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Abstract
In this paper, a novel optimization algorithm is proposed, called the Ladybug Beetle Opti-
mization (LBO) algorithm, which is inspired by the behavior of ladybugs in nature when 
they search for a warm place in winter. The new proposed algorithm consists of three 
main parts: (1) determine the heat value in the position of each ladybug, (2) update the 
position of ladybugs, and (3) ignore the annihilated ladybug(s). The main innovations of 
LBO are related to both updating the position of the population, which is done in two 
separate ways, and ignoring the worst members, which leads to an increase in the search 
speed. Also, LBO algorithm is performed to optimize 78 well-known benchmark func-
tions. The proposed algorithm has reached the optimal values of 73.3% of the benchmark 
functions and is the only algorithm that achieved the best solution of 20.5% of them. 
These results prove that LBO is substantially the best algorithm among other well-known 
optimization methods. In addition, two fundamentally different real-world optimization 
problems include the Economic-Environmental Dispatch Problem (EEDP) as an engi-
neering problem and the Covid-19 pandemic modeling problem as an estimation and 
forecasting problem. The EEDP results illustrate that the proposed algorithm has obtained 
the best values in either the cost of production or the emission or even both, and the use 
of LBO for Covid-19 pandemic modeling problem leads to the least error compared to 
others.

Keywords Ladybug Beetle Optimization algorithm · Search for a warm position · 
Annihilated ladybugs · Economic-environmental dispatch problem · Covid-19 · Pandemic 
prediction

List of symbols

LBO parameters
i Member of the population that is being updated
j Member of the population that is used to update the i th member
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k Iteration
kmax  Maximum iteration that used to terminate the optimization 

algorithm
t  Index of summation
rand  A uniformly distributed random number between 0 and 1
N(0)  Number of the initial population
N(k)  Number of the population in the k th iteration
Nmin  Minimum number of the population during the algorithm process
NFE  Number of function evaluation
NFEmax  The maximum number of function evaluation, which used to termi-

nate the optimization algorithm
xi(k), xj(k)  Position of the i th and j th members in the search space

D  Dimensions of the decision vector
f
(
xi(k)

)
  The value of the cost function for the i th member in the k th iteration

fworst  The worst value of the cost function up to the current iteration dur-
ing the algorithm process

fopt  The optimal global value for the cost function
Ci  The ratio of the i th member cost to total members cost
��⃗r1, ��⃗r2, and ��⃗r3  Three vectors that are used to update the i th member of the 

population
P  Generated vector for the population in Roulette-wheel selection 

method
�  Pressure coefficient in Roulette-wheel selection method

Economic‑environmental dispatch problem parameters
i  The power unit in the grid
NG  The number of power unit in the grid
Pi  The value of power generation in the i th unit

Pmin
i

,Pmax
i

  The lower and upper bound of power generation in the i th unit

FPi

(
Pi

)
  The value of generation cost for the i th unit to generate Pi MW of 

power
ai, bi, ci, gi, and hi  The constant parameters for calculating generation cost in the i th 

unit
FEi

(
Pi

)
  The value of emission for the i th unit to generate Pi MW of power

�i, �i, �i, �i, and �i  The constant parameters for calculating emission in the i th unit
F  The total cost function
p  Penalty coefficient
D  Power demand in MW
LP  The value of power losses during the transmission
B  The constant matrix for calculating power losses
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Covid‑19 pandemic modeling parameters
S(t)  Susceptible individuals
I(t)  Infected individuals
D(t) Diagnosed individuals
A(t)  Ailing individuals
R(t)  Recognized individuals
T(t)  Threatened individuals
H(t)  Recovered individuals
E(t)  Death cases
�  Transmission rate from the infected to the susceptible individual
�  Transmission rate from the diagnosed to the susceptible individual
�  Transmission rate from the recognized to the susceptible individual
�  Transmission rate from the ailing to the susceptible individual
�  Detection rate of the individual with no symptoms
�  Detection rate of the individual with symptoms
�  The probability that the infected individual knows that they are 

infected
�  The probability that the infected individual does not know that they 

are infected
�  The probability of developing life-threatening symptoms
�  The probability of developing life-threatening symptoms for a 

detected case
�  Death rate
�  The recovery rate
�  The recovery rate
�  The recovery rate
�  The recovery rate
�  The recovery rate

1 Introduction

Nowadays, the optimization algorithm field is one of the most important research 
fields for all researchers, especially for engineers [1]. Research on metaheuristic 
optimization algorithms is a branch of the optimization field that has also attracted a 
lot of attention. Many metaheuristic algorithms have been proposed so far. However, 
since optimization problems have a wide range and their scope is increasing every 
day, more research in this area is necessary to solve new optimization problems [2].

In general, the metaheuristic algorithms are divided into three classes consist 
of: (1) the improvement of the existing algorithms, such as Improved Whale Opti-
mization Algorithm (IWOA) [3–5], improvement of ant colony optimization algo-
rithm (ICMPACO) [6], and modified henry gas solubility optimization (HGSWC) 
[7], (2) the combination of two or more existing optimization algorithms, such as 
combined with hybrid particle swarm optimization and grey wolf optimization 
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(ELM-PSOGWO) [8], Differential Evolutionary and Particle Swarm Optimization 
(DEEPSO) algorithm [9], hybrid Firefly and Self-Regulating Particle Swarm Opti-
mization (FSRPSO) [10], and Hybrid Particle swarm and Ant colony optimization 
(HAP) [11], and (3) introduction of a new optimization algorithm, such as introduced 
artificial Jellyfish Search (JA) [12], Political Optimizer (PO) [13], Mayfly Algorithm 
(MA) [14], and Shuffled Shepherd Optimization Algorithm (SSOA) [15].

Almost all of the metaheuristic algorithms are inspired by natural processes. Hence, 
they can be divided into the following four categories:

(1) Swarm algorithms: The collective and coordinated behavior of creatures in nature 
inspires one of the most important categories of metaheuristic algorithms. 
Creatures that live collectively in nature have optimal behavior with others to 
achieve their purpose, and modeling their behavior leads to important optimiza-
tion algorithms. Particle Swarm Optimization (PSO) [16], Cuckoo Optimization 
Algorithm (COA) [17], Whale Optimization Algorithm (WOA) [18], combined 
Particle Filter and Particle Swarm Optimization (PF-PSO) [19], Tuna Swarm 
Optimization (TSO) [20], and Rock Hyraxes Swarm Optimization (RHSO) [21] 
are the most popular optimization algorithms in this category.

(2) Evolutionary algorithms: Many biological processes have evolved during the 
time, and several metaheuristic algorithms are proposed by modeling them. 
The most important algorithm fallen into this category is the Genetic Algorithm 
(GA) [22]. Other algorithms such as Differential Evolution (DE) [23] and Snake 
Optimizer (SO) [24] are also in this category.

(3) Physical algorithms: Several practical metaheuristic optimization algorithms 
are based on physical processes. For example, Water Evaporation Optimization 
(WEO) [25], Water Cycle Algorithm (WCA) [26], Equilibrium Optimizer (EO) 
[27], and Flow Regime Algorithm (FRA) [28] are inspired by physical processes.

(4) Human algorithms: The behavior of humans is the patterns to present new 
metaheuristic optimization algorithm. Humans are known as the most intelli-
gent creatures on Earth. Therefore, their behaviors are intelligent against various 
problems and can inspire optimization algorithms. These algorithms include 
Teaching–Learning-Based Optimization (TLBO) [29], Heap-Based Optimizer 
(HBO) [30], Forensic-Based Investigation (FBI) [31], and Soccer League Competi-
tion (SLC) algorithm [32].

In addition to the above optimization algorithms, there are many metaheuristic opti-
mization algorithms which have been recently introduced. Several of them are given in 
Table 1.

In this paper, a novel optimization algorithm inspired by the behaviors of lady-
bugs is proposed. Ladybugs, like most beetles, experience collective life. Normal 
ladybugs live for a year from mid-spring or early summer and continues until next 
year. In early winter, ladybugs are used to find warm positions according to a coor-
dinated behavior and are able to find a warm place by the collective movement. 
Some of them may get lost and annihilate while searching for the hottest place. 
Consequently, their population is reduced compared to the initial ones. Moreover, 
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the behavior of each ladybug is influenced by the other ladybugs, especially lady-
bugs who have discovered places with higher temperatures. The proposed algo-
rithm has some pros and cons that are expressed below:

(1) Using ladybugs’ behavior helps the algorithm to utilize new undiscovered 
potential to update the position of the population in each iteration, which leads 
to a powerful metaheuristic algorithm.

