Abstract
Multiple sequence alignment approaches refer to algorithmic solutions for the alignment of biological sequences. Since multiple sequence alignment has exponential time complexity when a dynamic programming approach is applied, a substantial number of parallel computing approaches have been implemented in the last two decades to improve their performance. In this paper, we present a systematic literature review of parallel computing approaches applied to multiple sequence alignment algorithms for proteins, published in the open literature from 1988 to 2022; we extracted articles from four scientific databases: ACM Digital Library, IEEE Xplore, Science Direct and SpringerLink, and four journals: Bioinformatics, PLOS Computational Biology, PLOS ONE, and Scientific Reports. Additionally, in order to cover other potential databases and journals, we performed a transversal search through Google Scholar. We conducted a selection process that yielded 106 research articles; then, we analyzed these articles and defined a classification framework. Additionally, we point out some directions and trends for parallel computing approaches for multiple sequence alignment, as well as some unsolved problems.


Similar content being viewed by others
Data availability
All data generated or analyzed during this study are included in this published article and its supplementary information file.
References
Bayat A (2002) Bioinformatics. BMJ 324(7344):1018–1022. https://doi.org/10.1136/bmj.324.7344.1018
Ramsden J (2009) Bioinformatics: An Introduction, 2nd edn. Springer, London, England. https://doi.org/10.1007/978-1-84800-257-9
Durbin R, Eddy SR, Krogh A, Mitchison G (1998) Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids. Cambridge University Press, Cambridge, England. https://doi.org/10.1017/CBO9780511790492
Henikoff S, Henikoff JG (1992) Amino acid substitution matrices from protein blocks. Proc Nat Acad Sci U. S. A. 89(22):10915–10919. https://doi.org/10.1073/pnas.89.22.10915
Bonizzoni P, Vedova GD (2001) The complexity of multiple sequence alignment with SP-score that is a metric. Theor Comput Sci 259(1):63–79. https://doi.org/10.1016/S0304-3975(99)00324-2
Wernersson R, Pedersen AG (2003) RevTrans: multiple alignment of coding DNA from aligned amino acid sequences. Nucleic Acids Res 31(13):3537–3539. https://doi.org/10.1093/nar/gkg609
Abascal F, Zardoya R, Telford MJ (2010) TranslatorX: multiple alignment of nucleotide sequences guided by amino acid translations. Nucleic Acids Research 38(supp 2):7–13. https://doi.org/10.1093/nar/gkq291
Kitchenham BA, Charters S (2007) Guidelines for performing systematic literature reviews in software engineering. Technical Report EBSE 2007-001, Keele University and Durham University Joint Report. https://www.elsevier.com/__data/promis_misc/525444systematicreviewsguide.pdf
Chen L, Ali Babar M (2011) A systematic review of evaluation of variability management approaches in software product lines. Inf Softw Technol 53(4):344–362. https://doi.org/10.1016/j.infsof.2010.12.006. Special Section: Software Engineering track of the 24th Annual Symposium on Applied Computing
Salleh N, Mendes E, Grundy J (2011) Empirical studies of pair programming for CS/SE teaching in higher education: a systematic literature review. IEEE Trans Softw Eng 37(4):509–525. https://doi.org/10.1109/TSE.2010.59
Hall T, Beecham S, Bowes D, Gray D, Counsell S (2012) A systematic literature review on fault prediction performance in software engineering. IEEE Trans Softw Eng 38(6):1276–1304. https://doi.org/10.1109/TSE.2011.103
Galster M, Weyns D, Tofan D, Michalik B, Avgeriou P (2014) Variability in software systems–a systematic literature review. IEEE Trans Softw Eng 40(3):282–306. https://doi.org/10.1109/TSE.2013.56
