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Abstract
Financial time series have been extensively studied within the past decades; how-
ever, the advent of machine learning and deep neural networks opened new horizons 
to apply supercomputing techniques to extract more insights from the underlying 
patterns of price data. This paper presents a tri-state labeling approach to classify 
the underlying patterns in price data into up, down and no-action classes. The intro-
duction of a no-action state in our novel approach alleviates the burden of denoising 
the dataset as a preprocessing task. The performance of our labeling algorithm is 
experimented with using machine learning and deep learning models. The frame-
work is augmented by applying the Bayesian optimization technique for the selec-
tion of the best tuning values of the hyperparameters. The price trend prediction 
module generates the required trading signals. The results show that the average 
annualized Sharpe ratio as the trading performance metric is about 2.823, indicating 
the framework produces excellent cumulative returns.

Keywords Trend prediction · Machine learning · Deep learning · Financial time 
series · Feature engineering · Classification

1 Introduction

Although the outbreak of the COVID-19 pandemic triggered a sharp decline in 
stock prices across the financial market, a closer look at the recent figures on the 
market indices and stock prices illustrates that the trends are showing a pattern of 
great acceleration. Financial markets’ data form in time series and have been studied 
by researchers within the past decades, though the main objective of these studies is 
to find more insight into the underlying market trends. The more insight extracted 
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from the market behavior; the better asset pricing is likely to be achieved. This is 
precisely the most significant aspect of portfolio formation part of the investment 
process. However, according to the EMH,1 it is impossible to forecast the prices for 
future time intervals because the information propagation across the markets rapidly 
results in updating prices. On the other hand, many studies have been conducted 
proving that financial markets are indeed a combination of efficient and non-efficient 
markets; therefore, the stock prices are, to some extent, predictable [31].

Prediction is the process of finding the next plausible outcome based on past 
experiences and observations. Hence, feeding the most relevant observations to the 
prediction model is a crucial task to improve the accuracy of the desired output. 
This process is called feature engineering. When it comes to financial time series, 
substantial considerations should be noted. In the case of image, text, and speech 
observations, the input signal has almost all the required information for modeling 
the prediction process. On the other hand, asset pricing is a complex problem influ-
enced by multiple endogenous and exogenous factors including but not limited to 
systematic risk, market behavior, interdependence between markets, macroeconomic 
variables, firm-specific information, investors’ sentiment, and news. Authors [4] 
proposed a comprehensive taxonomy of input features prevalent among financial 
market researchers. According to their literature review, the authors have shown that 
the technical indicators have higher prediction power, while the informative signals 
from social media could boost the models’ performance. Hence, the feature selec-
tion and engineering process is a stone step toward building an overarching portfolio 
formation and optimization model.

Researchers have tackled the feature extraction and engineering process using 
techniques from the time–frequency domain, statistical methodologies, traditional 
machine learning approaches, and recently deep learning frameworks. For exam-
ple, the autoregressive integrated moving average (ARIMA) has extensively been 
used by researchers in financial time series analysis. The ARIMA model is a linear 
nonstationary model based on the autoregressive moving average (ARMA) model, 
including a new difference operator to convert nonstationary series to stationary and 
take the volatility clustering into account [19, 47]. Both ARMA and ARIMA belong 
to the univariate class of statistical analysis approaches since the only input variable 
is time series. There are other statistical methods in the same category, such as the 
generalized autoregressive conditional heteroscedastic (GARCH), and the Smooth 
Transition Autoregressive (STAR). Researchers in [47] also mentioned the second 
class of multivariate statistical methodologies, including linear discriminant analysis 
(LDA), quadratic discriminant analysis (QDA), linear regression (LR), and support 
vector machines (SVM).

Among time–frequency techniques, discrete wavelet transform (DWT) has been 
broadly exploited for feature extraction from financial time series. Authors [45] 
applied wavelet decomposition to the crude oil time series, turning the time series 
into different forecasting horizons. Applying the DWT to average monthly crude 
oil prices, they framed their procedure to compartment the whole signal into low- 
and high-frequency parts. The coarse scales follow the main trends, while the finer 

1 Efficient market hypothesis.
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scales’ seasonal fluctuations, singular events, and noise appear. Based on the power 
of wavelet transform in extracting features from various types of data, researchers 
have always shown specific interest in applying DWT as a preprocessing stage on 
the financial time series combining it with other frameworks like quantile regres-
sion, neural networks, and other applicable methods [1, 10, 12, 20, 23, 29, 42, 43].

