Skip to main content
Log in

An efficient parallelization method of Dempster–Shafer evidence theory based on CUDA

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

The Dempster–Shafer (D–S) evidence theory is effective for uncertain reasoning; it does not require advanced information. The theory has been widely used in multi-sensor data fusion. However, the time complexity of fusing r pieces of evidence for n possible events using Dempster’s combination rule is \(\left( r-1\right) \times 2^{2n+1}\), which is considerable. In addition, none of the existing implementations of Dempster’s rule directly utilize the parallel performance of GPUs. In this study, an efficient parallelization method for implementing the D–S evidence theory, based on event-based binary encoding and kernel functions on GPUs, was developed. Theoretical analysis and simulation experiments show that the proposed method achieves a speedup of \(\frac{(r-1)2^{n}}{\lceil log_2 r \rceil }\), thereby reducing the time complexity of Dempster’s rule effectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The datasets generated and analyzed in the current study are available from the corresponding author on reasonable request.

References

  1. Buwei W, Jianfeng C, Bo W, Shuanglei F (2018) A solar power prediction using support vector machines based on multi-source data fusion. In: 2018 International Conference on Power System Technology (POWERCON). 10.1109/POWERCON.2018.8601672

  2. Redfern S, Olson JB, Lundquist JK, Clack CTM (2019) Incorporation of the rotor-equivalent wind speed into the weather research and forecasting model’s wind farm parameterization. Monthly Weather Rev 147(3):1029–1046. https://doi.org/10.1175/MWR-D-18-0194.1

    Article  Google Scholar 

  3. Duan Z, Wu T, Guo S, Shao T, Malekian R, Li Z (2018) Development and trend of condition monitoring and fault diagnosis of multi-sensors information fusion for rolling bearings: a review. Inter J Adv Manufact Technol. https://doi.org/10.1007/s00170-017-1474-8

    Article  Google Scholar 

  4. Khoshro KMS (2010) Fault detection and diagnosis of an industrial steam turbine using fusion of svm (support vector machine) and anfis (adaptive neuro-fuzzy inference system) classifiers. Energy. https://doi.org/10.1016/j.energy.2010.06.001

    Article  Google Scholar 

  5. Tianyu C, Tingli N, Xin N, Yingchu S, Xuezhi Y, Liangxiao M (2018) Application of traditional Chinese medicine four-diagnostic auxiliary apparatus in evaluation of health status and clinical treatment. J Traditional Chinese Med 38(3):447–451. https://doi.org/10.1016/S0254-6272(18)30637-X

    Article  Google Scholar 

  6. Zhou T, Thung KH, Zhu X, Shen D (2018) Effective feature learning and fusion of multimodality data using stage-wise deep neural network for dementia diagnosis. Hum Brain Mapp. https://doi.org/10.1002/hbm.24428

    Article  Google Scholar 

  7. Honarmandi P, Duong TC, Ghoreishi SF, Allaire D, Arroyave R (2019) Bayesian uncertainty quantification and information fusion in calphad-based thermodynamic modeling. Acta Materialia 164:636–647. https://doi.org/10.1016/j.actamat.2018.11.007

    Article  Google Scholar 

  8. Liu X, Ngai ECH, Liu J (2020) Secure information fusion using local posterior for distributed cyber-physical systems. IEEE Transact Mobile Comput. https://doi.org/10.1109/TMC.2020.2969352

    Article  Google Scholar 

  9. Liu L, Zuo ZT, Wang YZ, Xu FR (2020) A fast multi-source information fusion strategy based on ftir spectroscopy for geographical authentication of wild gentiana rigescens. Microchem J. https://doi.org/10.1016/j.microc.2020.105360

    Article  Google Scholar 

  10. Dubois D, Prade H (2001) Possibility theory, probability theory and multiple-valued logics: A clarification. Annal Math Artif Intell 32(1–4):35–66. https://doi.org/10.1023/A:1016740830286

    Article  MATH  Google Scholar 

  11. Dempster AP (1967) Upper and lower probabilities included by a multivalued mapping. Annals Math Stats 38(2):325–339. https://doi.org/10.1016/S1474-6670(17)62022-6

    Article  MATH  Google Scholar 

  12. Inglis J (1976) A mathematical theory of evidence. Technometrics 20(1):106–106. https://doi.org/10.1080/00401706.1978.10489628

    Article  Google Scholar 

  13. Broemeling Lyle D (2011) An account of early statistical inference in arab cryptology. American Statian 65(4):255–257. https://doi.org/10.1198/tas.2011.10191

    Article  Google Scholar 

  14. Zadeh LA (1965) Fuzzy sets. Information and Control 8(3):338–353. https://doi.org/10.1016/S0019-9958(65)90241-X

    Article  MATH  Google Scholar 

  15. Pawlak Z (1997) Rough sets, 3–7. https://doi.org/10.1007/978-1-4613-1461-5_1

  16. Kaijuan Y, Fuyuan X, Liguo F, Bingyi K, Yong D (2016) Modeling sensor reliability in fault diagnosis based on evidence theory. Sensors 16(1):113. https://doi.org/10.3390/s16010113

    Article  Google Scholar 

  17. Xiao F (2018) Multi-sensor data fusion based on the belief divergence measure of evidences and the belief entropy. Inform Fusion. https://doi.org/10.1016/j.inffus.2018.04.003