de Freitas Junior M, Fantinato M, Sun V (2015) Improvements to the function point analysis method: a systematic literature review. IEEE Trans Eng Manag 62(4):495–506. https://doi.org/10.1109/TEM.2015.2453354
Hujainah F, Bakar RBA, Abdulgabber MA, Zamli KZ (2018) Software requirements prioritisation: a systematic literature review on significance, stakeholders, techniques and challenges. IEEE Access 6:71497–71523. https://doi.org/10.1109/ACCESS.2018.2881755
Flores-Contreras J, Duran-Limon HA, Chavoya A, Almanza-Ruiz SH (2021) Performance prediction of parallel applications: a systematic literature review. J Supercomput 77(4):4014–4055. https://doi.org/10.1007/s11227-020-03417-5
Mahdavi-Hezavehi S, Galster M, Avgeriou P (2013) Variability in quality attributes of service-based software systems: a systematic literature review. Inf Softw Technol 55(2):320–343. https://doi.org/10.1016/j.infsof.2012.08.010. Special Section: Component-Based Software Engineering (CBSE), 2011
Bornmann L, Daniel H-D (2007) What do we know about the h index? J Am Soc Inf Sci Technol 58(9):1381–1385. https://doi.org/10.1002/asi.20609
Welcome to CORE. Accessed: 2022-01-26 (2022). https://www.core.edu.au Accessed 2022-01-26
Tajima K (1988) Multiple DNA and protein sequence alignment on a workstation and a supercomputer. Bioinformatics 4(4):467–471. https://doi.org/10.1093/bioinformatics/4.4.467
Date S, Kulkarni R, Kulkarni B, Kulkarni-Kale U, Kolaskar AS (1993) Multiple alignment of sequences on parallel computers. Bioinformatics 9(4):397–402. https://doi.org/10.1093/bioinformatics/9.4.397
Ishikawa M, Toya T, Hoshida M, Nitta K, Ogiwara A, Kanehisa M (1993) Multiple sequence alignment by parallel simulated annealing. Bioinformatics 9(3):267–273. https://doi.org/10.1093/bioinformatics/9.3.267
Yap TK, Munson PJ, Frieder O, Martino RL (1995) Parallel multiple sequence alignment using speculative computation. In: Proceedings of the 1995 International Conference on Parallel Processing ICPP
Hughey R, Krogh A (1996) Hidden Markov models for sequence analysis: extension and analysis of the basic method. Bioinformatics 12(2):95–107. https://doi.org/10.1093/bioinformatics/12.2.95
Martino RL, Yap TK, Suh EB (1997) Parallel algorithms in molecular biology. In: Hertzberger B, Sloot P (eds) High-Performance Computing and Networking. Springer, Berlin, Heidelberg, pp 232–240
Yap TK, Frieder O, Martino RL (1998) Parallel computation in biological sequence analysis. IEEE Trans Paral Distrib Syst 9(3):283–294. https://doi.org/10.1109/71.674320
Anbarasu LA, Narayanasamy P, Sundararajan V (1999) Multiple sequence alignment using parallel genetic algorithms. In: McKay B, Yao X, Newton CS, Kim J-H, Furuhashi T (eds) Simulated Evolution and Learning. Springer, Berlin, Heidelberg, pp 130–137
Anbarasu LA, Narayanasamy P, Sundararajan V (2000) Multiple molecular sequence alignment by island parallel genetic algorithm. Curr Sci 78(7):858–863
Catalyurek U, Stahlberg E, Ferreira R, Kurc T, Saltz J (2002) Improving performance of multiple sequence alignment analysis in multi-client environments. In: Proceedings 16th International Parallel and Distributed Processing Symposium, p. 8. https://doi.org/10.1109/IPDPS.2002.1016584
Kleinjung J, Douglas N, Heringa J (2002) Parallelized multiple alignment. Bioinformatics 18(9):1270–1271. https://doi.org/10.1093/bioinformatics/18.9.1270
Catalyurek U, Gray M, Kurc T, Saltz J, Stahlberg E, Ferreira R (2003) A component-based implementation of multiple sequence alignment. In: Proceedings of the 2003 ACM Symposium on Applied Computing. SAC ’03, pp. 122–126. Association for Computing Machinery, New York, NY, USA. https://doi.org/10.1145/952532.952559
