Skip to main content

Advertisement

Log in

Design of an efficient QCA-based median filter with energy dissipation analysis

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

Quantum-dot Cellular Automata (QCA) technology is emerging nanotechnology for designing low-power digital circuits and various high-performance calculations at the nanoscale dimension, as it is termed as an emerging technology in Digital Image Processing (DIP) due to having advantages like less area occupancy, low energy dissipation, and high speed as compared with conventional transistor-based technologies. This paper demonstrates the design & implementation of median filter (MF) using QCA technology. The MF plays an important role in DIP for the reduction in noise. The proposed QCA-based MF is designed in a single layer with less cell count and low latency. The MF is designed by using Compare and Selective Module (CSM). The proposed 1-bit,  2-bit & 4-bit CSM architectures occupy the area of \( 0.17,~ 0.52 \& 3.25 \mu m^2\) and use 118,  380 & 1963 QCA cells, respectively. The proposed CSM is further extended to a larger bit size. The QCA Designer-E simulation tool has been used to design, and verify all the proposed architectures. The energy dissipation has been simulated using a coherent vector engine setup. The total energy dissipation of 1-bit,  2-bit & 4-bit CSM architecture is \( 2.56 \times 10^{{ - 2}} ,1.35 \times 10^{{ - 1}} ~\,\& \,~5.19 \times 10^{{ - 1}} eV \), and the average energy dissipation is \( 2.31 \times 10^{{ - 3}} ,\,~1.22 \times 10^{{ - 2}} \,\& \,{\text{4}}.{\text{71}} \times {\text{10}}^{{{\text{ - 2}}}} {\text{eV}} \), respectively. The total   &  average energy dissipation per cycle of the proposed MF is \( 41.72 \times 10^{{ - 1}} ~\,\& \,38.26 \times 10^{{ - 2}} eV \), respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Jeon J-C (2021) Designing nanotechnology qca-multiplexer using majority function-based nand for quantum computing. J Supercomput 77:1562–1578

    Article  Google Scholar 

  2. Choi M, Patitz Z, Jin B, Tao F, Park N, Choi M (2007) Designing layout-timing independent quantum-dot cellular automata (qca) circuits by global asynchrony. J Syst Archit 53(9):551–567

    Article  Google Scholar 

  3. Lent CS, Tougaw PD, Porod W, Bernstein GH (1993) Quantum cellular automata. Nanotechnology 4(1):49

    Article  Google Scholar 

  4. Amlani I, Orlov AO, Toth G, Bernstein GH, Lent CS, Snider GL (1999) Digital logic gate using quantum-dot cellular automata. Science 284:289–291

    Article  Google Scholar 

  5. Lent CS, Isaksen B (2003) Clocked molecular quantum-dot cellular automata. IEEE Trans Electron Device 50(9):1890–1896

    Article  Google Scholar 

  6. GA-DiLabio JP, Wolkow RA, and Piva P (2015) Atomistic quantum dots. U.S. Patent, 8(816): 479

  7. Naghibzadeh A, Houshmand M (2017) Design and simulation of a reversible alu by using qca cells with the aim of improving evaluation parameters. J Comput Electron 16(3):883–895

    Article  Google Scholar 

  8. Shamsabadi AS, Ghahfarokhi BS, Zamanifar K, Movahedinia N (2009) Applying inherent capabilities of quantum-dot cellular automata to design: D flip-flop case study. J Syst Archit 55(3):180–187

    Article  Google Scholar 

  9. Sasamal T, Singh A, Ghanekar U (2016) Design of non-restoring binary array divider in majority logic-based qca. Electron Lett 52(24):2001–2003

    Article  Google Scholar 

  10. Khosroshahy MB, Moaiyeri MH, Angizi S, Bagherzadeh N, Navi K (2017) Quantum-dot cellular automata circuits with reduced external fixed inputs. Microprocess Microsyst 50:154–163

    Article  Google Scholar 

  11. Wang Y, Lieberman M (2004) Thermodynamic behavior of molecular-scale quantum-dot cellular automata (qca) wires and logic devices. IEEE Trans Nanotechnol 3(3):368–376

    Article  Google Scholar 

  12. Ji Y (2021) A new design of fault-tolerant digital comparator based on quantum-dot cellular automata. Analog Integr Circuit Signal Process 109(3):563–570

    Article  Google Scholar 

  13. Wood JD, Tougaw D (2010) Matrix multiplication using quantum-dot cellular automata to implement conventional microelectronics. IEEE Trans Nanotechnol 10(5):1036–1042

    Article  Google Scholar 

  14. Jeon J-C (2020) Low-complexity qca universal shift register design using multiplexer and d flip-flop based on electronic correlations. J Supercomput 76(8):6438–6452

    Article  Google Scholar 

  15. Bahar AN, Wahid KA (2019) Design of qca-serial parallel multiplier (qspm) with energy dissipation analysis. IEEE Trans Circuit Syst II Express Briefs 67(10):1939–1943