Dimensionality reduction for extracting the abstract and high-level features to 
feed the subsequent modules of the prediction models has been studied in many 
research works such as [39, 46]. In [46], Zhang et al. applied principal component 
analysis (PCA) to perform dimensionality reduction and extract the abstract and 
high-level features to feed the next module of their framework, an LSTM predict-
ing the next trading day’s close price. They took the first four principal components 
of the cumulative contribution rate of the Shanghai Composite Index as the train-
ing sample data fed into LSTM. The authors [7] designed a framework to extract 
features from 24 randomly selected stocks in the SSE 50 index (Shanghai Stock 
Exchange), using a hybrid method based on the XGBoost and IFA. The generated 
features are then used in a mean–variance model for portfolio formation.

Around the second decade of the twenty-first century, the winter of neural net-
work applications across the science and technology realm turned to spring. Accord-
ingly, deep learning models found their way into the financial market analysis to 
find better solutions for complex problems such as asset pricing, stock price predic-
tion, contagion between financial markets, spillovers, and other problems. A note-
worthy application of deep learning models is feature extraction and engineering 
due to their multi-layer cascading non-linear units, enabling them to capture non-
linear dependencies and underlying trends in data. Although most of the early works 
in the context of financial market analysis are based on long short-term memory, 
LSTM, there is also a rise in applying other architectures like RL units, Q-learning, 
ensemble learning, transformer networks, and recently generative adversarial net-
works (GAN) [5, 13, 22, 23]. The authors [25] investigated the contribution of addi-
tional information from the US stock market to South Korea’s stock prediction. They 
exploited a multimodal deep learning framework to capture the cross-modal cor-
relation at different levels and showed that deep multimodal networks can leverage 
the complementarity of stock data and provide more robust predictions. The authors 
[27] proposed a two-phase solution for the structural break problem in stock markets 
using deep reinforcement learning and continuous wavelet CNN. To estimate the 
occurrence probability of a structural break, within the first phase, they combined 
the time-domain and frequency-domain extracted by LSTM and continuous wavelet 
CNN, respectively, and after that, the pairs trading strategy in the next phase is opti-
mized using deep Q-learning. Authors [40] applied a preprocessing stage based on 
the genetic algorithm, GA, on a train and test dataset and then trained a back propa-
gation neural network to predict the closing price of the Shanghai and Shenzhen 300 
index for the next 100 trading days.

To enable neural networks to receive the input vector sequentially, recurrent neu-
ral networks (RNN) emerged from the traditional feedforward networks. However, 
these models have severe problems dealing with long input sequences since they can 
only handle a few steps back. Hence, a developed variation of RNNs named LSTM 
was introduced to tackle these problems by adding three gates to the original RNN 
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architecture: (1) a forget gate to control what information requires to be thrown away 
from the LSTM memory; (2) an input gate to indicate if new information will be 
added into the memory, and (3) an output gate controlling the output state. To intro-
duce a threshold-based portfolio [24], the authors built three architectures, S-RNN, 
LSTM, and GRU, to forecast 1-month-ahead stock returns and then used the last 
business day OHLCV of each month for building portfolios. Tian et  al. [36] pro-
posed a hybrid deep learning model based on multilayer bidirectional LSTM net-
works to solve the stock price prediction problem. They first analyzed the attributes 
of 10 different stocks using the Pearson correlation coefficient and then applied the 
LSTM model to forecast the retained attributes after the analysis.

There have been various attempts to tailor the structure of deep learning net-
works to the observations’ characteristics across different contexts. For example, 
the authors [9] proposed a model to place another attention mechanism over the 
document-level attention. The so-called attention-over-attention reader model was 
exploited to provide a solution to the cloze-style reading comprehension task. The 
authors [14] crafted a CNN-bLSTM deep learning model for improving the perfor-
mance of conversational speech recognition tasks. Although increasing the number 
of layers in multi-layer deep models results in the enhanced learning ability of the 
network, it turns the model to face the problems such as exploding and vanishing 
gradients. To tackle the incurred problems, researchers proposed a handful of tech-
niques such as dropout, batch normalization, and residual [2, 15, 16, 18, 35]. There 
are attempts to extend the sentiment analysis techniques and apply the results to 
price prediction models to enhance the performance of the task. In a recent study 
[38], the authors augmented a Bidirectional Encoder Representations from Trans-
formers, BERT, with CNN structure to capture important local information in the 
financial texts. Inspired by the word vectorization technique in natural language pro-
cessing, the authors [30] introduced stock vectors and proposed two LSTM archi-
tectures for dimension reduction and price prediction, one with an embedded layer 
and the other based on an automatic encoder. Their experimentation for Shanghai 
A-shares composite index showed that the deep LSTM with the embedded layer per-
forms 0.3% better in terms of the accuracy metric.