Cheetham J, Dehne F, Pitre S, Rau-Chaplin A, Taillon PJ (2003) Parallel CLUSTAL W for PC clusters. In: Kumar, V., Gavrilova, M.L., Tan, C.J.K., L’Ecuyer, P. (eds.) International Conference on Computational Science and Its Applications — ICCSA 2003, pp. 300–309. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44843-8_32
Li K-B (2003) ClustalW-MPI: ClustalW analysis using distributed and parallel computing. Bioinformatics 19(12):1585–1586. https://doi.org/10.1093/bioinformatics/btg192
Zhihua D, Feng L (2003) Parallel computation for multiple sequence alignments. In: Fourth International Conference on Information, Communications and Signal Processing, 2003 and the Fourth Pacific Rim Conference on Multimedia. Proceedings of the 2003 Joint, vol. 1, pp. 300–3031. https://doi.org/10.1109/ICICS.2003.1292464
Ebedes J, Datta A (2004) Multiple sequence alignment in parallel on a workstation cluster. Bioinformatics 20(7):1193–1195. https://doi.org/10.1093/bioinformatics/bth055
Parmentier G, Trystram D, Zola J (2004) Cache-based parallelization of multiple sequence alignment problem. In: Danelutto M, Vanneschi M, Laforenza D (eds) Euro-Par 2004 Parallel Processing. Springer, Berlin, Heidelberg, pp 1005–1012. https://doi.org/10.1007/978-3-540-27866-5_135
Schmollinger M, Nieselt K, Kaufmann M, Morgenstern B (2004) DIALIGN P: Fast pair-wise and multiple sequence alignment using parallel processors. BMC Bioinformatics 5(1):128. https://doi.org/10.1186/1471-2105-5-128
Lin X, Peiheng Z, Dongbo B, Shengzhong F, Ninghui S (2005) To accelerate multiple sequence alignment using FPGAs. In: Eighth International Conference on High-Performance Computing in Asia-Pacific Region (HPCASIA’05), pp. 5–180. https://doi.org/10.1109/HPCASIA.2005.96
Lopes HS, Moritz GL (2005) A distributed approach for a multiple sequence alignment algorithm using a parallel virtual machine. In: 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference, pp. 2843–2846. https://doi.org/10.1109/IEMBS.2005.1617066
Luo J, Ahmad I, Ahmed M, Paul R (2005) Parallel multiple sequence alignment with dynamic scheduling. In: International Conference on Information Technology: Coding and Computing (ITCC’05) - Volume II, vol. 1, pp. 8–131. https://doi.org/10.1109/ITCC.2005.223
Oliver T, Schmidt B, Maskell D, Nathan D, Clemens R (2005) Multiple sequence alignment on an FPGA. In: 11th International Conference on Parallel and Distributed Systems (ICPADS’05), vol. 2, pp. 326–330. https://doi.org/10.1109/ICPADS.2005.202
Oliver T, Schmidt B, Nathan D, Clemens R, Maskell D (2005) Using reconfigurable hardware to accelerate multiple sequence alignment with ClustalW. Bioinformatics 21(16):3431–3432. https://doi.org/10.1093/bioinformatics/bti508
Rajasekaran S, Thapar V, Dave H, Huang C-H (2005) Randomized and parallel algorithms for distance matrix calculations in multiple sequence alignment. J Clin Monit Comput 19(4):351–359. https://doi.org/10.1007/s10877-005-0680-3
Tan G, Feng S, Sun N (2005) Parallel multiple sequences alignment in SMP cluster. In: Eighth International Conference on High-Performance Computing in Asia-Pacific Region (HPCASIA’05), pp. 6–431. https://doi.org/10.1109/HPCASIA.2005.70
Trystram D, Zola J (2005) Parallel multiple sequence alignment with decentralized cache support. In: Cunha JC, Medeiros PD (eds) Euro-Par 2005 Parallel Processing. Springer, Berlin, Heidelberg, pp 1217–1226. https://doi.org/10.1007/11549468_133
Chaichoompu K, Kittitornkun S, Tongsima S (2006) MT-ClustalW: multithreading multiple sequence alignment. In: Proceedings 20th IEEE International Parallel Distributed Processing Symposium, p. 8. https://doi.org/10.1109/IPDPS.2006.1639537
Chaichoompu K, Kittitornkun S (2006) Multithreaded ClustalW with improved optimization for Intel multi-core processor. In: 2006 International Symposium on Communications and Information Technologies, pp. 590–594. https://doi.org/10.1109/ISCIT.2006.340018
