Abstract
Given a set S of n colored points of m colors inside a simple polygon P, each point within the polygon has a specific color that is not necessarily unique, i.e., they may exhibit the same color. The study aims to find a simple path that traverses at least one point of each color using a set of S points contained within a simple polygon P. Two results are presented in this study. First, we demonstrate that finding such simple paths inside a simple polygon is an \(NP-complete\) problem. Moreover, we provide a polynomial-time algorithm that computes the simple path when P is an orthogonal spiral simple polygon, and our objective is to locate a simple Hamiltonian path L using all points of S inside P. Our algorithm has a time complexity of \(O(r+rn^4)\), where r is the number of reflex vertices in P and n is the number of points in S.














Similar content being viewed by others
References
Cheng Q, Chrobak M, Sundaram G (2000) Computing simple paths among obstacles. Comput Geom 16(4):223–233. https://doi.org/10.1016/S0925-7721(00)00011-0
Daescu O, Luo J (2008) Computing simple paths on points in simple polygons. In: Ito H, Kano M, Katoh N, Uno Y (eds) Comput Geom Graph Theory. Springer, Berlin, Heidelberg, pp 41–55
Tan X, Jiang B (2019) Computing simple paths from given points inside a polygon. Discret Appl Math 252:67–76. https://doi.org/10.1016/j.dam.2018.09.020
Fadavian M, Fadavian H (2022) A genetic algorithm for straight-line embedding of a cycle onto a given set of points inside the general simple polygons. arXiv preprint arXiv:2203.00453
Razzazi M, Sepahvand A (2017) Time complexity of two disjoint simple paths. Scientia Iranica 24(3):1335–1343. https://doi.org/10.24200/sci.2017.4116
Schüler J, Spillner A (2014) Crossing-free spanning trees in visibility graphs of points between monotone polygonal obstacles. In: Hirsch EA, Kuznetsov SO, Pin J-É, Vereshchagin NK (eds) Comput Sci - Theory Appl. Springer, Cham, pp 337–350
Alsuwaiyel MH, Lee DT (1993) Minimal link visibility paths inside a simple polygon. Comput Geom 3(1):1–25. https://doi.org/10.1016/0925-7721(93)90027-4
Erickson LH, LaValle SM (2013) A simple, but np-hard, motion planning problem. In: Twenty-Seventh AAAI Conference on Artificial Intelligence
Keshavarz-Kohjerdi F, Bagheri A (2017) A linear-time algorithm for finding hamiltonian (s, t)-paths in odd-sized rectangular grid graphs with a rectangular hole. J Supercomput 73(9):3821–3860
Keshavarz-Kohjerdi F, Bagheri A (2013) An efficient parallel algorithm for the longest path problem in meshes. —————————Alert—————————Updated—————————OK——————————————————Alert—————————Updated—————————OK——————————————————Alert—————————Updated—————————OK—————————J Supercomput 65(2):723–741
Consuegra ME, Narasimhan G (2013) Geometric Avatar Problems. In: Seth A, Vishnoi NK (eds) IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2013), vol 24. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, pp 389–400
Manzini R, Gamberini R (2008) Design, management and control of logistic distribution systems. Int J Adv Robot Syst 1:263–290
Acharyya A, Nandy SC, Roy S (2018) Minimum width color spanning annulus. Theor Comput Sci 725:16–30
Abellanas M, Hurtado F, Icking C, Klein R, Langetepe E, Ma L, Palop B, Sacristán V (2001) Smallest color-spanning objects. In: European Symposium on Algorithms, pp. 278–289. Springer
Acharyya A, Jallu RK, Keikha V, Löffler M, Saumell M (2021) Minimum color spanning circle in imprecise setup. In: International Computing and Combinatorics Conference, pp. 257–268. Springer
Das S, Goswami PP, Nandy SC (2009) Smallest color-spanning object revisited. Int J Comput Geom Appl 19(05):457–478
Jiang M, Wang H (2014) Shortest color-spanning intervals. In: International Computing and Combinatorics Conference, pp. 288–299. Springer
Hasheminejad J, Khanteimouri P, Mohades A (2015) Computing the smallest color spanning equilateral triangle. Proceedings of 31st EuroCG, pp 32–35
Khanteimouri P, Mohades A, Abam MA, Kazemi MR (2013) Computing the smallest color-spanning axis-parallel square. In: International Symposium on Algorithms and Computation, pp. 634–643. Springer
Keikha V, Keikha H, Mohades A (2021) On the k-colored rainbow sets in fixed dimensions. In: International Conference on Combinatorial Optimization and Applications, pp. 587–601. Springer
Pruente J (2019) Minimum diameter color-spanning sets revisited. Discrete Optim 34:100550
Fleischer R, Xu X (2011) Computing minimum diameter color-spanning sets is hard. Inform Proc Lett 111(21–22):1054–1056
Bilge YC, Çağatay D, Genç B, Sarı M, Akcan H, Evrendilek C (2015) All colors shortest path problem. arXiv preprint arXiv:1507.06865
Akçay MB, Akcan H, Evrendilek C (2018) All colors shortest path problem on trees. J Heuristics 24(4):617–644
Carrabs F, Cerulli R, Pentangelo R, Raiconi A (2018) A two-level metaheuristic for the all colors shortest path problem. Comput Optim Appl 71(2):525–551
Carrabs F, Cerulli R, Raiconi A (2021) A reduction heuristic for the all-colors shortest path problem. RAIRO-Op Res 55:2071–2082
Yannakakis M (1978) Node-and edge-deletion np-complete problems. In: Proceedings of the Tenth Annual ACM Symposium on Theory of Computing, pp. 253–264
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Sepahvand, A., Razzazi, M. Spanning simple path inside a simple polygon. J Supercomput 79, 2740–2766 (2023). https://doi.org/10.1007/s11227-022-04765-0
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11227-022-04765-0