Skip to main content
Log in

Hamiltonian properties of HCN and BCN networks

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

Data center network plays an important role in improving the performance of cloud computing. Hamiltonian properties and Hamiltonian connectivity have important applications in communication network. The existence of Hamiltonian path can make the network more efficient communication. HCN and BCN networks are two important data center networks with nice routing performance and excellent scalability. In this paper, we study the Hamiltonian properties and disjoint path covers of these two networks. Firstly, we prove that HCN(nh) is Hamiltonian-connected with \(n\ge 4\) and \(h\ge 0\). Secondly, we prove that BCN\((\alpha ,\beta ,h,\gamma )\) is Hamiltonian-connected with \(h<\gamma\), \(\alpha \ge 4\), \(\beta \ge 1\), \(h\ge 0\), \(\gamma \ge 0\). Finally, we design Hamiltonian path construction algorithms for HCN and BCN networks. Simulation experiments verify the construction process of Hamiltonian path. Moreover, the running time of the routing algorithm designed in this study is compared with the classical shortest path multicast tree algorithm DijkstraSPT, and its running time is lower than that of the algorithm DijkstraSPT by about 5ms on different server nodes, which shows that the routing algorithm designed in this study according to HCN and BCN structure operate efficiently.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Data Availability

The data used to support the findings of this study are available from the corresponding author upon request.

References

  1. Sahoo T, Naik SK, Das KK (2021) Data center networks: the evolving scenario. Intelligent and cloud computing. Springer, Berlin, pp 601–610

    Chapter  Google Scholar 

  2. Fan W, Xiao F, Chen X, Cui L, Yu S (2021) Efficient virtual network embedding of cloud-based data center networks into optical networks. IEEE Trans Parallel Distrib Syst 32(11):2793–2808

    Article  Google Scholar 

  3. Fan W, Fan J, Zhang Y, Han Z, Chen G (2022) Communication and performance evaluation of 3-ary \(n\)-cubes onto network-on-chips. Sci China Inf Sci 65(7):1–3

    Article  MathSciNet  Google Scholar 

  4. Lee D, Tomlin CJ (2021) Hamilton-jacobi equations for two classes of state-constrained zero-sum games. arXiv preprint arXiv:2106.15006

  5. Li W, Liu J, Wang S, Zhang T, Zou S, Hu J, Jiang W, Huang J (2021) Survey on traffic management in data center network: from link layer to application layer. IEEE Access 9:38427–38456

    Article  Google Scholar 

  6. Huang J, Lyu W, Li W, Wang J, He T (2021) Mitigating packet reordering for random packet spraying in data center networks. IEEE/ACM Trans Netw 29(3):1183–1196

    Article  Google Scholar 

  7. Yu X, Xu H, Gu H, Lan H (2018) Thor: a scalable hybrid switching architecture for data centers. IEEE Trans Commun 66(10):4653–4665

    Google Scholar 

  8. Guo C, Lu G, Li D, Wu H, Zhang X, Shi Y, Tian C, Zhang Y, Lu S (2009) Bcube: a high performance, server-centric network architecture for modular data centers. In: Proceedings of the ACM SIGCOMM 2009 Conference on Data Communication, pp 63–74

  9. Guo C, Wu H, Tan K, Shi L, Zhang Y, Lu S (2008) Dcell: a scalable and fault-tolerant network structure for data centers. In: Proceedings of the ACM SIGCOMM 2008 Conference on Data Communication, pp 75–86

  10. Jiang W, Qi J, Yu JX, Huang J, Zhang R (2018) Hyperx: a scalable hypergraph framework. IEEE Trans Knowl Data Eng 31(5):909–922

    Article  Google Scholar 

  11. Guo D, Chen T, Li D, Li M, Liu Y, Chen G (2013) Expandable and cost-effective network structures for data centers using dual-port servers. IEEE Trans Comput 62(7):1303–1317

    Article  MathSciNet  MATH  Google Scholar 

  12. Razavi S, Sarbazi-Azad H (2010) The triangular pyramid: routing and topological properties. Inf Sci 180(11):2328–2339

    Article  MathSciNet  MATH  Google Scholar 

  13. Wang GJ, Lin CK, Fan JX, Zhou J-Y, Cheng B-L (2020) Fault-tolerant hamiltonicity and hamiltonian connectivity of bcube with various faulty elements. J Comput Sci Technol 35(5):1064–1083

    Article  Google Scholar 

  14. Lin X, McKinley PK, Ni LM (1994) Deadlock-free multicast wormhole routing in 2-d mesh multicomputers. IEEE Trans Parallel Distrib Syst 5(8):793–804

    Article  Google Scholar 

  15. Wang N-C, Yen C-P, Chu C-P (2005) Multicast communication in wormhole-routed symmetric networks with hamiltonian cycle model. J Syst Architect 51(3):165–183

    Article  Google Scholar 

  16. Fujita S, Araki T (2004) Three-round adaptive diagnosis in binary \(n\)-cubes. In: International Symposium on Algorithms and Computation, Springer, pp 442–451

