Skip to main content
Log in

Correcting rainfall forecasts of a numerical weather prediction model using generative adversarial networks

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

In recent years, the use of deep learning techniques to forecast the weather has increased significantly; however, existing machine learning methods based on observed data are only suitable for very short-term forecasting. Numerical models are more stable for short- and medium-term forecasting, but the results may deviate from the observed data. This study proposes a deep learning method to improve the performance of numerical weather prediction models. In this method, the transformation relationship between the output of the numerical model and the observed data is learned by a generative adversarial network, which is then used to correct the forecasts of the numerical model. Experiments on 9 months of paired numerical model data and observed radar data demonstrate that correction of the forecast data using this method improves prediction performance, especially of heavy rainfall events. The proposed method provides a practical approach to combining conventional numerical weather prediction with data-driven deep learning models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The data and code used in this study are available upon reasonable request to the author.

References

  1. Lim Y, Choi H (2020) Regression models on flood damage records by rainfall characteristics for regional flood damage estimates. J Wetl Res 22(4):302–311. https://doi.org/10.17663/JWR.2020.22.4.302

    Article  MathSciNet  Google Scholar 

  2. Jang OJ, Kim YO (2009) (2009) Flood risk estimation using regional regression analysis. J Korean Soc Hazard Mitig 9(4):71–80

    Google Scholar 

  3. Hwang Y, Clark AJ, Lakshmanan V, Koch SE (2015) Improved nowcasts by blending extrapolation and model forecasts. Weather Forecast 30(5):1201–1217. https://doi.org/10.1175/WAF-D-15-0057.1

    Article  Google Scholar 

  4. Shakti PC, Misumi R, Nakatani T, Iwanami K, Maki M, Seed AW, Hirano K (2015) Comparison of rainfall nowcasting derived from the STEPS model and JMA precipitation nowcasts. Hydrol Res Lett 9(4):54–60. https://doi.org/10.3178/hrl.9.54

    Article  Google Scholar 

  5. Zhang P, Jia Y, Gao J, Song W, LeungH H (2020) Short-term rainfall forecasting using multi-layer perceptron. IEEE Trans Big Data 6(1):93–106. https://doi.org/10.1109/TBDATA.2018.2871151

    Article  Google Scholar 

  6. Sun J, Xue M, Wilson JW, Zawadzki I, Ballard SP, Onvlee-Hooimeyer J, Joe P, Barker DM, Li PW, Golding B, Xu M (2014) Use of NWP for nowcasting convective precipitation: Recent progress and challenges. Bull Am Meteorol Soc 95(3):409–426. https://doi.org/10.1175/BAMS-D-11-00263.1

    Article  Google Scholar 

  7. Wilson JW, Feng Y, Chen M, Roberts RD (2010) Nowcasting challenges during the Beijing Olympics: Successes, failures, and implications for future nowcasting systems. Weather Forecast 25(6):1691–1714. https://doi.org/10.1175/2010WAF2222417.1

    Article  Google Scholar 

  8. Browning KA (1980) Local weather forecasting. Proc Roy Soc Lond 371(1745):179–211

    Google Scholar 

  9. Austin, G.L., Dionne, P. and Roch M (1987) On the interaction between radar and satellite image nowcasting systems and mesoscale numerical models. Proc. Mesoscale Analysis and Forecasting 225–228

  10. Ravuri S, Lenc K, Willson M, Kangin D, Lam R, Mirowski P, Fitzsimons M, Athanassiadou M, Kashem S, Madge S, Prudden R (2021) Skilful precipitation nowcasting using deep generative models of radar. Nature 597(7878):672–677. https://doi.org/10.1038/s41586-021-03854-z

    Article  Google Scholar 

  11. Espeholt, L., Agrawal, S., Sønderby, C., Kumar, M., Heek, J., Bromberg, C., Gazen, C., Hickey, J., Bell, A. and Kalchbrenner, N. (2021) Skillful twelve hour precipitation forecasts using large context neural networks. arXiv preprint arXiv:2111.07470:1–34 doi:https://doi.org/10.48550/arXiv.2111.07470