    Article  Google Scholar 

  18. Pan Y, Zhang L, Wu X, Skibniewski MJ (2020) Multi-classifier information fusion in risk analysis. Inform Fusion. https://doi.org/10.1016/j.inffus.2020.02.003

    Article  Google Scholar 

  19. Barnett JA (2008) Computational methods for a mathematical theory of evidence. In: Yager, R.R., Liu, L. (eds.) Classic Works of the Dempster-Shafer Theory of Belief Functions, pp. 197–216. Springer, Berlin, Heidelberg

  20. Shenoy PP (1997) Binary join trees for computing marginals in the shenoy-shafer architecture. International Journal of Approximate Reasoning 17(2):239–263. https://doi.org/10.1016/S0888-613X(97)89135-9. Uncertainty in AI (UAI’96) Conference

  21. Shafer G, Logan R (1987) Implementing dempster’s rule for hierarchical evidence. Artif Intell 33(3):271–298. https://doi.org/10.1016/0004-3702(87)90040-3

    Article  MATH  Google Scholar 

  22. Benalla M, Boujemâa A, Hrimech H (2020) Improving driver assistance in intelligent transportation systems: An agent-based evidential reasoning approach. J adv transport 2020. https://doi.org/10.1155/2020/4607858

  23. Tessem B (1993) Tessem, b.: Approximations for efficient computation in the theory of evidence. Artif. Intell 61(2), 315–329. Artif Intell. 61:315–329. https://doi.org/10.1016/0004-3702(93)90072-J

  24. Benalla M, Achchab B, Hrimech H (2021) On the computational complexity of dempster’s rule of combination, a parallel computing approach. J Comput Sci 50:101283. https://doi.org/10.1016/j.jocs.2020.101283

    Article  Google Scholar 

  25. Wu Q, Chen Y, Wilson JP, Liu X, Li H (2019) An effective parallelization algorithm for dem generalization based on cuda. Environ Model &Soft. https://doi.org/10.1016/j.envsoft.2019.01.002

    Article  Google Scholar 

  26. Daniluk P, Firlik G, Lesyng B (2019) Implementation of a maximum clique search procedure on cuda. J Heuristics 25(2):247–271. https://doi.org/10.1007/s10732-018-9393-x

    Article  Google Scholar 

  27. Sandric I, Ionita C, Chitu Z, Dardala M, Irimia R, Furtuna FT (2019) Using cuda to accelerate uncertainty propagation modelling for landslide susceptibility assessment. Environ Modelling Soft 115(MAY):176–186. https://doi.org/10.1016/j.envsoft.2019.02.016

    Article  Google Scholar 

  28. Khaleghzadeh H, Zhong Z, Reddy R, Lastovetsky A (2018) Out-of-core implementation for accelerator kernels on heterogeneous clouds. J Supercomput 74(2):551–568. https://doi.org/10.1007/s11227-017-2141-4

    Article  Google Scholar 

  29. Xu J, Liu W, Wang J, Liu L, Zhang J (2017) An efficient implementation of 3d high-resolution imaging for large-scale seismic data with gpu/cpu heterogeneous parallel computing. Comput & Geosci. https://doi.org/10.1016/j.cageo.2017.11.020

    Article  Google Scholar 

  30. de la Asunción M, Mantas JM, Castro MJ, Fernández-Nieto ED (2012) An mpi-cuda implementation of an improved roe method for two-layer shallow water systems. J Parallel Distributed Comput 72(9):1065–1072. https://doi.org/10.1016/j.jpdc.2011.07.012.

  31. Bak S, Kim P, Park S (2022) Development of a parallel cuda algorithm for solving 3d guiding center problems. Comput Phys Communicat 276:108331. https://doi.org/10.1016/j.cpc.2022.108331

    Article  Google Scholar 

  32. Rico N, Troiano L, Díaz I (2021) An efficient computation of dempster-shafer theory of evidence based on native gpu implementation. In: Denœux T, Lefèvre E, Liu Z, Pichon F (eds) Belief Funct: Theory Appl. Springer, Cham, pp 291–299

    Chapter  Google Scholar 

  33. Zhao K, Li L, Chen Z, Sun R, Yuan G, Li J (2022) A survey: Optimization and applications of evidence fusion algorithm based on dempster-shafer theory. Appl Soft Comput. https://doi.org/10.1016/j.asoc.2022.109075

    Article  Google Scholar 

  34. KlCkner A, Pinto N, Lee Y, Catanzaro B, Ivanov P, Fasih A (2012) Pycuda and pyopencl: a scripting-based approach to gpu run-time code generation. Parallel Comput 38(3):157–174. https://doi.org/10.1016/j.parco.2011.09.001

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded by Application of collaborative precision positioning service for mass users(2016YFB0501805-1) and National Development and Reform Commission integrated data service system infrastructure platform construction project(JZNYYY001). We would like to thank Editage (www.editage.cn) for English language editing.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ruizhi Sun or Gang Yuan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest with respect to this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, K., Li, L., Chen, Z. et al. An efficient parallelization method of Dempster–Shafer evidence theory based on CUDA. J Supercomput 79, 4582–4601 (2023). https://doi.org/10.1007/s11227-022-04810-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-022-04810-y

Keywords