(2) At first, the optimizer is completely blind to the search space. Thus, it needs a 
bigger population to discover this space. The search space is known by increas-
ing the number of iterations of the algorithm. Therefore, a smaller population 
at higher iterations would be sufficient for the algorithm to reach the optimal 
point. Reducing the population size leads to an increase in the speed of the 
algorithm, which is considered in LBO.

(3) In other algorithms, for instance in PSO algorithm, the best positions that a 
member of the population and the whole population have experienced are 
involved in updating the member’s position, whereas other members’ positions 
in LBO have the chance to use in updating a member. This feature of LBO 
helps to escape local minimums and increases the speed of the algorithm.

(4) On the other hand, reducing the population size would not be appropriate 
in some cases, especially before discovering all of the search space by the 
algorithm, which leads to trapping in local minimum or decreasing the speed 
of the algorithm. However, according to the simulation results, reducing the 

Table 1  Several metaheuristic optimization algorithms have been proposed recently

Year Algorithm name Inspired by

2021 seagull optimization algorithm (SOA) 
[33]

Seagull behavior

2021 Archimedes optimization algorithm 
(AOA) [34]

Interesting law of physics Archimedes’ Principle

2020 Chimp optimization algorithm (ChOA) 
[35]

The individual intelligence and sexual motivation of 
chimps in their group hunting

2020 Search and rescue optimization algorithm 
(SAR) [36]

The explorations behavior of humans during search 
and rescue operations

2020 Dynamic group-based optimization 
algorithm (DGCO) [37]

The cooperative behavior adopted by swarm indi-
viduals to achieve their global goals

2020 Equilibrium optimizer (EO) [27] Control volume mass balance models
2019 Pigeon-inspired optimization (PIO) [38] Pigeon behavior
2019 Emperor penguins colony (EPC) [39] Emperor penguins
2019 Harris hawks optimization (HHO) [40] Cooperative behavior
2019 Heterogeneous pigeon-inspired optimiza-

tion (HPIO) [41]
Homing behavior of pigeons

2019 The sailfish optimization (TSO) [42] Hunting sailfish
2018 Farmland fertility (FF) [43] Farmland fertility
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population size is useful in most cases, and in the others, the rate of reduction 
needs to reset.

Accordingly, all expressed behaviors of ladybugs are included in the opti-
mizer modeling, and the proposed optimization algorithm is presented. There-
fore, in this paper, both the physical behavior of ladybugs in nature and the 
mathematical modeling extracted from their behavior are presented. Finally, 
Ladybug Beetle Optimization (LBO) algorithm is introduced. To evaluate the 
performance of the proposed optimization algorithm, 78 benchmark functions 
are optimized by LBO, and the results are compared with seven high-perfor-
mance optimization algorithms.

Most of the metaheuristic algorithms are based on a similar structure. How-
ever, most of them are basically different in updating their solutions. In the 
proposed optimization algorithm, the population is updated based on a unique 
strategy. This strategy of the updating the population uses the location of two 
members of the population. First, a random member of the population (with a 
bigger chance for better members). Second, another member of the population 
with a cost function close to the first selected member. Besides, the number of 
the population decreases during the operation of the algorithm, which means 
the greater number of the population is employed at first when the optimiza-
tion algorithm does not have any sense of the search space. As the search space 
becomes more specific and is limited to smaller spaces, the number of the popu-
lation starts to reduce in order to increase the speed of the algorithm.

Metaheuristic algorithms have a wide range of applications in engineering 
problems and are a powerful tool to solve these problems by turning them into 
optimization problems [44–47]. Therefore, given that the ultimate goal of opti-
mization algorithms is to use them in practice, it is essential that a powerful 
optimization algorithm can show appropriate results in a variety of real-world 
problems. In this regard, LBO algorithm is employed to solve both Economic-
Environmental Dispatch Problem (EEDP) and the Covid-19 pandemic modeling 
problem. The performance of the proposed algorithm is evaluated by applying 
the proposed algorithm to the several benchmark functions and two mentioned 
real-world problems and comparing the results with the other algorithms.

Specifying the power generation amount of power plants in the grid is a main 
task of power engineers to achieve the minimum of the generated power cost and 
emission. Consequently, one of the most challenging optimization problems in 
the engineering field has been defined. Numerous methods have been proposed 
to solve EEDP so far, making it a popular optimization problem. In this paper, 
the LBO algorithm is used to solve this problem, and the results are compared 
with some other methods. In this regard, three different grids, including IEEE three, 
ten, and forty-bus grids, are studied.

On the other hand, coronavirus pandemic has been rapidly spreading to 221 
countries that are involved in this virus. Moreover, 242 million and 4.93 million 
individuals have been confirmed and died worldwide, respectively [48]. An appro-
priate model of the covid-19 outbreak would substantially help the authorities to 
make deliberate decisions. Moreover, accurate prediction of this pandemic depends 
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on accurate modeling. Numerous studies have been conducted in this regard to 
model the Covid-19 pandemic, which is divided into several categories. First, some 
proposed models of Covid-19 utilize artificial intelligence and machine learning 
algorithms. In [49], some algorithms, including Bayesian regression neural network, 
cubist regression, k-nearest neighbors, quantile random forest, and support vector 
regression, are employed independently and cooperated with the variational mode 
decomposition and forecasting is done for one, three, and six days. Furthermore, 
a deep learning neural network method is proposed in [50] which is an alternative 
fast screening method by X-ray analyzing. A machine learning algorithm is also 
used in [51] to classify the cases without diagnosis. Some other methods based on 
machine learning and artificial intelligence approaches are also recently proposed 
for some pandemic outbreak, including Covid-19 [52–54]. Second, metaheuristic 
algorithms play a key role in several research related to Covid-19 modeling. For this 
purpose, the modeling and prediction of Covid-19 spread is proposed based on Arti-
ficial Neural Network-Artificial Bee Colony (ANN-ABC) and Artificial Neural Net-
work- Firefly Algorithm (ANN-FA) [55]. In [56], a modified grey wolf optimizer is 
presented for predicting the Covid-19 pandemic. Also, [57] has introduced an opti-
mization algorithm named Covid-19 optimizer Algorithm (CVA) and proposed the 
model of coronavirus pandemic.

In this paper, modeling and forecasting of Covid-19 in two countries, includ-
ing Iran and Italy, which had different experiences during the pandemic, are con-
ducted by using LBO algorithm and the results are compared with some other 
algorithms. In this regard, in spite of the myriad of the offered model [58–61], 
the proposed model in [62] is employed as one of the most recent popular models, 
and the 16-parameter model will be tuned by the proposed algorithm for avail-
able data consists of the daily number of confirmed, dead, and recovered indi-
viduals of Covid-19 between 22 January 2020 and 4 August 2021 (561 days). As 
a matter of fact, each 20-day time series period is divided into two parts, the first 
15-day period and the last 5-day. Thus, the local model is tuned by first 15 days 
and the model is validated by the last 5  days. In this optimization problem, the 
Mean Square Error (MSE) is the modeling index.

The rest of this paper is sorted out as follows: The lifetime of ladybugs in nature 
is explained in Sect. 2. In Sect. 3, the mathematical modeling of ladybugs’ behav-
ior is formulated. The performance evaluation of the proposed optimization algo-
rithm is examined in Sect.  4 by implementing it on 78 benchmark functions. In 
Sect. 5, the proposed algorithm is executed for EEDP and the modeling of Covid-
19, and the results are compared with several methods. Ultimately, the conclusion 
is expressed in Sect. 6.

2  Ladybugs in nature

The beetle family includes a broad group of more than 380,000 species, of which lady-
bugs are one. They vary greatly in body size, shape, color, and body anatomy that reflects 
their behavioral habits [63]. About 6000 species of ladybugs have been identified so far 
[64]. Many classifications have been done for ladybugs include six or seven families [65] 
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and 38 tribes [66]. The life of ladybugs incorporates four main parts: eggs, larvae, pupae, 
and adults, respectively. The duration of each part of their life varies according to their 
geographical location. Unlike other beetles, they have the same nutrition in the pupae time 
and adult time. Ladybugs reproduce in summer and are completely sedentary during win-
ter. In fact, by shortening the length of the day and cooling the air, ladybugs search for a 
suitable place in early winter and go to hibernation there. The growth rate of ladybugs 
depends largely on environmental temperature. The larvae feed for less than one month, 
and then, they become pupae. It takes ten days for a pupa to become an adult ladybug. 
Typically, a ladybug lives for a year, and therefore, it is going through one cold winter in 
its lifetime [67].