In recent decades, much research has been done based on price prediction as a 
regression task. However, researchers have shown that trend prediction as a clas-
sification task can dramatically improve machine learning and deep learning model 
predictions [32, 37, 44]. The task of labeling financial times series has a signifi-
cant impact on the prediction model’s performance, though the problem has not 
been widely studied in the literature. Recently, Wu et al. [41] proposed a price data 
labeling method to extract the continuous trend features of financial time series data 
and group them into two upward and downward classes. However, sometimes the 
market has unpredictable fluctuations; in this situation, investors risk losing their 
money. Thus, the labeling algorithm should have an extra state that shows these 
unpredictable and risky situations to prevent investors from investing their money 
in that period. Hence, proposing a price data labeling algorithm to help produce 
a more informative input feature vector for the market trend prediction task is of 
great significance. Accordingly, in this study, we introduce a novel tri-state labeling 
algorithm that significantly improves the quality of predictions by introducing three 
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states that show upward and downward trends, besides the risky situation with the 
no-action state.

The rest of the paper is organized as follows: In Sect. 2, we cover the method-
ology of our research work. It contains eight sub-sections starting from Sect. 2.1, 
which is the complete description of our proposed tri-state labeling algorithm. 
Since our experimentation will be conducted on financial time series, in Sect. 2.2, 
we have thoroughly covered the reasons for using embargoed purging cross-vali-
dation instead of the traditional K-fold CV. Then, we included the required back-
ground on the machine learning and deep networks we aim to use as our predictive 
machines. We first explain support vector machines in Sect. 2.3 and then continue 
the ML methods with XGBoost in Sect. 2.4. The basics of LSTM and GRU are also 
discussed in Sects. 2.5 and 2.6. In Sect. 2.7, the reader will be refreshed with our 
approach to the performance evaluation of the classification task. The hyperparam-
eters’ value tuning using Bayesian optimization is discussed in Sect. 2.8. Section 2.9 
provides readers with all our steps to design and evaluate our trading system. The 
reader can find all information about our experimentation and the associated results 
and discuss the findings within Sect. 3. Finally, Sect. 4 concludes the research find-
ings and the further possibilities for future research works.

2  Methodology

2.1  Proposed labeling algorithm

The first part of our proposed framework is a labeling algorithm to extract continu-
ous upward and downward trends from daily close price time series. Our input is the 
close price time series denoted by X , where xt is close price at time t . The algorithm 
finds xt such that:

where xt0 is the close price at the time t0 and � denotes a threshold value which is a 
hyperparameter. According to Eq.  (1) if the condition is satisfied then the trend is 
labeled as upward, otherwise, the direction of the changes is downward. Once the 
overall direction of the price changes is found, in the second phase of the algorithm, 
the labeling algorithm will deal with directional changes as follows: Suppose that 
the labeling algorithm reads xtj , the price at tj , and the direction at time ti has been 
labeled as upward. However, the algorithm should decide the exact time of changing 
direction while keeping the upward trend until the next prices are still at higher lev-
els. Therefore, the following three cases are determined:

Case 1

In this case, we still label the trend with + 1 as upward since the coming price at 
the time tj is at a higher level compared with the price at the time ti.

(1)
|||xt − xt0

||| ≥ �xt0

(2)xtj > xti
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Case 2

where w is the window size for the period with no price fluctuations with much larger 
or smaller values than xti , the last updated price shows an upward trend. This means 
the upward trend has ended and we now can label all the coming time instances with 
0, as a “no-action” trend. It is worth mentioning that w is also a hyperparameter that 
needs to be determined.

Case 3

This means that the upward trend ends and we now should change the direction to 
downward. This means while we label all instances with + 1, the state space will be 
ready to follow the downward direction.

On the other hand, if the state space shows the no-action, label (denoted by 0), the 
algorithm is adjusted to handle the corresponding three cases:

Case 1

In this situation, the trend shows the start of an upward direction.
Case 2

This means the current price at the time tj is lower than xti , the price at the last no-
action state, with a factor of � . Hence, the algorithm detects a change from a no-action 
state to falling prices and starts to label the past time instances with label 0 and pre-
pares the state space for the coming downward trend follow-up.