Deng X, Li E, Shan J, Chen W (2006) Parallel implementation and performance characterization of MUSCLE. In: Proceedings 20th IEEE International Parallel Distributed Processing Symposium, p. 7. https://doi.org/10.1109/IPDPS.2006.1639616
Du Z, Lin F (2006) pNJTree: A parallel program for reconstruction of neighbor-joining tree and its application in ClustalW. Paral Comput 32(5):441–446. https://doi.org/10.1016/j.parco.2006.05.001
Oliver T, Schmidt B, Maskell D, Nathan D, Clemens R (2006) High-speed multiple sequence alignment on a reconfigurable platform. Int J Bioinf Res Appl 2(4):394–406. https://doi.org/10.1504/IJBRA.2006.011038
Rezaei S, Monwar MM (2006) Divide-and-Conquer algorithm for ClustalW-MPI. In: 2006 Canadian Conference on Electrical and Computer Engineering, pp. 717–720. https://doi.org/10.1109/CCECE.2006.277630
Rezaei S, Monwar MM, Bai J (2006) Performance comparison of MPI-based parallel multiple sequence alignment algorithm using single and multiple guide trees. In: 2006 5th IEEE International Conference on Cognitive Informatics, vol. 1, pp. 595–600. https://doi.org/10.1109/COGINF.2006.365552
Tan G, Peng L, Feng S, Sun N (2006) Load balancing and parallel multiple sequence alignment with tree accumulation. In: Nagel WE, Walter WV, Lehner W (eds) Euro-Par 2006 Parallel Processing. Springer, Berlin, Heidelberg, pp 1138–1147. https://doi.org/10.1007/11823285_120
Zola J, Trystram, D, Tchernykh A, Brizuela C (2006) Parallel multiple sequence alignment with local phylogeny search by simulated annealing. In: Proceedings 20th IEEE International Parallel Distributed Processing Symposium, p. 8. https://doi.org/10.1109/IPDPS.2006.1639536
Lin CY, Huang CT, Chung Y-C, Tang CY (2007) Efficient parallel algorithm for optimal three-sequences alignment. In: 2007 International Conference on Parallel Processing (ICPP 2007), pp. 14–14. https://doi.org/10.1109/ICPP.2007.38
Liu W, Schmidt B, Voss G, Muller-Wittig W (2007) Streaming algorithms for biological sequence alignment on GPUs. IEEE Trans Paral Distrib Syst 18(9):1270–1281. https://doi.org/10.1109/TPDS.2007.1069
Low DHP, Veeravalli B, Bader DA (2007) On the design of high-performance algorithms for aligning multiple protein sequences on mesh-based multiprocessor architectures. J Paral Distrib Comput 67(9):1007–1017. https://doi.org/10.1016/j.jpdc.2007.03.007
Zola J, Yang X, Rospondek A, Aluru S (2007) PARALLEL-TCOFFEE: A parallel multiple sequence aligner. In: Proceedings of the ISCA 20th International Conference on Parallel and Distributed Computing Systems, September 24-26, 2007, Las Vegas, Nevada, USA, pp. 248–253
Helal M, El-Gindy H, Mullin L, Gaeta B (2008) Parallelizing optimal multiple sequence alignment by dynamic programming. In: 2008 IEEE International Symposium on Parallel and Distributed Processing with Applications, pp. 669–674. https://doi.org/10.1109/ISPA.2008.93
Manavski SA, Valle G (2008) CUDA compatible GPU cards as efficient hardware accelerators for Smith-Waterman sequence alignment. BMC Bioinf 9(2):10. https://doi.org/10.1186/1471-2105-9-S2-S10
Saeed F, Khokhar A (2008) Sample-Align-D: A high performance multiple sequence alignment system using phylogenetic sampling and domain decomposition. In: 2008 IEEE International Symposium on Parallel and Distributed Processing, pp. 1–9. https://doi.org/10.1109/IPDPS.2008.4536174
Bradley RK, Roberts A, Smoot M, Juvekar S, Do J, Dewey C, Holmes I, Pachter L (2009) Fast statistical alignment. PLOS Comput Biol 5(5):1–15. https://doi.org/10.1371/journal.pcbi.1000392
Liu Y, Schmidt B, Maskell DL (2009) MSA-CUDA: Multiple sequence alignment on graphics processing units with CUDA. In: 2009 20th IEEE International Conference on Application-specific Systems, Architectures and Processors, pp. 121–128. https://doi.org/10.1109/ASAP.2009.14
