignificant and the 

performance of EMD-NARX-QPSO was competitive to the state-of-the-art techniques. 

A detailed empirical analysis of EMD-NARX-QPSO can be considered for future work direction 

such as the effect of the combined performed measure, the cost of prediction errors, and the 

technique's search capability. Robust combining techniques such as bagging can be considered. 
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