  17. Ye L-C, Liang J-R (2014) Five-round adaptive diagnosis in hamiltonian networks. IEEE Trans Parallel Distrib Syst 26(9):2459–2464

    Article  Google Scholar 

  18. Szepietowski A (2012) Hamiltonian cycles in hypercubes with 2\(n\)-4 faulty edges. Inf Sci 215:75–82

    Article  MathSciNet  MATH  Google Scholar 

  19. Wang D (2012) Hamiltonian embedding in crossed cubes with failed links. IEEE Trans Parallel Distrib Syst 23(11):2117–2124

    Article  Google Scholar 

  20. Lv Y, Lin C-K, Fan J (2017) Hamiltonian cycle and path embeddings in \(k\)-ary \(n\)-cubes based on structure faults. Comput J 60(2):159–179

    MathSciNet  Google Scholar 

  21. Li D, Guo C, Wu H, Tan K, Zhang Y, Lu S (2009) Ficonn: using backup port for server interconnection in data centers. In: IEEE INFOCOM 2009, IEEE, pp 2276–2285

  22. Hung R-W (2011) Embedding two edge-disjoint hamiltonian cycles into locally twisted cubes. Theoret Comput Sci 412(35):4747–4753

    Article  MathSciNet  MATH  Google Scholar 

  23. Lv Y, Lin C-K, Fan J (2016) Hamiltonian cycle and path embeddings in 3-ary \(n\)-cubes based on \(k_{1,2}\)-structure faults. In: 2016 IEEE Trustcom/BigDataSE/ISPA, IEEE, pp 1226–1232

  24. Zhou D, Fan J, Lin C-K, Wang Y, Cheng B (2017) An algorithm to embed hamiltonian path into ecq network. In: 2017 IEEE 9th International Conference on Communication Software and Networks (ICCSN), IEEE, pp 1026–1030

  25. Vasudev C (2006) Graph theory with applications. New Age International, Bangalore

    Google Scholar 

  26. Wang G-J, Lin C-K, Fan J-X, Zhou J-Y, Cheng B-L (2020) Fault-tolerant hamiltonicity and hamiltonian connectivity of bcube with various faulty elements. J Comput Sci Technol 35(5):1064–1083

    Article  Google Scholar 

  27. Liu H, Hu X, Gao S (2019) Hamiltonian cycles and paths in faulty twisted hypercubes. Discret Appl Math 257:243–249

    Article  MathSciNet  MATH  Google Scholar 

  28. Hung H-S, Fu J-S, Chen G-H (2007) Fault-free hamiltonian cycles in crossed cubes with conditional link faults. Inf Sci 177(24):5664–5674

    Article  MathSciNet  MATH  Google Scholar 

  29. Xu D, Fan J, Jia X, Zhang S, Wang X (2013) Hamiltonian properties of honeycomb meshes. Inf Sci 240:184–190

    Article  MathSciNet  MATH  Google Scholar 

  30. Huangfu Y (2019) Hamiltonian analysis of network structure based on basic elements. Henan University, Kaifeng

    Google Scholar 

  31. Fan W, Fan J, Han Z, Li P, Zhang Y, Wang R (2021) Fault-tolerant hamiltonian cycles and paths embedding into locally exchanged twisted cubes. Front Comp Sci 15(3):1–16

    Google Scholar 

  32. Fan W, Xiao F, Fan J, Han Z, Sun JL, None Ruchuan W (2021) Fault-tolerant routing with load balancing in letq networks. IEEE Trans Dependable Secur Comput. https://doi.org/10.1109/TDSC.2021.3126627

    Article  Google Scholar 

  33. Dong H, Fan J, Cheng B, Wang Y, Xu L (2022) Hamiltonian properties of the data center network hsdc with faulty elements. Comput J. https://doi.org/10.1093/comjnl/bxac055

    Article  Google Scholar 

  34. Guo D, Chen T, Li D, Li M, Liu Y, Chen G (2012) Expandable and cost-effective network structures for data centers using dual-port servers. IEEE Trans Comput 62(7):1303–1317

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (61672209, 61701170, 62102196), Science and technology development plan of Henan Province (192102210282, 202102210327), Special project for key R &D and promotion of Henan Province (222102210052, 222102210007, 222102210062, 222102210272), Natural Science Foundation of Jiangsu Province (No. BK20200753), Jiangsu Postdoctoral Science Foundation Funded Project (No. 2021K096A), the Future Network Scientific Research Fund Project (No FNSRFP-2021-YB-60), the Natural Science Fund for Colleges and Universities in Jiangsu Province (No 21KJB520026), in the Acknowledgements. The Fundamental Research Funds for the Central Universities of Jilin University (No. 93K172020K25).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weibei Fan.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, X., Cheng, C., Han, Z. et al. Hamiltonian properties of HCN and BCN networks. J Supercomput 79, 1622–1653 (2023). https://doi.org/10.1007/s11227-022-04723-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-022-04723-w

Keywords

Navigation