Liu Y, Schmidt B, Maskell DL (2009) Parallel reconstruction of neighbor-joining trees for large multiple sequence alignments using CUDA. In: 2009 IEEE International Symposium on Parallel Distributed Processing, pp. 1–8. https://doi.org/10.1109/IPDPS.2009.5160923
Saeed F, Khokhar A (2009) A domain decomposition strategy for alignment of multiple biological sequences on multiprocessor platforms. J Paral Distrib Comput 69(7):666–677. https://doi.org/10.1016/j.jpdc.2009.03.006
Wirawan A, Schmidt B, Kwoh CK (2009) Pairwise distance matrix computation for multiple sequence alignment on the cell broadband engine. In: Allen G, Nabrzyski J, Seidel E, van Albada GD, Dongarra J, Sloot PMA (eds) Computational Science - ICCS 2009. Springer, Berlin, Heidelberg, pp 954–963
Di Tommaso P, Orobitg M, Guirado F, Cores F, Espinosa T, Notredame C (2010) Cloud-Coffee: implementation of a parallel consistency-based multiple alignment algorithm in the T-Coffee package and its benchmarking on the Amazon Elastic-Cloud. Bioinformatics 26(15):1903–1904. https://doi.org/10.1093/bioinformatics/btq304
Isaza S, Sanchez F, Gaydadjiev G, Ramirez A, Valero M (2010) Scalability analysis of progressive alignment on a multicore. In: 2010 International Conference on Complex, Intelligent and Software Intensive Systems, pp. 889–894. https://doi.org/10.1109/CISIS.2010.149
Katoh K, Toh H (2010) Parallelization of the MAFFT multiple sequence alignment program. Bioinformatics 26(15):1899–1900. https://doi.org/10.1093/bioinformatics/btq224
Kim T, Joo H (2010) ClustalXeed: a GUI-based grid computation version for high performance and terabyte size multiple sequence alignment. BMC Bioinf 11(1):467. https://doi.org/10.1186/1471-2105-11-467
Liu Y, Schmidt B, Maskell DL (2010) MSAProbs: multiple sequence alignment based on pair hidden Markov models and partition function posterior probabilities. Bioinformatics 26(16):1958–1964. https://doi.org/10.1093/bioinformatics/btq338
Miranda LA, Caetano MAF, Melo ACMA, Correa JM, Bordim JL (2010) Multiple biological sequence alignment with a parallel island injection genetic algorithm. In: 2010 IEEE 12th International Conference on High Performance Computing and Communications (HPCC), pp. 314–321. https://doi.org/10.1109/HPCC.2010.31
Wirawan A, Kwoh CK, Schmidt B (2010) Multi-threaded vectorized distance matrix computation on the CELL/BE and x86/SSE2 architectures. Bioinformatics 26(10):1368–1369. https://doi.org/10.1093/bioinformatics/btq135
de Araujo Macedo E, Magalhaes Alves de Melo AC, Pfitscher GH, Boukerche A (2011) Hybrid MPI/OpenMP strategy for biological multiple sequence alignment with DIALIGN-TX in heterogeneous multicore clusters. In: 2011 IEEE International Symposium on Parallel and Distributed Processing Workshops and Phd Forum, pp. 418–425. https://doi.org/10.1109/IPDPS.2011.169
Lloyd S, Snell QO (2011) Accelerated large-scale multiple sequence alignment. BMC Bioinf 12(1):466. https://doi.org/10.1186/1471-2105-12-466
Nguyen KD, Pan Y, Nong G (2011) Parallel progressive multiple sequence alignment on reconfigurable meshes. BMC Genom 12(5):4. https://doi.org/10.1186/1471-2164-12-S5-S4
Orobitg M, Guirado F, Notredame C, Cores F (2011) Exploiting parallelism on progressive alignment methods. J Supercomput 58(2):186–194. https://doi.org/10.1007/s11227-009-0359-5
Rius J, Cores F, Solsona F, van Hemert JI, Koetsier J, Notredame C (2011) A user-friendly web portal for T-Coffee on supercomputers. BMC Bioinf 12(1):150. https://doi.org/10.1186/1471-2105-12-150
Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, Lopez R, McWilliam H, Remmert M, Söding J, Thompson JD, Higgins DG (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 7(1):539. https://doi.org/10.1038/msb.2011.75