Ladybugs feed more than aphids. They can also feed on mites, small insects, and insect 
eggs. The adult ladybugs are about 1 to 10 mm, and their body color is a combination of 
red, yellow, and orange [68]. Several species of ladybugs live in cold winter climates and 
sometimes migrate to warmer areas. But many ladybugs hide under the bark of plants, 
cracks, or crevices in winter. Ladybugs spend the winter as the adult ladybugs and lay 
eggs the following summer. Then the eggs become larvae. Their larvae grow rapidly and 
reaching maturity in late summer or early fall [69, 70].

As mentioned, ladybugs are social creatures, and they always interact and coordinate 
with each other. A coordinated swarm of ladybugs looking for a place with more heat 
gathers, especially ladybugs in the cold weather conditions. In this paper, modeling lady-
bugs’ searching and optimizing their behavior according to their swarm intelligence and 
coordinated behavior to find a safe and warm place to stay in winter are performed. As a 
result, LBO algorithm is presented. Therefore, each ladybug moves in the environment 
according to the position of other ladybugs, especially the ladybugs that have discovered 
a place with more heat. Several of them deviate from the proper path, while they move 
through the environment and die of the cold. Therefore, their number is always decreasing 
while searching for a warm place. In the next section, the mathematical modeling of LBO 
algorithm is presented.

3  Ladybug Beetle Optimization algorithm

The general process of most metaheuristic algorithms is similar to each other. In this pro-
cess, the initial population of algorithms is evaluated and sorted based on their evaluation. 
Then, the population is updated and re-evaluated. After repeating a sufficient number of 
updating and evaluating processes for the population, the best solution is reported. This 
process for LBO algorithm is shown in Fig. 1.

In this section, modeling of LBO is presented. LBO is inspired by the coordinated 
movement of ladybugs in nature to find a location with the most heat. For this purpose, 
the initial population consists of N(0) ladybugs are considered, and after following the 
steps described above, the final population includes N

(
kmax

)
 ladybugs (in general, 

N(0) ≥ N
(
kmax

)
 ), and the optimal objective function is determined. Next, the modeling 

of LBO is done in three steps.
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3.1  Define the objective function

The objective function is defined for the population in order to specify the heat 
of each location. It is equal to the heat value of each member’s location. There-
fore, the higher heat of the position results in the higher objective function 
value. However, to change the problem’s structure to a standard state, the opti-
mization problem is defined as a minimization problem. Therefore, the objective 
function is assumed to be the inverse amount of heat for each member’s location 
of the population. In this case, the higher heat of a location is equivalent to its 
smaller objective function.

3.2  Update the population

As mentioned, the initial population consists of  N(0) ladybugs, which are 
placed randomly in the search space based on uniform distribution. The popu-
lation of ladybugs is evaluated with the defined objective function and sorted. 
Then, the population moves to the location with the most heat according to a 
coordinated movement. Due to the social nature of ladybugs, they always move 
in coordination with the ladybugs’ swarm while searching for a suitable loca-
tion. Ladybugs follow each other through signals emitted by the group members. 
Therefore, they are more inclined to move toward their front ladybugs. In this 
modeling, front members are the ladybugs who have been able to find a place 
with more heat than the others. To balance the exploitation and exploration of 
the algorithm, a mutation step is considered for some of the individuals of the 
population, which is randomly employed for some individuals in each iteration. 
Thus, at each step of updating the position of the population, their position in 
the search space is updated either according to others’ positions or mutation pro-
cesses, which are described below.

Evaluation Selection Relocation

Annihilation

New location 
and number of 

population

Initial population

Final population

Fig. 1  LBO algorithm schematic
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3.2.1  Update according to the position of other ladybugs

In each step, all the ladybugs’ positions are updated and evaluated. The new and old 
positions of ladybugs are integrated, and the best group of them are chosen according 
to their objective function values. The new population is employed to update and eval-
uate in the next iteration. To update each member of the population in each iteration, 
another member of the population is selected using the method that will be described. 
For example, consider the aim is to update the i th ladybug of the population, and the 
j th ladybug of the population has been chosen to update this member. Consider the 
position of the i th ladybug in the k th iteration is shown by x(k) . This ladybug moves 
in the result of three vectors to update in the (k + 1) th iteration. It moves a little toward 
the j th ladybug and also moves a little in the direction of the j th ladybug toward the 
(j − 1) th ladybug. Finally, to create a balance between exploitation and exploration, 
and also, to escape the local minimums for the movement of i th ladybugs, the third 
direction is also considered, which is a coefficient of its current location. To maintain a 
random search, all the mentioned movements need to be multiplied by a random value. 
Additionally, the third movement, which is employed to avoid the local minimum, 
should be multiplied by the proportion of individual heat value to the total heat values 
of the population. As a result, a member of the population that traps in local minimum 
has the chance to escape because of the bigger coefficient of the third movement.

In the mathematical expression, the new position of the i th ladybug is obtained 
by (1).

where Ci is equal to the ratio of the i th ladybird cost to the total cost of all the lady-
birds in the k th iteration of the proposed optimization algorithm. The value of this 
parameter is calculated by

Roulette-wheel selection is employed to choose the j th ladybug that was used to 
update the i th ladybug position in (1) [71]. In a simple expression, in order to select 
the j th ladybug from the N(k) ladybugs, the distance between 0 and 1 is divided into 
the N(k) unequal parts. Each part belongs to one of the ladybugs, and the length of 
each part is inversely related to the objective function of the corresponding ladybug. 
Thus, for a ladybug with the more optimal objective function, the length of the cor-
responding part is longer. Then, a random number between 0 and 1 is chosen. In 
the current step, the random number is determined in which part of the division is 
located. The corresponding ladybug of the selected part is chosen as the j th lady-
bug. It is clear that the ladybug with the warmer location (better objective function) 
has a higher chance to choose. The P vector corresponding to the population with 
N(k) ladybugs is defined below. Roulette-wheel selection expects a an input vector, 
such as P.

(1)
xi(k + 1) = xi(k) + rand ×

(
xj(k) − xi(k)

)

+ rand ×
(
xj(k) − xj−1(k)

)
+ rand × ||Ci

||−
k

N(k) × xi(k),

(2)Ci =
f
�
xi(k)

�
∑Nk

t=1
f
�
xt(k)

�



3521

1 3

Ladybug Beetle Optimization algorithm: application for…

where � is the pressure coefficient in the Roulette-wheel selection method and fworst is 
the worst value of the objective function up to the current iteration during the algorithm 
process. The larger � , the better ladybugs of the population have a better chance of being 
selected on Roulette-wheel selection. Updating process of the i th ladybug is shown in 
Fig. 2 if the j th ladybug is selected in Roulette-wheel selection. As is clear, the new posi-
tion of the i th ladybug is determined by the result of three vectors r1 , r2 , and r3 , and these 
make three terms of (1), respectively.

3.2.2  Update according to mutation process

Considering the mutation in the update process of the population is critical to explor-
ing undiscovered parts of the search space and escaping from the local minima. Besides, a 
mutation stage in the search process leads to an increase in the algorithm’s speed. Hence, 
the updating method of each ladybug’s position, including according to other ladybugs and 
mutation, is randomly determined. In this regard, consider the i th ladybug should be mutated. 
The number of decision variables of the i th ladybug that must be mutated is calculated 
according to (4).

(3)P =
[
P1,P2,… ,PNk

]
,Pi = e

−�
f (xi(k))
fworst ,

(4)nm = round
(
n ∗ �m

)
,

Fig. 2  Update position of the ith ladybug
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where �m is the mutation rate and n is the length of the decision variable. Therefore, the 
nm variables of available n variables of the i th ladybug are randomly selected. Then, the 
random variables in the feasible region are replaced to selected position of the i th ladybug.

According to the description provided, the pseudo code for updating the position of lady-
bugs in each iteration is shown in Algorithm 1.

3.3  Update the number of population size

During the search for a warm place, it is normal for the ladybugs to get lost and disappear. 
The ladybug(s) may move away from the others and annihilate due to the cold. The math-
ematical modeling of the ladybugs’ annihilation during the search is considered in LBO. 
Therefore, the number of ladybugs in the various steps is calculated as

where NFE is the number of function evaluations and NFEmax is the maximum of NFE . 
Thus, (5) is used if the number of function evaluations is the termination condition of 
LBO. Nevertheless, if the number of iterations is the condition for terminating the algo-
rithm, the new number of ladybugs in each iteration is obtained by

where k is the iteration and kmax is the maximum iteration.