  12. Ronneberger O, Fischer P, Brox T (2015) U-Net: Convolutional Networks for Biomedical Image Segmentation. International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI). https://doi.org/10.1109/ACCESS.2021.3053408

    Article  Google Scholar 

  13. Sønderby CK, Espeholt L, Heek J, Dehghani M, Oliver A, Salimans T, Agrawal S, Hickey J, Kalchbrenner N (2020) MetNet: A neural weather model for precipitation forecasting. ArXiv:1–17. doi: https://doi.org/10.48550/arXiv.2003.12140

  14. Shi X, Chen Z, Wang H, Yeung DY, Wong WK, Woo WC (2003) Convolutional LSTM network: A machine learning approach for precipitation nowcasting. Adv Neural Inf Process Syst 28:802–810

    Google Scholar 

  15. Shi X, Gao Z, Lausen L, Wang H, Yeung DY, Wong WK, Woo WC (2017) Deep learning for precipitation nowcasting: A benchmark and a new model. Adv Neural Inf Process Syst 30:5617–5627

    Google Scholar 

  16. Im CH, Yun SY (2020) Precipitation nowcasting using grid-based data in South Korea region. IEEE International Conference on Data Mining Workshops, ICDMW 2020-Novem:701–706 doi: https://doi.org/10.1109/ICDMW51313.2020.00099

  17. Munoz-Organero M, Ruiz-Blaquez R, Sánchez-Fernández L (2018) Automatic detection of traffic lights, street crossings and urban roundabouts combining outlier detection and deep learning classification techniques based on GPS traces while driving. Comput Environ Urban Syst 68:1–8. https://doi.org/10.1016/j.compenvurbsys.2017.09.005

    Article  Google Scholar 

  18. Huval B, Wang T, Tandon S, Kiske J, Song W, Pazhayampallil J, Andriluka M, Rajpurkar P, Migimatsu T, Cheng-Yue R, Mujica FA, Coates A, Ng AY (2015) An empirical evaluation of deep learning on highway driving. CoRR, vol. abs/1504.0

  19. Grigorescu S, Trasnea B, Cocias T, Macesanu G (2020) A survey of deep learning techniques for autonomous driving. J F Robot 37(3):362–386. https://doi.org/10.1002/rob.21918

    Article  Google Scholar 

  20. Esteva A, Robicquet A, Ramsundar B, Kuleshov V, DePristo M, Chou K, Cui C, Corrado G, Thrun S, Dean J (2019) A guide to deep learning in healthcare. Nat Med 25(1):24–29. https://doi.org/10.1038/s41591-018-0316-z

    Article  Google Scholar 

  21. Faust O, Hagiwara Y, Hong TJ, Lih OS, Acharya UR (2018) Deep learning for healthcare applications based on physiological signals: A review. Comput Method Progr Biomed 161:1–13. https://doi.org/10.1016/j.cmpb.2018.04.005

    Article  Google Scholar 

  22. Purushotham S, Meng C, Che Z, Liu Y (2018) Benchmarking deep learning models on large healthcare datasets. J Biomed Inform 83(June):112–134. https://doi.org/10.1016/j.jbi.2018.04.007

    Article  Google Scholar 

  23. Chen Q, Wang W, Wu F, De S, Wang R, Zhang B, Huang X (2019) A survey on an Emerging area: Deep learning for smart city data. IEEE Trans Emerg Top Comput Intell 3(5):392–410. https://doi.org/10.1109/TETCI.2019.2907718

    Article  Google Scholar 

  24. Wang L, Sng D (2015) Deep Learning algorithms with applications to video analytics for a smart city: A survey. ArXiv. https://doi.org/10.48550/arXiv.1512.03131