Case 3

Since the price time series is still fluctuating, we continue to update the no-action 
trend with label 0.

The third and final state for our proposed tri-state labeling algorithm is − 1 or the 
“downward,” for which exist three cases: (1) remaining at the current state, (2) chang-
ing to an upward direction, or (3) putting the system to the no-action state.

Case 1

where xi is a previous time instance of a downward trend, hence we only update the 
current downward trend.

Case 2

(3)tj − ti > w

(4)xti − xtj ≥ �xti

(5)xtj ≥ xti + �xti

(6)xtj ≤ xti − �xti

(7)tj > tzero + w

(8)xj < xi

(9)tj − ti > w
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where ti is the latest time instance of the price at an upward trend, hence, the prices 
are still fluctuating which means the bullish trend has ended and we are ready to 
enter a no-action trend while the labeling process of the past trend with − 1 is done.

Case 3

where xi is the last time instance at which the trend has been labeled with a down-
ward direction. Therefore, the direction is changed to upward. This means we must 
set the state space for the start of a new upward direction, while the past instances 
are labeled with − 1, as a downward trend.

2.2  Combinatorial purged K‑fold cross‑validation

For a machine learning algorithm to properly learn the general structure of the data 
and prevent it from the extreme fidelity to the data, we usually split observations 
into two training and test sets, where the cross-validation (CV) technique is used to 
prevent overfitting. K-fold CV is widely used among machine learning researchers 
among popular CV methods. However, for two reasons, this cross-validation method 
produces undesired results when applied to financial time series.

First, financial time series do not possess the properties of an independent and 
identically distributed (IID) process. Finance observations are serially correlated, 
meaning that the feature at time t is highly correlated with the feature at time t + 1 . 
Therefore, the prediction process from overlapping data points results in a label at 
time t + 1 which is derived from overlapping features from time t . A second reason 
for CV’s failure in finance is the multiple testing and selection bias. The solution for 
the second problem is to purge all overlapping labeled samples from the training and 
test sets. For the serial correlation problem between financial features, the solution 
is to embargo those samples in the series that immediately follow another sample 
in the test set. This purging and embargoing cross-validation technique is known as 
PURGED K-FOLD CV [28]. As shown in Fig. 1a [28], within one partition of the 
K-fold cross-validation, two overlapping regions need to be purged to prevent data 
leakage between training and test sets. As shown in Fig. 1b [28], the embargo pro-
cess is imposed on training samples directly after a test set to bolster leakage preven-
tion between training and test observations.

(10)xj ≥ xi + �xi
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2.3  Support vector machines (SVM)

SVMs are a set of widely used supervised learning algorithms for classification, 
regression, and outlier detection tasks through finding the optimal hyperplane using 
margin maximization. The basic idea behind SVM is to apply a non-linear transfor-
mation to map the input vector x into a high-dimensional feature space. Suppose the 
input feature is xi;i=1..n ∈ Rp , where p is the total number of data patterns, and the 

Fig. 1  a Purging overlap in the training set; b Embargo of post-test train observations [28]
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corresponding target is yi ∈ R . Then, the SVM computes a decision function of the 
following form:

The objective is to maximize the margin plane parameterized by w and b . Class 
labels are then assigned by sgn function:

The parameters w and b are estimated by solving the following minimization 
problem:

where C is the penalty parameter, and �i , �∗i  are the slack variables. The above-men-
tioned optimization problem is solved by the Lagrangian method:

where K
(
xi, xj

)
 is the kernel function:

where the ⊙ is the inner product operator. The solution for �i determines the param-
eters w and b for the optimal hyperplane.

2.4  Extreme gradient boosting (XGBoost)

In the context of machine learning, a weak learner is a classification model that can 
perform marginally better than random guessing. Authors [33] developed boosting 
in a successful attempt to answer the question “Can a set of weak learners create a 
single strong learner?” proposed by [21]. The main idea behind most of the boost-
ing algorithms is to iteratively apply a weak learner to training data and assign more 
weights to misclassified observations to find a new decision stump for them. Finally, 
all learned models are aggregated to form a strong learner able to classify all train-
ing samples correctly. Therefore, a decision tree ensemble model with K additive 
functions is used to predict the target.