(5)N(k + 1) = round

(
N(k) − rand × N(k)

(
NFE

NFEmax

))
,

(6)N(k + 1) = round

(
N(k) − rand × N(K)

(
k

kmax

))
,
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Algorithm 1. update position of the ladybugs 
Inputs: the current position and all of the ladybugs objective function values,

Outputs: the next step position of all ladybugs,

Initialize: the number of ladybugs in current step is equal to 

1:   calculate the worst cost function, which is the biggest cost function of all iterations,

2:   calculate the vector, according to (3),

3:   for from 1 to number of the ladybugs do

4:         calculate the sum of the ladybugs’ objective functions,

5:         create a random number (Rnd), between 0 and 1

6:         if , do (update the position of the th ladybug according to other ladybugs’ 

positions)

7:                  = 0;

8:                  while (j<2) do

9:                              determine the th ladybug according to Roulette-wheel selection method,

10:                  end while,

11:                  calculate the ratio of th ladybug’s cost to sum of the objective functions, 

according to (2),

12:                  calculate the next step position of th ladybug , according to (1),

13:     calculate the cost function value of new population,

14:         else do (update the position of the th ladybug with mutation)

15:                  calculate the th ladybugs variable numbers ( ) that should be mutated, 

according to (4),

16:                  create random integer numbers between 1 and ( is the length of the 

variable decision),

17:                  create random values in feasible region,

18:                  replace the created random values in the random integer numbers in the 

th ladybug,

19:         end if

20:         if do

21:               ,

22:         end if

23:         if do

24:               ,

25:         end if,

26:   end for.

27:   collect initial and new populations,

28:   sort the population according to their cost function values,

29:   ignore the worse and keep the best population as the final population of the current 

iteration.
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Fig. 3  Flowchart of the proposed LBO algorithm
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According to (5) or (6), the number of ladybugs is decreasing by performing the 
LBO and increasing the number of iterations. However, the decreasing trend should not 
lead to the extinction of all ladybugs. Therefore, by considering the minimum number 

Fig. 4  Impact of the proportion of the final population value in the reduction process of the number of 
populations in LBO algorithm

Table 2  Unimodal fixed-dimension benchmark functions

No. Name D Range fopt No. Name D Range fopt

f1 Beale 2 [− 4.5, 4.5] 0 f6 Wayburn Seader 
3

2 [− 500, 500] 19.10588

f2 Booth 2 [− 10, 10] 0 f7 Leon 2 [− 1.2, 1.2] 0
f3 Brent 2 [− 10, 10] 0 f8 Cube 2 [− 10, 10] 0
f4 Matyas 2 [− 10, 10] 0 f9 Zettle 2 [− 5, 10] − 0.00379
f5 Schaffer N.4 2 [− 100, 100] 0.292579

Table 3  Unimodal variable-dimension benchmark functions

No. Name D Range fopt No. Name D Range fopt

f10 Sphere 30 [− 100, 100] 0 f18 Rosenbrock 30 [− 30, 30] 0
f11 Power sum 30 [− 1, 1] 0 f19 Brown 30 [− 1, 4] 0
f12 Schwefel’s 2.20 30 [− 100, 100] 0 f20 Dixon and price 30 [− 10, 10] 0
f13 Schwefel’s 2.21 30 [− 100, 100] 0 f21 Power singular 30 [− 4, 5] 0
f14 Step 30 [− 100, 100] 0 f22 Xin-she Yang 30 [− 20, 20] 0
f15 Stepint 30 [− 5.12, 5.12] − 155 f23 Perm 0, D, Beta 5 [− 5, 5] 0
f16 Schwefel’s 2.22 30 [− 100, 100] 0 f24 Sum squares 30 [− 10, 10] 0
f17 Schwefel’s 2.23 30 [− 10, 10] 0
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Table 4  Multimodal fixed-dimension benchmark functions

No. Name D Range fopt No. Name D Range fopt

f25 Egg crate 2 [− 5, 5] 0 f39 Cross func-
tion

2 [− 10, 10] 0

f26 Ackley N.3 2 [− 32, 32] − 195.629 f40 Cross leg 
table

2 [− 10, 10] − 1

f27 Adjiman 2 [− 1, 2] − 2.02181 f41 Crowned 
cross

2 [− 10, 10] 0.0001

f28 Bird 2 [− 2π, 2π] − 106.765 f42 Easom 2 [− 100, 100] − 1
f29 Camel 6 

Hump
2 [− 5, 5] − 1.0316 f43 Giunta 2 [− 1, 1] 0.060447

f30 Branin 
RCOS

2 [− 5, 5] 0.397887 f44 Helical Val-
ley

3 [− 10, 10] 0

f31 Goldstien 
Price

2 [− 2, 2] 3 f45 Himmelblau 2 [− 5, 5] 0

f32 Hartman 3 3 [0, 1] − 3.86278 f46 Holder 2 [− 10, 10] − 19.2085
f33 Hartman 6 6 [0, 1] − 3.32236 f47 Pen Holder 2 [− 11, 11] − 0.96354
f34 Cross-in-tray 2 [− 10, 10] − 2.06261 f48 Test Tube 

Holder
2 [− 10, 10] − 10.8723

f35 Bartels Conn 2 [− 500, 500] 1 f49 Shubert 2 [− 10, 10] − 186.731
f36 Bukin 6 2 [− (15, 5), 

− (5, 3)]
180.3276 f50 Shekel 4 [0, 10] − 10.5364

f37 Carrom 
Table

2 [− 10, 10] − 24.1568 f51 Three-Hump 
Camel

2 [− 5, 5] 0

f38 Chichinadze 2 [− 30, 30] − 43.3159

Table 5  Multimodal variable-dimension benchmark functions

No. Name D Range fopt No. Name D Range fopt

f52 Schwefel’s 
2.26

30 [− 500, 500] − 418.983 f61 Styblinski-
Tang

30 [− 5, 5] − 1174.98

f53 Rastrigin 30 [− 5.12, 
5.12]

0 f62 Griewank 30 [− 100, 100] 0

f54 Periodic 30 [− 10, 10] 0.9 f63 Xin-She 
Yang N. 4

30 [− 10, 10] − 1

f55 Qing 30 [− 500, 500] 0 f64 Xin-She 
Yang N. 2

30 [− 2π, 2π] 0

f56 Alpine N. 1 30 [− 10, 10] 0 f65 Gen. Penal-
ized

30 [− 50, 50] 0

f57 Xin-She 
Yang

30 [− 5, 5] 0 f66 Penalized 30 [− 50, 50] 0

f58 Ackley 30 [− 32, 32] 0 f67 Michalewics 30 [0, π] − 29.6309
f59 Trignomet-

ric 2
30 [− 500, 500] 0 f68 Quartic 

Noise
30 [− 1.28, 

1.28]
0

f60 Salomon 30 [− 100, 100] 0
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of ladybugs, it is not allowed to reduce the population to less than the assumed number. 
In this regard, the average of normalized optimal values of the 78 benchmark functions 
(introduce in Sect. 4) by LBO algorithm based on various proportion of the final popula-
tion number is illustrated in Fig. 3. Obviously, reducing the population size to 20–30% 
initial size leads to minimum cost function. Hence, the minimum number of ladybugs in 
LBO is tuned on 25% its initial number. Thus, both (5) or (6) is rewritten as follows:

The flowchart of the proposed LBO algorithm is shown in Fig. 4.

(7)

⎧⎪⎨⎪⎩

N(k + 1) = max
�
0.25N(0), round

�
N(k) − rand × N(k)

�
NFE

NFEmax

���

N(k + 1) = max
�
0.25N(0), round

�
N(k) − rand × N(k)

�
k

kmax

��� ,

Table 6  CEC-C06 2019 Benchmarks “The 100-Digit Challenge”

No. Name D Range fopt

f69 Storn’s Chebyshev polynomial fitting program 9 [− 8192, 8192] 1
f70 Inverse Hilbert matrix problem 16 [− 16382, 16382] 1
f71 Lennard–Jones minimum energy cluster 18 [− 4, 4] 1
f72 Rastrigin’s function 10 [− 10, 1000] 1
f73 Griewank’s function 10 [− 10, 1000] 1
f74 Weierstrass function 10 [− 10, 1000] 1
f75 Modified Schwefel’s function 10 [− 10, 1000] 1
f76 Expanded Schaffer’s F6 function 10 [− 10, 1000] 1
f77 HappyCat function 10 [− 100, 100] 1
f78 Ackley function 10 [− 100, 100] 1

Table 7  Parameter settings of algorithms used for comparative [30]

Name Parameters

LBO N(0) = 60, � = 10,Nmin = 0.25N(0)

EO [27] N = 60, �min = 0.2, �max = 0.8,P
CR

= 0.2

Chimp [35] N = 60, � = 20,G0 = 100

PSO [16] N = 60, c1 = 2, c2 = 2,w = [0.9 → 0.2]

SCA [74] N = 60, a = 2,
[
r1, r2, r3, r4

]
from corresponding eq.