da Silva FJM, Pérez JMS, Pulido JAG, Rodríguez MAV (2011) Parallel Niche Pareto AlineaGA - an evolutionary multiobjective approach on multiple sequence alignment. J Integr Bioinf 8(3):57–72. https://doi.org/10.1515/jib-2011-174
Lin Y-S, Lin, C-Y, Chung Y-C (2012) GPU-based cloud service for multiple sequence alignments with regular expression constrains. In: 4th IEEE International Conference on Cloud Computing Technology and Science Proceedings, pp. 741–746. https://doi.org/10.1109/CloudCom.2012.6427565
Mahram A, Herbordt MC (2012) FMSA: FPGA-accelerated ClustalW-based multiple sequence alignment through pipelined prefiltering. In: 2012 IEEE 20th International Symposium on Field-Programmable Custom Computing Machines, pp. 177–183. https://doi.org/10.1109/FCCM.2012.38
Marucci EA, Zafalon GFD, Momente JC, Pinto AR, Amazonas JRA, Shiyou Y, Sato LM, Machado JM (2012) Using threads to overcome synchronization delays in parallel multiple progressive alignment algorithms. Curr Res Bioinf 1:50–63. https://doi.org/10.3844/ajbsp.2012.50.63
Orobitg M, Cores F, Guirado F, Kemena C, Notredame C, Ripoll A (2012) Enhancing the scalability of consistency-based progressive multiple sequences alignment applications. In: 2012 IEEE 26th International Parallel and Distributed Processing Symposium, pp. 71–82. https://doi.org/10.1109/IPDPS.2012.17
Blazewicz J, Frohmberg W, Kierzynka M, Wojciechowski P (2013) G-MSA - A GPU-based, fast and accurate algorithm for multiple sequence alignment. J Paral Distrib Comput 73(1):32–41. https://doi.org/10.1016/j.jpdc.2012.04.004
de Araujo Macedo E, Alves Magalhaes, de Melo AC, Pfitscher GH, Boukerche A (2013) Multiple biological sequence alignment in heterogeneous multicore clusters with user-selectable task allocation policies. J Supercomput 63(3):740–756. https://doi.org/10.1007/s11227-012-0768-8
Esteban FJ, Díaz D, Hernández P, Caballero JA, Dorado G, Gálvez S (2013) Direct approaches to exploit many-core architecture in bioinformatics. Future Gener Comput Syst 29(1), 15–26. https://doi.org/10.1016/j.future.2012.03.018. Including Special section: AIRCC-NetCoM 2009 and Special section: Clouds and Service-Oriented Architectures
Hatem M, Ruml W (2013) External memory best-first search for multiple sequence alignment. Proc AAAI Conf Artif Intell 27(1):409–416
Katoh K, Standley DM (2013) MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability. Mol Biol Evol 30(4):772–780. https://doi.org/10.1093/molbev/mst010
Montañola A, Roig C, Guirado F, Hernández P, Notredame C (2013) Performance analysis of computational approaches to solve multiple sequence alignment. J Supercomput 64(1):69–78. https://doi.org/10.1007/s11227-012-0751-4
Orobitg M, Lladós J, Guirado F, Cores F, Notredame C (2013) Scalability and accuracy improvements of consistency-based multiple sequence alignment tools. In: Proceedings of the 20th European MPI Users’ Group Meeting. EuroMPI ’13, pp. 259–264. Association for Computing Machinery, New York, NY, USA. https://doi.org/10.1145/2488551.2488583
Tzanoudakis T, Papaefstathiou I, Manifavas C (2013) Parallelizing bioinformatics and security applications on a low-cost multi-core system. In: 2013 ACS International Conference on Computer Systems and Applications (AICCSA), pp. 1–4. https://doi.org/10.1109/AICCSA.2013.6616452
Yilmaz C, Gök M (2013) System designs to perform bioinformatics sequence alignment. Turkish J Electr Eng Comput Sci 21(1):246–262. https://doi.org/10.3906/elk-1105-22
Zhu X, Li K, Salah A (2013) A data parallel strategy for aligning multiple biological sequences on multi-core computers. Comput Biol Med 43(4):350–361. https://doi.org/10.1016/j.compbiomed.2012.12.009
Díaz D, Esteban FJ, Hernández P, Caballero JA, Guevara A, Dorado G, Gálvez S (2014) MC64-ClustalWP2: A highly-parallel hybrid strategy to align multiple sequences in many-core architectures. PLOS ONE 9(4):1–12. https://doi.org/10.1371/journal.pone.0094044