    Article  Google Scholar 

  25. Mohammadi M, Al-Fuqaha A, Guizani M, Oh JS (2018) Semisupervised deep reinforcement learning in support of iot and smart city services. IEEE Internet Things J 5(2):624–635. https://doi.org/10.1109/JIOT.2017.2712560

    Article  Google Scholar 

  26. Skamarock WC, Klemp JB, Dudhia J, Gill DO, Barker D, Duda MG, Huang XY, Wang W Powers JG (2008) A description of the advanced research WRF version 3. NCAR Technical Note-475+STR https://doi.org/10.5065/D68S4MVH

  27. Banadkooki FB, Ehteram M, Ahmed AN, Fai CM, Afan HA, Ridwam WM, Sefelnasr A, El-Shafie A (2019) Precipitation forecasting using multilayer neural network and support vector machine optimization based on flow regime algorithm taking into account uncertainties of soft computing models. Sustain 11(23):6681. https://doi.org/10.3390/su11236681

    Article  Google Scholar 

  28. Nourani V, Uzelaltinbulat S, Sadikoglu F, Behfar N (2019) Artificial intelligence based ensemble modeling for multi-station prediction of precipitation. Atmosphere (Basel). 10(2) doi: https://doi.org/10.3390/atmos10020080

  29. Tran Anh D, Duc Dang T, Pham Van S (2019) improved rainfall prediction using combined pre-processing methods and feed-forward neural networks. J. 2(1):65–83, 2019 doi: https://doi.org/10.3390/j2010006

  30. Benevides P, Catalao J, Nico G (2019) neural network approach to forecast hourly intense rainfall using GNSS precipitable water vapor and meteorological sensors. Remote Sens 11(8):966. https://doi.org/10.3390/rs11080966

    Article  Google Scholar 

  31. Poornima S, Pushpalatha M (2019) prediction of rainfall using intensified LSTM based recurrent neural network with weighted linear units. Atmosphere (Basel) 10(11):668. https://doi.org/10.3390/atmos10110668

    Article  Google Scholar 

  32. Castro R, Souto YM, Ogasawara E, Porto F, Bezerra E (2021) STConvS2S: Spatiotemporal convolutional sequence to sequence network for weather forecasting. Neurocomputing 426:285–298. https://doi.org/10.1016/j.neucom.2020.09.060

    Article  Google Scholar 

  33. Agrawal S, Barrington L, Bromberg C, Burge J, Gazen C, Hickey J (2019) machine learning for precipitation nowcasting from radar images. 33rd Conference on Neural Information Processing Systems (NeurIPS 2019):1–6

  34. Ayzel G, Scheffer T, Heistermann M (2020) RainNet v1.0: a convolutional neural network for radar-based precipitation nowcasting. Geosci. Model Dev. Discuss. 13(6):1–20, 2020

  35. Lebedev V, Ivashkin V, Rudenko I, Ganshin A, Molchanov A, Ovcharenko S, Grokhovetskiy R, Bushmarinov I, Solomentsev D (2019) Precipitation nowcasting with satellite imagery. Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. https://doi.org/10.1145/3292500.3330762

    Article  Google Scholar 

  36. Ayzel G, Heistermann M, Sorokin A, Nikitin O, Lukyanova O (2019) All convolutional neural networks for radar-based precipitation nowcasting. Procedia Comput Sci 150:186–192. https://doi.org/10.1016/j.procs.2019.02.036

    Article  Google Scholar 

  37. Kumar A, Islam T, Sekimoto Y, Mattmann C, Wilson B (2020) ConvCast: An embedded convolutional LSTM based architecture for precipitation nowcasting using satellite data. PLoS ONE 15(3):1–18. https://doi.org/10.1371/journal.pone.0230114

    Article  Google Scholar 

  38. Ballas N, Yao L, Pal C, Courville A (2016) Delving deeper into convolutional networks for learning video representations. 4TH International Conference on Learning Representations, ICLR 2016 - Conference Track Proceedings, 2016