TLBO [29] N = 60,

SLO [75] N = 60,P = 0.8

ICA [76] N = 60,Pa = 0.25
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4  LBO performance evaluation

A new optimization algorithm must be competitive with other efficient algorithms and 
has special abilities in solving some optimization problems. Besides, the exploration and 
exploitation capacities in the proposed algorithm must be balanced so that being able to 
solve variety of optimization problems. According to this point, the proposed algorithm 
will be evaluated with 78 well-known benchmark functions and will compare with some 
powerful algorithms in this section in order to specify its abilities.

4.1  Experimental setup

In this subsection, the performance of the proposed algorithm is evaluated on 78 
different benchmark functions, and the results are compared with some state-of-
the-art meta-heuristics optimization algorithms. These functions are classified 
into five different groups according to their nature and will be used to evalu-
ate the proposed optimization algorithm. These five groups include unimodal 
fixed-dimension, unimodal variable-dimension, multimodal fixed-dimension, 

Fig. 5  Perspective views (D = 2) of 8 benchmark functions from all 5 benchmark function categories
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multimodal variable-dimension [30], and CEC-C06 2019 [72, 73] benchmark 
functions, respectively. Dimension, upper and lower bounds, and the global opti-
mal value is given in Tables 2, 3, 4, 5, and 6, respectively. In these tables, No., 
Name, D, Range, and fopt are the number, name, dimension, upper and lower 
bounds, and the global optimum value of each function, respectively.

LBO is implemented for each of the functions in Tables  2, 3, 4, 5, and 6, 
and its results are compared with several most popular optimization algorithms, 
including Equilibrium Optimizer (EO) [27], Chimp [35], PSO, Sine Cosine 

Table 12  Comparison of the various algorithms results with LBO in CEC-C06 2019 Benchmark func-
tions

Best-obtained results are shown in bold

No. Index LBO EO Chimp PSO SCA TLBO SLO ICA

f69 Med 5.13E+09 41,925.6 2.01E+12 8.99E+07 2.95E+05 8.92E+07 4.48E+07 1.53E+06
Mean 4.88E+09 41,242.3 2.14E+12 6.85E+07 3.41E+05 1.08E+08 9.93E+07 1.82E+06
Std. 4.44E+07 2598.4 3.80E+11 4.81E+07 1.64E+04 5.45E+06 1.10E+07 8.48E+06

f70 Med 17.342 17.343 7400.52 17.342 19.847 17.342 17.342 19.22
Mean 17.342 17.344 7672.37 17.342 19.284 17.342 17.342 19.300
Std. 9.75E−06 0.00067 2710.906 0 0.9760 0 4.04E−06 0.2161

f71 Med 12.702 12.702 12.702 12.702 12.702 12.702 12.7024 12.702
Mean 12.702 12.702 12.702 12.702 12.702 12.702 12.7024 12.7025
Std. 4.83E−07 8.66E−07 4.07E−06 0 8.758E−05 3.08E−15 0 0.00025

f72 Med 9.985 63.375 26,620.82 22.883 21.916 24.841 13.929 5083.447
Mean 10.388 72.268 26,678.62 20.562 34.271 21.832 15.919 7358.37
Std. 7.593 15.730 4019.15 8.692 21.937 7.048 4.3369 4779.17

f73 Med 1.118 1.4335 7.477 1.103 1.220 1.074 1.039 2.8190
Mean 1.086 1.467 6.923 1.086 1.197 1.073 1.0377 2.8445
Std. 0.066 0.0856 1.085 0.0298 0.0537 0.0098 0.0124 1.0410

f74 Med 3.517 9.980 13.394 4.956 4.649 10.624 10.021 7.961
Mean 3.492 9.583 12.990 5.030 4.626 10.479 9.86529 8.0036
Std. 0.826 1.135 1.095 1.483 0.2289 0.3375 0.3261 0.7401

f75 Med 21.09 412.07 1515.175 22.945 391.580 426.404 117.731 117.156
Mean 22.871 436.58 1469.099 28.907 277.359 434.960 133.609 153.181
Std. 4.089 194.94 337.789 97.045 206.530 32.860 106.064 112.92

f76 Med 3.554 4.633 6.859 4.880 4.132 5.134 4.821 5.665
Mean 3.879 4.234 6.811 4.795 4.684 5.081 4.067 5.658
Std. 0.938 0.6976 0.138 0.625 1.187 0.9843 0.527 0.293

f77 Med 2.344 2.665 6212.14 2.345 2.861 2.342 2.557 8.289
Mean 2.345 2.928 6620.28 2.344 2.948 2.343 2.521 34.577
Std. 0.0035 0.461 1528.594 0.0012 0.1650 0.0020 0.0758 47.362

f78 Med 20.012 20.339 20.55 19.999 20.093 20.223 20.095 20.114
Mean 20.018 20.367 20.516 19.999 20.083 17.563 20.157 20.113
Std. 0.0176 0.053 0.0874 6.42E−05 0.0261 4.700 0.104 0.0175
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Algorithm (SCA) [74], TLBO, Seven-spot Ladybird Optimization (SLO) [75], 
and Imperialist Competitive Algorithm (ICA) [76]. The parameters set for the 
seven algorithms used to compare and the proposed algorithm are given in 
Table 7. Besides, several functions’ 2D landscapes from all five-category func-
tion are presented in Fig. 5, which demonstrates the variety of the studied func-
tions’ types.

4.2  Evaluation of LBO algorithm

In this subsection, the results of the 78 benchmark functions are employed to 
evaluate the LBO algorithm. For this purpose, LBO and seven popular algo-
rithms are used to optimize the mentioned functions and the results are com-
pared. All the algorithms used for comparison and LBO are executed 30 times 
for all benchmark functions, and the median, average, and standard deviation of 
the best solutions are represented. Also, in all algorithms, the termination condi-
tion is considered the number of function evaluations, which are set at 50,000. 
The results obtained from the implementation of the algorithms on the bench-
mark functions are given in Tables 8, 9, 10, 11, and 12.

According to the results of Table  8, LBO is quite powerful in optimizing 
these functions and only has not gained the first position in mean value of the 
best algorithm in function f7 compared to the other algorithms. However, in this 
function, the results of LBO are comparable, and only the results of the PSO 
algorithm are more appropriate. These benchmark functions are considered sim-
ple functions for the optimizers. Among the other seven high-performance algo-
rithms, the results of the PSO algorithm are considerable, which is the second 
algorithm after LBO. Overall, the proposed algorithm demonstrates the best per-
formance among the others, making it the best algorithm in the first comparison.

By examining the results obtained for the optimization of the second bench-
mark functions group, it is clear that the proposed optimization algorithm has a 
high ability to optimize this group of functions, and in most of them, there is a 
dramatic improvement in the results. In the f10, f12, f13, f16, f18, f19, f21, f23, and f24 
functions, the proposed LBO algorithm has a much more appropriate optimal 
solution than other algorithms and has shown its superiority. The proposed algo-
rithm is the only one that has reached the best solution among others in these 
9 benchmark functions. In addition to the results related to the optimal points, 
the speed of the proposed algorithm is better than that of the others in most 
cases of this group of benchmark functions. Therefore, LBO is a suitable algo-
rithm for unimodal variable-dimension benchmark functions. Also, the proposed 
algorithm in the f11, f15, f17 , f20 , and f22 functions has reached the same optimum 
value as several other algorithms, in which LBO is still an appropriate algorithm 



3540 S. Safiri, A. Nikoofard 

1 3

for this group of functions. The results obtained in several algorithms only in the 
f14 function have a more optimal value than LBO, but the results of the proposed 
algorithm are still comparable in this function.

The results obtained in Tables  8 and 9 show that LBO has a high ability in 
exploitation. The great advantage of LBO in exploiting is for two main reasons: 
First, according to the process of updating the ladybugs’ position, each ladybug 
is updated by the other ladybug that was selected by Roulette-wheel selection. 
Therefore, more importance is given to better ladybugs, and the probability of 
selecting better ladybugs to update each one is higher. Therefore, the exploitative 
behavior of LBO is desirable. Second, the second term in updating the position of 
each ladybug that specified in (1) is the direction of the selected ladybug in the 
Roulette-wheel selection toward the next ladybug, which caused the ladybug to be 
more inclined toward the better ones.