Gudyś A, Deorowicz S (2014) QuickProbs–A fast multiple sequence alignment algorithm designed for graphics processors. PLOS ONE 9(2):1–18. https://doi.org/10.1371/journal.pone.0088901
Lin CY, Lin YS (2014) Efficient parallel algorithm for multiple sequence alignments with regular expression constraints on graphics processing units. Int J Comput Sci Eng 9(1–2):11–20. https://doi.org/10.1504/IJCSE.2014.058687
Al-Neama MW, Reda NM, Ghaleb FFM (2015) Fast vectorized distance matrix computation for multiple sequence alignment on multi-cores. Int J Biomath 08(06):1550084. https://doi.org/10.1142/S1793524515500849
Hung C-L, Lin Y-S, Lin C-Y, Chung Y-C, Chung Y-F (2015) CUDA ClustalW: an efficient parallel algorithm for progressive multiple sequence alignment on Multi-GPUs. Comput Biol Chem 58:62–68. https://doi.org/10.1016/j.compbiolchem.2015.05.004
Mirarab S, Nguyen N, Guo S, Wang L-S, Kim J, Warnow T (2015) PASTA: Ultra-large multiple sequence alignment for nucleotide and amino-acid sequences. J Comput Biol 22(5):377–386. https://doi.org/10.1089/cmb.2014.0156 (PMID: 25549288)
N-pD Nguyen, Mirarab S, Kumar K, Warnow T (2015) Ultra-large alignments using phylogeny-aware profiles. Genome Biol 16(1):124. https://doi.org/10.1186/s13059-015-0688-z
Orobitg M, Guirado F, Cores F, Llados J, Notredame C (2015) High performance computing improvements on bioinformatics consistency-based multiple sequence alignment tools. Paral Comput 42:18–34. https://doi.org/10.1016/j.parco.2014.09.010
Sundfeld D, Teodoro G, Magalhaes Alves de Melo AC (2015) Parallel A-Star multiple sequence alignment with locality-sensitive hash functions. In: 2015 Ninth International Conference on Complex, Intelligent, and Software Intensive Systems, pp. 342–347. https://doi.org/10.1109/CISIS.2015.50
Zafalon GFD, Visotaky JMV, Amorim AR, Valêncio CR, Neves LA, de Souza RCG, Machado JM (2015) A parallel approach of COFFEE objective function to multiple sequence alignment. J Phys: Conf Ser 633:012084. https://doi.org/10.1088/1742-6596/633/1/012084
Zhu X, Li K, Salah A, Shi L, Li K (2015) Parallel implementation of MAFFT on CUDA-enabled graphics hardware. IEEE/ACM Trans Comput Biol Bioinf 12(1):205–218. https://doi.org/10.1109/TCBB.2014.2351801
Amorim AR, Visotaky JMV, de Godoi Contessoto A, Neves LA, Gratão De Souza RC, Valêncio CR, Zafalon GFD (2016) Performance improvement of genetic algorithm for multiple sequence alignment. In: 2016 17th International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT), pp. 69–72. https://doi.org/10.1109/PDCAT.2016.029
Deorowicz S, Debudaj-Grabysz A, Gudyś A (2016) FAMSA: fast and accurate multiple sequence alignment of huge protein families. Sci Rep 6(1):33964. https://doi.org/10.1038/srep33964
González-Domínguez J, Liu Y, Touriño J, Schmidt B (2016) MSAProbs-MPI: parallel multiple sequence aligner for distributed-memory systems. Bioinformatics 32(24):3826–3828. https://doi.org/10.1093/bioinformatics/btw558
Lan H, Chan Y, Xu K, Schmidt B, Peng S, Liu W (2016) Parallel algorithms for large-scale biological sequence alignment on Xeon-Phi based clusters. BMC Bioinf 17(9):267. https://doi.org/10.1186/s12859-016-1128-0
Reda NM, Al-Neama M, Ghaleb FFM (2016) HAMSA: highly accelerated multiple sequence aligner. Int J Adv Comput Sci Appl. https://doi.org/10.14569/IJACSA.2016.070661
Abuín JM, Pena TF, Pichel JC (2017) PASTASpark: multiple sequence alignment meets Big Data. Bioinformatics 33(18):2948–2950. https://doi.org/10.1093/bioinformatics/btx354
Araujo E, Stefanes MA, O. Ferlete Vd, Rozante LCS (2017) Multiple sequence alignment using hybrid parallel computing. In: 2017 IEEE 17th International Conference on Bioinformatics and Bioengineering (BIBE), pp. 175–180. https://doi.org/10.1109/BIBE.2017.00-59