  39. Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair, S, Courville A, Bengio Y, (2014) Generative adversarial nets. Advances in neural information processing systems, 27

  40. Isola P, Zhu JY, Zhou T, Efros AA (2017) Image-to-image translation with conditional adversarial networks. Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition. 5967–5976. https://doi.org/10.1109/CVPR.2017.632

  41. Zhu JY, Park T, Isola P, Efros AA (2017) Unpaired image-to-image translation using cycle-consistent adversarial networks. Proceedings of the IEEE International Conference on Computer Vision. https://doi.org/10.1109/ICCV.2017.244

    Article  Google Scholar 

  42. He, K., Zhang, X., Ren, S. and Sun, J. (2016) Deep residual learning for image recognition. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 2016-DECEM:770–778. doi: https://doi.org/10.1109/CVPR.2016.90

  43. Mao M, Li Q, Xie H, Lau RYK, Wang Z, Smolley SP (2017) Least squares generative adversarial networks xudong. IEEE International Conference on Computer Vision (ICCV). https://doi.org/10.1080/0142569900110108

    Article  Google Scholar 

  44. Kim, T., Cha, M., Kim, H., Lee, J.K. and Kim, J. (2017) Learning to discover cross-domain relations with generative adversarial networks. In: 34th International Conference on Machine Learning. 2941–2949.

  45. Hong SY, Lim JOJ (2006) The WRF single-moment 6-class microphysics scheme (WSM6). J Korean Meteorol Soc 42(2):129–151

    Google Scholar 

  46. Kain JS (2004) The kain-fritsch convective parameterization: An Update. J Appl Meteorol 43:170–181. https://doi.org/10.1175/1520-0450(2004)043%3c0170:TKCPAU%3e2.0.CO;2

    Article  Google Scholar 

  47. Hong SY, Noh Y, Dudhia J (2006) A new vertical diffusion package with an explicit treatment of entrainment processes. Mon Weather Rev 134(9):2318–2341. https://doi.org/10.1175/MWR3199.1

    Article  Google Scholar 

  48. Iacono MJ, Delamere JS, Mlawer EJ, Shephard MW, Clough SA, Collins WD (2008) Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J Geophys Res Atmos 113(13):2–9. https://doi.org/10.1029/2008JD009944

    Article  Google Scholar 

  49. Hogan RJ, Ferro CA, Jolliffe IT, Stephenson DB (2010) Equitability revisited: Why the ‘equitable threat score’ is not equitable. Weather Forecast 25(2):710–726. https://doi.org/10.1175/2009WAF2222350.1

    Article  Google Scholar 

  50. Hinton GE, Salakhutdinov RR (2006) Reducing the dimensionality of data with neural networks. Science (80-) 313(5786):504–507 doi: https://doi.org/10.1126/science.1127647

  51. Srivastava N, Mansimov E, Salakhudinov R (2015) Unsupervised learning of video representations using LSTMs. In: International Conference on Machine Learning (ICML) 37:843–852

    Google Scholar 

Download references

Acknowledgements

This research was supported by Ministry of Science, ICT, Republic of Korea (Project No. K-22-L04-C06-S01)

Author information

Authors and Affiliations

Authors

Contributions

C.-H.J. and M.Y.Y. contributed to conceptualization, methodology, formal analysis, investigation, and writing—review and editing; C.-H.J. contributed to writing—original draft preparation and resources; M.Y.Y. contributed to supervision. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Mun Yong Yi.

Ethics declarations

Conflict of interests

There are no competing interests to declare.

Consent

Not applicable.

Ethics approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeong, CH., Yi, M.Y. Correcting rainfall forecasts of a numerical weather prediction model using generative adversarial networks. J Supercomput 79, 1289–1317 (2023). https://doi.org/10.1007/s11227-022-04686-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-022-04686-y

Keywords

Navigation