The results of the LBO implementation on multimodal fixed-dimension bench-
mark functions with the result of the other algorithms in Table 10 demonstrate that 
the proposed algorithm has achieved the optimal value obtained by the other algo-
rithms in most functions. The LBO only does not specify the optimal value in the 
f33, f40, f41 , and f44 functions of 27 tested benchmark functions of this benchmark 
function group, which means the proposed algorithm reached the best solution in 
more than 85% of benchmark functions. These results make LBO the best algo-
rithm compared to the others. Also, by observing the results obtained in Table 11, 
related to the multimodal variable-dimension benchmark function group, it is clear 
that the optimal values of several benchmark functions of this group have been 
obtained using the proposed LBO. Of course, this is also true in the other algo-
rithms. These results indicate that the optimal values of f56 , f57 , f60 , and f68 bench-
mark functions have been obtained only by LBO, and the results obtained from 
this algorithm are close and comparable to the achieved optimal results in most 
other functions. The multimodal functions that the optimization results are present 
in Tables 10 and 11 have many local minimums, and the optimization algorithms 
must escape them. As mentioned, LBO has been able to distance well from local 
optimal minimums of multimodal fixed-dimension benchmark functions and stuck 

Table 13  General comparison of 78 benchmark functions’ results for the all algorithms

Best-obtained results are shown in bold

LBO ICA Chimp PSO SCA TLBO SLO EO

Number of 
benchmark 
functions with 
the best result

58 (73.3%) 33 (42.3%) 12 (15.3%) 37 (47.4%) 17 (21.8%) 38 (48.7%) 24 (30.7%) 33 (42.3%)

Number of func-
tions that alone 
reached to the 
optimal value

16 (20.5%) 0 (0%) 0 (0%) 2 (2.6%) 1 (1.3%) 1 (1.3%) 1 (1.3%) 2 (2.6%)
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in local minimums in a few functions of the last group, however. Therefore, the 
global optimal minimums have not achieved.

Table 12 demonstrates the results of the optimization algorithms for CEC-C06 
2019 Benchmark functions, a challenging group of benchmark functions for opti-
mizers. Looking at the results in this table, the optimal value of f72, f74 , f75 , and 
f76 functions is obtained only by LBO algorithm, and in f70 and f71 shares the 
first position with some other algorithms, which means the proposed algorithm 
reaches the best solution in 60% of the all functions of this group. Addition-
ally, the obtained results in f73 , f77 , and f78 functions are also so close to the best 
answer. LBO is also the best algorithm in this comparison, like all four previous 
comparisons.

4.3  Analysis of the results

In the previous subsection, all eight algorithms were employed for 78 benchmark 
functions in five separated categories and the results were reported. The obtained 
results are compared in the following. Looking at Tables  8, 9, 10, 11, and 12, 
it is obvious that the algorithm is an appropriate optimizer for simple and even 
more complex convex optimization problems. Moreover, the performance of the 
algorithm is better than the other in the nonconvex optimization problems. The 
number of optimization problems that each algorithm has reached to the best cost 
is illustrated in Table 13, which is the first part of the comparision of the eight 
algorithms. Moreover, the number of problems in that the algorithms alone have 
determined the optimal values are shown. According to these results, LBO algo-
rithm has succeeded to report the optimal values of 58 benchmark functions of 78 
available functions and 16 functions alone reached the optimal values, making it 
substantially the best algorithm among others.

Looking at Fig. 6, the convergence curves of the 8 functions, selected randomly 
from all benchmark functions, are plotted to present the second part of eight algo-
rithms’ comparison. The LBO curves indicate the best path among others in most 
of eight functions. Based this figure, LBO keeps improving linearly without get-
ting trapped in any local optimum and was one of the first algorithms that leads to 
optimal values. As shown in this figure, not only does the algorithm reach the best 
solutions in most of the 8 shown cost function curves, but the speed of the algo-
rithm also is the best among the other, which is an important index to compare the 
algorithms.

In addition, to draw a reliable conclusion and illustrate the superiority of the 
proposed algorithm, a statistical test is conducted in the following. In this regard, 
the box plot analysis of eight optimization algorithms is demonstrated for eight 
benchmark functions in Fig. 7. Except f50 function, LBO algorithm demonstrates 
the best result in all of functions.
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(a) (b)

(c) (d)

(e) (f)

Fig. 6  Comparison of the various algorithms’ convergence curves with LBO for 8 benchmark functions, 
including a f7 , b f13 , c f15 , d f20 , e f41 , f f50 , g f54 , and h f73
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5  Real‑world engineering optimization case‑studies

Variety of the real-world optimization problems is the main reason for the variety of opti-
mizers; each optimization algorithm is able to properly solve a group of practical prob-
lems. In this regard, two different real-world optimization problems are solved by LBO in 
this section to prove the high performance of the proposed algorithm, EEDP and Covid-
19 pandemic modeling. EEDP is one of the most important optimization problems for 
electrical engineers. The purpose of the EEDP is to choose the power optimal value for 
each power plant, in a way that first, the power demand by the consumer and other con-
straints imposed by the conditions such as the generation constraint of each power plant 
responds, and second, the total costs of power generation and emission of polluted gases 
are minimized. EEDP is one of the multi-objective optimization problems [77]. Moreo-
ver, Covid-19 pandemic is one of the most important concerns of human nowadays, and 
accurate forecasting is essential for deliberate decision-making by the authorities. Hence, 
LBO is employed to solve EEDP and predict the confirmed and recovered trend of Covid-
19 in this section.

5.1  Economic‑environmental dispatch problem

In the following of this subsection, mathematical modeling of EEDP is expressed, and 
then, the results of LBO implementation for the three IEEE standard grid to optimize 
the generation cost and emission are presented and compared with the other methods.

5.1.1  EEDP formulation

This part describes the objective function and constraints of EEDP.

(g) (h)

Fig. 6  (continued)
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 7  Box plot analysis of all employed algorithms for 8 benchmark functions, including a f7 , b f13 , c 
f15 , d f20 , e f41 , f f50 , g f54 , and h f73
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5.1.1.1 Objective function of EEDP Consider a power grid with N power plant. The cost 
function of the i th power plant for generate Pi MW power is presented as follows [78]:

where ai, bi, ci, gi, and hi are constants and Pmin
i

 is the minimum allowable power genera-
tion in the i th power plant. Also, the emission value for Pi MW power generation in the 
i th power plant as the second term of the objective function can be written as:

where �i, �i, �i, �i, and �i are constants.
Finally, the total objective function of EEDP that the sum of the two objective func-

tions includes the generation cost and emission amount for N power plants is obtained 
as the following,

where p is the penalty coefficient to convert a multi-objective optimization into a single-
objective optimization problem, and how to calculate it is stated in [79].

5.1.1.2 Constraints EEDP constraints that are considered are divided into two parts, 
which are described below.

(1) Generation constraints

The power generation of each power plant must be in the allowed range, which is rep-
resented as follows:

where Pmin
i

 and Pmax
i

 are the minimum and maximum allowable power generation of the 
i th power plant.

(2) The constraint of the balance of generation and demand

(8)FPi

(
Pi

)
= aiP

2
i
+ biPi + ci +

|||gi sin
(
hi
(
Pmin
i

− Pi

))|||, i = 1, 2,… ,N.

(9)FEi

(
Pi

)
= �iP

2
i
+ �iPi + �i + �i exp

(
�iPi

)
, i = 1, 2,… ,N.

(10)F =

N∑
i=1

(
FCi

+ p ∗ FEi

)
,

(11)Pmin
i

≤ Pi ≤ Pmax
i

, i = 1, 2,… ,N.

Table 14  Characteristics of the test systems for EEDP

System Number of units Power demand 
(MW)

Case I [80] 3 500
Case II [81] 10 2000
Case III [82] 40 10,500
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Another constraint that must be considered while generating power is the balance of 
generation and demand. Since power losses are always associated with the transmission, it 
is necessary to consider the power losses in this constraint. Therefore, this constraint can 
be written as follows:

where D is the total power demand and LP is the power losses during the transmission. 
The total power losses LP can be calculated as follows:

where Bij as power losses coefficient matrix is a constant matrix.