Gudyś A, Deorowicz S (2017) QuickProbs 2: towards rapid construction of high-quality alignments of large protein families. Sci Rep 7(1):41553. https://doi.org/10.1038/srep41553
Liu P, Hemani A, Paul K, Weis C, Jung M, Wehn N (2017) 3D-stacked many-core architecture for biological sequence analysis problems. Int J Paral Program 45(6):1420–1460. https://doi.org/10.1007/s10766-017-0495-0
Neehal N, Karim DZ, Islam A (2017) Cloud-POA: A cloud-based map only implementation of PO-MSA on Amazon multi-node EC2 Hadoop Cluster. In: 2017 20th International Conference of Computer and Information Technology (ICCIT), pp. 1–6 https://doi.org/10.1109/ICCITECHN.2017.8281808
Wan S, Zou Q (2017) HAlign-II: efficient ultra-large multiple sequence alignment and phylogenetic tree reconstruction with distributed and parallel computing. Algorithms Mol Biol 12(1):25. https://doi.org/10.1186/s13015-017-0116-x
Zambrano-Vega C, Nebro AJ, García-Nieto J, Aldana-Montes JF (2017) M2Align: parallel multiple sequence alignment with a multi-objective metaheuristic. Bioinformatics 33(19):3011–3017. https://doi.org/10.1093/bioinformatics/btx338
Nakamura T, Yamada KD, Tomii K, Katoh K (2018) Parallelization of MAFFT for large-scale multiple sequence alignments. Bioinformatics 34(14):2490–2492. https://doi.org/10.1093/bioinformatics/bty121
Sundfeld D, Razzolini C, Teodoro G, Boukerche A, de Melo ACMA (2018) PA-Star: a disk-assisted parallel A-Star strategy with locality-sensitive hash for multiple sequence alignment. J Paral Distrib Comput 112:154–165. https://doi.org/10.1016/j.jpdc.2017.04.014
Welivita A, Perera I, Meedeniya D, Wickramarachchi A, Mallawaarachchi V (2018) Managing complex workflows in bioinformatics: An interactive toolkit with GPU acceleration. IEEE Trans NanoBiosci 17(3):199–208. https://doi.org/10.1109/TNB.2018.2837122
Lassmann T (2019) Kalign 3: multiple sequence alignment of large datasets. Bioinformatics 36(6):1928–1929. https://doi.org/10.1093/bioinformatics/btz795
Benítez-Hidalgo A, Nebro AJ, Aldana-Montes JF (2020) Sequoya: multiobjective multiple sequence alignment in Python. Bioinformatics 36(12):3892–3893. https://doi.org/10.1093/bioinformatics/btaa257
Smirnov V, Warnow T (2020) MAGUS: multiple sequence alignment using graph clUStering. Bioinformatics 37(12):1666–1672. https://doi.org/10.1093/bioinformatics/btaa992
Smirnov V (2021) Recursive MAGUS: scalable and accurate multiple sequence alignment. PLOS Comput Biol 17(10):1–17. https://doi.org/10.1371/journal.pcbi.1008950
Ishaq M, Khan A, Su’ud MM, Alam MM, Bangash JI, Khan A (2022) An improved strategy for task scheduling in the parallel computational alignment of multiple sequences. Comput Math Methods Med 2022:8691646. https://doi.org/10.1155/2022/8691646
Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22(22):4673–4680. https://doi.org/10.1093/nar/22.22.4673
Chowdhury B, Garai G (2017) A review on multiple sequence alignment from the perspective of genetic algorithm. Genomics 109(5):419–431. https://doi.org/10.1016/j.ygeno.2017.06.007
Prousalis K, Konofaos N (2019) A quantum pattern recognition method for improving pairwise sequence alignment. Sci Rep 9(1):7226. https://doi.org/10.1038/s41598-019-43697-3
Funding
Sergio H. Almanza-Ruiz is receiving a full-time scholarship for his graduate studies from the Mexican National Council for Science and Technology (CONACyT).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors have no competing interests to declare that are relevant to the content of this article.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Almanza-Ruiz, S.H., Chavoya, A. & Duran-Limon, H.A. Parallel protein multiple sequence alignment approaches: a systematic literature review. J Supercomput 79, 1201–1234 (2023). https://doi.org/10.1007/s11227-022-04697-9
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11227-022-04697-9