    Google Scholar 

  16. Foroutan SAH, Sabbaghi-Nadooshan R, Mohammadi M, Tavakoli MB (2021) Investigating multiple defects on a new fault-tolerant three-input qca majority gate. J Supercomput 77:1–21

    Article  Google Scholar 

  17. Patidar M, Gupta N (2021) Efficient design and implementation of a robust coplanar crossover and multilayer hybrid full adder-subtractor using qca technology. J Supercomput 77:1–23

    Article  Google Scholar 

  18. Abedi D, Jaberipur G, Sangsefidi M (2015) Coplanar full adder in quantum-dot cellular automata via clock-zone-based crossover. IEEE Trans Nanotechnol 14(3):497–504

    Article  Google Scholar 

  19. Perri S, Spagnolo F, Frustaci F, Corsonello P (2021) Accuracy improved low-energy multi-bit approximate adders in qca. IEEE Trans Circuit Syst II Express Briefs 68(11):3456–3460

    Google Scholar 

  20. Abedi D, Jaberipur G (2017) Decimal full adders specially designed for quantum-dot cellular automata. IEEE Trans Circuit Syst II Express Briefs 65(1):106–110

    Google Scholar 

  21. Azimi S, Angizi S, Moaiyeri MH (2018) Efficient and robust sram cell design based on quantum-dot cellular automata. ECS J Solid State Sci Technol 7(3):Q38

    Article  Google Scholar 

  22. Song Z, Xie G, Cheng X, Wang L, Zhang Y (2020) An ultra-low cost multilayer ram in quantum-dot cellular automata. IEEE Trans Circuit Syst II Express Briefs 67(12):3397–3401

    Google Scholar 

  23. Ahmadpour S-S, Mosleh M, Rasouli Heikalabad S (2020) The design and implementation of a robust single-layer qca alu using a novel fault-tolerant three-input majority gate. J Supercomput 76(12):10155–10185

    Article  Google Scholar 

  24. Babaie S, Sadoghifar A, Bahar AN (2018) Design of an efficient multilayer arithmetic logic unit in quantum-dot cellular automata (qca). IEEE Trans Circuit Syst II Express Briefs 66(6):963–967

    Google Scholar 

  25. Bhoi BK, Misra NK, Dash I, Panda S, PATRA A, (2019) Design of median filter in quantum-dot cellular automata for image processing applications. Adv Appl Math Sci 18:893–900

    Google Scholar 

  26. Tougaw PD, Lent CS (1994) Logical devices implemented using quantum cellular automata. J Appl Phys 75(3):1818–1825

    Article  Google Scholar 

  27. Bevara V, Sanki PK (2020) Vlsi implementation of high throughput parallel pipeline median finder for iot applications. Sadhana 45(1):1–5

    Article  Google Scholar 

  28. Bevara V (2020) A new fast and efficient 2-d median filter architecture. Sadhana 45(1):1–5

    Article  Google Scholar 

  29. Bevara V (2021) An ultra-low power reversible mux and demux using qca nanotechnology with energy dissipation. In IEEE International Symposium on Smart Electronic Systems (iSES)(Formerly iNiS). IEEE 2021:323–326

  30. Helsingius M, Kuosmanen P, Astola J (1999) Quantum-dot cells and their suitability for nonlinear signal processing. Citeseer, New Jersey, p 89

    Google Scholar 

  31. Sun D-G, Wang N-X, He L-M, Lu Z-W, Weng Z-H (1993) Butterfly interconnection networks and their applications in information processing and optical computing: applications in fast-fourier-transform-based optical information processing. Appl Opt 32(35):7184–7193

    Article  Google Scholar 

  32. Das JC, De D (2018) Design of single layer banyan network using quantum-dot cellular automata for nanocommunication. Optik 172:892–907

    Article  Google Scholar 

  33. Bahar AN, Wahid KA (2020) Design of an efficient n\(\times \) n butterfly switching network in quantum-dot cellular automata (qca). IEEE Trans Nanotechnol 19:147–155

    Article  Google Scholar 

  34. Meena S, Linganagouda K (2008) Implementation and analysis of optimized architectures for rank order filter. J Real Time Image Process 3(1):33–41

    Article  Google Scholar 

  35. Dorf RC (2003) CRC handbook of engineering tables. CRC Press, Boca Raton, Florida

    Book  Google Scholar 

  36. Gladshtein M (2011) Quantum-dot cellular automata serial decimal adder. IEEE Trans Nanotechnol 10(6):1377–1382

    Article  Google Scholar 

  37. Roy SS (2017) Generalized quantum tunneling effect and ultimate equations for switching time and cell to cell power dissipation approximation in qca devices. SSR Digit Libr 2017:1–11

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pradyut K. Sanki.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bevara, V., Alihussain, S., Prasad, P.N.S.B.S.V. et al. Design of an efficient QCA-based median filter with energy dissipation analysis. J Supercomput 79, 2984–3004 (2023). https://doi.org/10.1007/s11227-022-04780-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-022-04780-1

Keywords

Navigation