(12)
N∑
i=1

Pi = D + LP

(13)LP =

N∑
i=1

N∑
j=1

PiBijPj

Table 15  Comparison of various methods for case I

Best-obtained results are shown in bold

LBO GA PSO BA MSFLA KKO

G1 128.6695 128.997 128.984 128.8280 128.338 129.011
G2 186.0869 192.683 192.645 192.5792 191.964 192.303
G3 195.9175 190.110 190.063 190.2858 191.389 190.274
Fc

(
$
)

25,453.99 25,499.43 25,494.95 25,494.69 25,493.96 25,490.5
FE(ton) 310.0958 311.273 311.150 311.15 311.1638 311.013
LP 11.6659 11.6964 11.6919 11.6936 11.6927 11.687

Table 16  Comparison of various methods for case II

Best-obtained results are shown in bold

LBO SSA KKO LFA FPA SPEA2

G1 78.966 54.2501 54.9923 54.9920 53.188 52.9761
G2 79.999 79.0674 78.8914 78.7689 79.975 72.8130
G3 84.539 80.9404 78.7946 87.7168 78.105 78.1128
G4 83.035 80.6482 88.7479 78.1055 97.119 83.6088
G5 134.953 159.6807 159.814 140.6272 152.74 137.2432
G6 153.449 239.7595 160.555 157.0936 163.08 172.9188
G7 296.7148 293.6209 262.174 299.9954 258.61 287.2023
G8 314.644 299.3002 308.857 309.2219 302.22 326.4023
G9 427.706 394.5042 430.307 439.3243 433.21 448.8814
G10 430.124 397.5986 461.039 438.6947 466.07 423.9025
Fc

(
×105$

)
1.13082 1.16199 1.13481 1.13246 1.1337 1.1352

FE(ton) 4114.90 3922.6781 3982.85 4139.89 3997.7 4109
LP 84.13 – 84.17 84.37 84.3 –



3547

1 3

Ladybug Beetle Optimization algorithm: application for…

Table 17  Comparison of various methods for case III

LBO SSA KKO MOMVO MABC FPA MOSSA

G1 113.998 114 114 113.888 114 43.405 110.7491
G2 113.999 114 113.045 113.604 114 113.95 111.0225
G3 119.952 120 119.744 118.1822 120 105.86 97.7975
G4 167.663 169.6615 181.102 179.3608 169.368 169.65 176.4569
G5 96.999 97 96.5081 97 97 96.659 86.08027
G6 123.007 124.1793 139.796 139.7361 124.2571 139.02 107.3728
G7 296.755 299.6333 299.686 299.1992 299.7111 273.28 256.9853
G8 293.581 297.9084 298.619 287.2614 297.9148 285.17 284.4698
G9 294.697 297.1041 289.447 293.1661 297.2603 241.96 288.4908
G10 120.582 130 131.386 201.1565 130 131.26 130
G11 296.957 298.4902 247.114 245.8292 298.4103 312.13 235.5396
G12 295.103 298.0485 318.381 246.0955 298.0263 362.58 244.8612
G13 428.375 433.6989 395.689 397.0952 433.5562 346.24 394.7111
G14 417.1849 421.7318 393.82 395.2555 421.7284 306.06 394.4515
G15 415.909 422.8917 305.891 394.5758 422.78 358.78 394.935
G16 417.956 422.7761 394.283 394.92 422.7802 260.68 393.6546
G17 435.428 439.4818 489.706 488.8086 439.4119 415.19 466.4393
G18 435.180 439.3167 487.897 488.5656 439.4031 423.94 417.0333
G19 435.061 439.4325 500.104 423.0749 439.4133 549.12 506.681
G20 436.139 439.3283 455.719 426.6439 439.4134 496.7 458.2062
G21 436.014 439.5036 434.334 437.0451 439.4467 539.17 495.378
G22 435.443 439.5325 434.86 440.1489 439.4469 546.46 517.2692
G23 436.685 439.8736 446.6 514.0343 439.7724 540.06 498.5927
G24 436.263 439.3167 451 444.3748 439.7716 514.5 477.2586
G25 436.545 440.2088 491.259 434.8894 440.1118 453.46 461.2753
G26 437.098 440.2306 435.771 437.2822 440.1113 517.31 436.3836
G27 26.820 28.8355 11.079 13.3596 28.9933 14.881 10.30714
G28 26.426 28.9969 10.3466 10.2467 28.9937 18.79 10.44341
G29 26.865 28.8005 12.2337 12.4183 28.9939 26.611 10.66527
G30 96.999 97 96.6001 95.4617 97 59.581 97.33416
G31 171.897 172.3405 189.436 189.2573 172.3318 183.48 162.7609
G32 170.865 172.3671 175.188 187.1736 172.3316 183.39 176.2818
G33 170.653 172.2762 189.992 188.4748 172.3319 189.02 170.2161
G34 199.999 200 199.679 199.8411 200 198.73 199.1574
G35 199.999 200 199.89 199.5351 200 198.77 199.3051
G36 302.519 200 199.905 200 200 182.23 199.1051
G37 100.046 100.8786 108.554 107.1915 100.8384 39.673 106.7655
G38 99.583 100.6951 109.71 109.6094 100.8384 81.596 101.9738
G39 99.538 100.7199 108.639 110 100.8386 42.96 105.6719
G40 435.197 439.3512 421.912 426.2376 439.4127 537.17 508.0384
Fc

(
×105$

)
1.28937 1.29996 1.25852 1.2547 1.29995 1.2317 1.241695

Ec

(
×105 ton

)
1.69348 1.76652 2.10837 2.0991 1.76682 2.0846 2.352652
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5.1.2  EEDP results using LBO

To comprehensively evaluate the performance of LBO for EEDP, the proposed algorithm 
is implemented for the three small, medium, and large grids, which are IEEE standard 
three, ten, and forty buses, respectively. In each of the three problems, the obtained opti-
mal power generation value, the value of each objective function, and the transmission 
losses are presented and compared with similar methods. The characteristics of the three 
EEDPs, including the number of the power plant and the power demand, are given in 
Table 14.

By optimizing the generation of each grid introduced in Table 14, the optimal genera-
tion value of each power plant is calculated. The optimal power generation values in each 
grid cover the power demand and transmission losses. At the same time, the intended 
objective functions are optimized. Tables 15, 16, and 17 related to the grid include three, 
ten, and forty power plants, respectively, which show the optimal values for the power 
plants, the objective functions, and the power losses.

The obtained results from LBO and five other algorithms include GA [80], PSO [80], 
Bat Algorithm (BA) [83], Modified Shuffled Frog Leaping Algorithm (MSFLA) [84], 
and Kho-Kho Optimization (KKO) [78] are presented for comparison in Table 15. As can 
be seen from the results, all three values of generation costs, emissions, and power losses 
have been improved in the proposed algorithm compared to other algorithms. The results 
of the LBO and several of the most important algorithms that have recently studied on this 
grid are compared in Table 16. The compared algorithms with LBO results in the ten-bus 
grid are Squirrel Search Algorithm (SSA) [85], KKO [78], Lightning Flash Algorithm 
(LFA) [86], Flower Pollination Algorithm (FPA) [79], and Strength Pareto Evolutionary 
Algorithm 2 (SPEA2) [81]. According to this comparison, the total generation cost and 
the power losses have been improved in LBO. However, it has not been very successful in 
reducing emissions. Finally, the obtained results for the 40-bus grid using LBO and sev-
eral other algorithms, including SSA [85], KKO [78], Multi-Objective Multi-Verse Opti-
mization (MOMVO) [87], Modified Artificial Bee Colony (MABC) algorithm [88], FPA 
[79], and Multi-Objective Squirrel Search Algorithm (MOSSA) [82] are also presented 
in Table 17. According to the results for the 40-bus grid, emissions have dropped signifi-
cantly. The generation costs in LBO are not the best result among the existing algorithms 
but are still comparable. In addition, according to the IEEE standard, the power losses 
have not been considered for this grid. The optimal value for the production of power 
plants has been determined by the LBO, and the generation costs, the emissions, and the 
power losses obtained by LBO are the lowest values among the others. The most impor-
tant reason is to be clear about the value of the penalty coefficient; all methods considered 
this value same. The penalty coefficient of the first grid is expressed in several references. 
But in the other two grids, the exact value of the penalty coefficient is not stated, and 
different values may be considered in researches. This can be deduced from the results. 
However, by analyzing the results in the ten-bus and forty-bus grids, the superiority of the 
LBO method is clear. Also, the minimum value of transmission losses ( LP ) in the exam-
ined grids is determined by LBO.
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5.2  Prediction of the COVID‑19 pandemic

Despite the fact that the proposed optimization algorithm succeeded to optimize several 
benchmark functions in Sect. 4, the evaluation of the algorithm is essential for real-world 
problems. Therefore, the mathematical model of Covid-19 is expressed in this section, 
and the prediction of this pandemic will be evaluated by LBO. The prediction of the 
Covid-19 pandemic model is vital to recognize and control the pandemic course. The 
accurate prediction helps authorities employ appropriate strategies to prevent the spread 
of this infection, such as vaccination and social distance.

5.2.1  Mathematical modeling of Covid‑19

There is plenty of mathematical models for Covid-19 that have been recently proposed. 
Among them, however, one of the most popular models will be employed in this sec-
tion, named SIDARTHE mathematical model [62]. The state-space model of Covid-19 is 
given in (14)–(21).

(14)Ṡ(t) = −S(t)(𝛼I(t) + 𝛽D(t) + 𝛾A(t) + 𝛿R(t))

(15)İ(t) = S(t)(𝛼I(t) + 𝛽D(t) + 𝛾A(t) + 𝛿R(t)) − (𝜀 + 𝜁 + 𝜆)I(t)

(16)Ḋ(t) = 𝜀I(t) − (𝜂 + 𝜌)D(t)

(17)Ȧ(t) = 𝜁I(t) − (𝜃 + 𝜇 + 𝜅)A(t)

(18)Ṙ(t) = 𝜂D(t) + 𝜃A(t) − (𝜈 + 𝜉)R(t)

(19)Ṫ(t) = 𝜇A(t) + 𝜈R(t) − (𝜎 + 𝜏)T(t)

Fig. 8  Compression real and prediction of confirmed and recovered data of Iran by top-performing and 
LBO algorithms, a confirmed and b recovered individuals
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where this model consists of eight states, including susceptible ( S(t) ), infected ( I(t) ), diag-
nosed ( D(t) ), ailing ( A(t) ), recognized ( R(t) ), threatened ( T(t) ), healed ( H(t) ), and extinct 
( E(t) ) cases. Besides, the positive parameters of model, denoted by Greek letters, are 
represented in NOMENCLATURE. The purpose of modeling is to determine these 16 
parameters so that the modeling accuracy is maximized. Thus, LBO is used to specify the 
parameters of the model in the next subsection.

5.2.2  Evaluation of Covid‑19 prediction

The mathematical model of Covid-19 was presented in the last subsection. LBO is uti-
lized to specify the parameters of the mentioned model in the following. In this prob-
lem, the mathematical modeling has been changed to an optimization problem and Mean 
Square Error (MSE) is used as the cost function. Besides, the real data used in this mode-
ling are available on https:// data. humda ta. org/ datas et/ novel- coron avirus- 2019- ncov- cases. 
The mathematical modeling has been done for two different countries, including Iran 
and Italy. In this regard, the confirmed and recovered individuals’ data are predicted for 
561 days, from 22 January 2020 to 4 August 2021. Mathematical modeling must change 
over time due to changing the behaviors of society against the pandemic. Therefore, all 
data are divided into several 20-day periods, tuning the model is being done only by the 
first 15 days, and then the model is being evaluated by the last five days of each 20-day 
period. The results of the confirmed and recovered individuals’ prediction are shown in 
Figs. 8 and 9 for Iran and Italy, respectively. It should be noted that the proportion of 
confirmed and recovered individuals’ number to the total population of the country are 
considered in the prediction process, 80 million and 60 million population for Iran and 
Italy in turn. Obviously, the mortality rate is considerably affected by patients’ age and the 
improvement of treatment methods. Thus, the death rate has not been considered in the 

(20)Ḣ(t) = 𝜆I(t) + 𝜌D(t) + 𝜅A(t) + 𝜉R(t) + 𝜎T(t)

(21)Ė(t) = 𝜏T(t)

Fig. 9  Compression real and prediction of confirmed and recovered data of Italy by top-performing and 
LBO algorithms, a confirmed and b recovered individuals

https://data.humdata.org/dataset/novel-coronavirus-2019-ncov-cases
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prediction process. In these figures, the results of the first 15 days of each 20-day period 
are related to modeling output and the last 5 days results are the results of the prediction 
based on the obtained model. Additionally, the results of PSO and TLBO algorithms have 
been compared with LBO algorithm.

Apparently, the three optimization algorithms in predicting the confirmed and recov-
ered individuals of Iran show approximately the same performance. However, the per-
formance of LBO in forecasting of Italy’s data is dramatically better than other two algo-
rithms, especially in the last parts of the prediction. The estimated parameter of the model 
by LBO is expressed in Table 18 for Iran and Table 19 for Italy. As mentioned earlier, 
the modeling has been conducted every 20 days. Therefore, 28 separated models are esti-
mated for this data.

After modeling the Covid-19 in Iran and Italy based on the first 15  days of each 
20-day period, the number of the confirmed and recovered individuals were predicted by 
obtained model. Then, by comparing the real data and estimated data, Mean Absolute 
Error (MAE) and Mean Square Error (MSE) have been calculated for Iran’s and Italy’s 
data for three algorithms which are reported in Table 20. According to this table, LBO 
showed considerable better performance than others. In other words, according to the 
population size of both countries, the LBO algorithm illustrates less error than the TLBO 
algorithm, as the second algorithm, which is more than 3000 and 1800 individuals per 
day for Iran’s and Italy’s data, respectively.

6  Conclusion

In this paper, a novel optimization algorithm called Ladybug Beetle Optimization (LBO) 
algorithm is proposed aimed utilizing at engineering applications, which is inspired by 
the behavior of ladybugs in winter to find a warm location. At the beginning of winter, 
the swarm of ladybugs searches coordinately for a warm location, and their movements 
are affected by the other ladybugs. Also, while searching, some ladybugs may deviate 
and be annihilated due to extreme cold. The objective function is considered to be the 
inverse value of heat for each ladybug location. Therefore, the optimization problem is 
formulated as a standard minimization problem. Firstly, the initial positions of the popula-
tion have been selected randomly in the algorithm. Then, according to the other ladybugs, 
especially better members of the ladybug population, the position of each ladybug is 
updated. Some ladybugs update randomly to make a balance between the exploitation and 

Table 20  MAE and MSE values 
of Iran and Italy’s confirmed 
and recovered data prediction by 
three algorithms

LBO TLBO PSO

Iran
MAE 1.3065E−04 1.6921E−04 2.0277E−04
MSE 5.1065E−08 9.2653E−08 1.3633E−07
Italy
MAE 3.0045E−04 6.1144E−04 1.0236E−03
MSE 3.0498E−07 1.7024E−06 2.6902E−06
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exploration aspects of the algorithm. Finally, the positions of the population are evaluated 
to sort them and ignore the worst members in each iteration. To evaluate the performance 
of LBO, the proposed algorithm was employed on 78 well-known benchmark functions, 
including the unimodal, multimodal, and CEC-C06 2019 functions, and the results were 
analyzed. LBO results were also compared with several high-performance metaheuris-
tic optimization algorithms, which shows LBO succeeded to achieve best performance in 
comparison among other algorithms in most of the benchmark functions. The proposed 
algorithm has reached the optimal values of 70.5% of the used benchmark functions and 
is the only algorithm that achieved the best solution of 21.8% of them. Besides, LBO was 
used for the economic-environmental dispatch problem (EEDP) as a real-world and multi-
objective optimization problem. The results obtained from all three power grids in solving 
the EEDP including three, ten, and forty busses were so promising. So, most of the results 
obtained from LBO were better than other algorithms. Compared to other algorithms, 
LBO won first place in the generation costs and emission in the three-bus grid, the gen-
eration costs in the ten-bus grid, and the emission in the forty-bus grid. Also, according to 
the results, LBO had the lowest power losses in the grids. Additionally, LBO was used for 
the prediction of the COVID-19 model as a real-world problem. According to the results, 
LBO indicated better performance with less error compared to top-performing algo-
rithms. Consequently, the results show that the novel proposed LBO has the acceptable 
performance in the challenging benchmark functions as well as the real-world problems. 
However, the proposed algorithm is not able to optimize the fifth group of benchmark 
functions, which means the algorithm needs some modifications in some aspects. Overall, 
the proposed method is a high-performance algorithm, which is able to optimize a vari-
ety of optimization problems. Therefore, it is predicted that the multi-objective version of 
LBO would be also a powerful algorithm against multi-objective optimization problems. 
Thus, LBO optimizer will be modified as a multi-objective algorithm in future research.

Data availability The MATLAB and python source code of the LBO algorithm that support the findings of 
this study are available in https:// github. com/ Saadat- Safiri/ LBO- algor ithm- matlab- code and https:// github. com/ 
Saadat- Safiri/ LBO- algor ithm- python- code, respectively.
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