(11)y(x) = wT�(x) + b

(12)label = sgn(y(x))

(13)

Minimize
w,b,�

1

2
w2 + C

n�
i=1

�
�i + �∗

i

�

subject to

⎧
⎪⎨⎪⎩

di − w�
�
xi

�
− bi ≤ � + �i

w�
�
xi

�
+ bi − yi ≤ � + �∗

i

�i, �
∗
i
≥ 0

(14)

Max�

n∑
i=1

di
(
�i − �∗

i

)
− �

n∑
i=1

(
�i + �∗

i

)
−

1

2

n∑
i=1

n∑
j=1

(
�i − �∗

i

)(
�j − �∗

j

)
K
(
xi, xj

)

subject to

n∑
i=1

�i =

n∑
i=1

�∗
i
; 0 ≤ �i, �

∗
i
≤ C, i = 1, 2,… , n

(15)K
(
xi, xj

)
= 𝜙

(
xi
)
⊙ 𝜙(xj)
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In Eq.  (16), x is the m-dimensional input feature vector, y is the one-
dimensional target vector forming the n cardinality sample space 
D =

{(
xi, yi

)
;|D| = n, xi ∈ ℝ

m, yi ∈ ℝ
}
 . The space of classification and 

regression trees (CART) with T  leaves in each tree is also indicated by 
F = {f (x) = wq(x);q ∶ ℝ

m
→ T ,w ∈ ℝ

T} where fk represents an independent tree 
structure q whose leaf weights are w . To classify the observations, the decision rules 
in the trees are applied to calculate the predicted target by summing up all wi , the 
weights in the corresponding leaves. Equation  (17) shows the objective function 
used to learn the set of functions used in the model.

where Ω(f ) = �T +
1

2
�‖w‖2.

As it can be seen from Eq. (17), the model is trained in an additive manner instead 
of using traditional optimization methods in the Euclidean space. Hence, while the 
adaptive boosting techniques try to weigh misclassified samples more, in gradient 
boosting, base learners are generated sequentially so that the current model is always 
more effective than the previous one by ameliorating a loss function. Therefore, the 
objective function to be optimized is modified to include greedily adding ft.

 XGBoost [6] is a highly enhanced version of gradient boosting, and it mainly aims 
at increasing computation speed and efficiency since the gradient boosting algorithm 
analyzes the datasets sequentially resulting in a very low rate performance. Further-
more, XGBoost supports parallelization by creating decision trees in a parallel way 
like the random forest. It also exploits distributed computing methods to evaluate 
large and complex models and uses Out-of-Core computation to analyze large and 
varied datasets. Using cache optimization is another technique used in XGBoost to 
achieve a higher level of optimal resource utilization. Therefore, XGBoost, as a sim-
ple to utilize and interpretable prediction model, has been widely used and has out-
performed most modern and state-of-the-art deep learning methods for classification 
and clustering of tabular data [34].

2.5  Long short‑term memory (LSTM)

Learning in the human brain is an accumulative process that prevents it from restart-
ing thinking and learning from scratch every second. This is in contrast to what hap-
pens in traditional neural networks, as they cannot consider the previous events to infer 

(16)ŷi = �
(
x
i

)
=

K∑
k=1

fk(xi), fk ∈ F

(17)l(�) =
∑
i

l
(
ŷi, yi

)
+
∑
k

Ω
(
fk
)

(18)
l(t) =

n�
i=1

l
�
yi, ŷ

(t−1)

i
+ ft

�
xi

��
+ Ω

�
ft
�

Ω(f ) = 𝛾T +
1

2
𝜆‖w‖2
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about the later ones. To overcome this shortcoming, recurrent neural networks (RNNs) 
have been widely adopted concerned with applications in time series and sequential 
data such as price prediction, speech recognition, and image recognition. As it is shown 
in Fig. 2, the goal of the RNN is to have a model which can take the n current observa-
tions in the associated vector tn , send it into a neural network and using the knowledge 
from the previous stage as the hidden vector hn and predict the next target tn+1.

Vanishing gradient, exploding gradient, long-term dependency, and unidirectional-
ity are the major drawback of the RNN model. The long short-term memory, LSTM, 
model is one way to solve these problems. LSTM has introduced a memory unit called 
the cell into the network. Different researchers adopted various architectures for the 
LSTM model, but the original design incorporates a forget gate, an input gate, and an 
output gate with a peephole connection. The mathematical equations according to the 
connections and gates in the LSTM architecture, Fig. 3, are expressed as follows:

where Ft , It , and Ot are the forget gate, input gate, and output gate at time t , respec-
tively. W s and b s in Eq.  (19) represent the corresponding weight matrices and 

(19)

Ft = 𝜎
(
WHFHt−1 +WXFXt + PF ⊙ Ct−1 + bF

)
,

It = 𝜎
(
WHIHt−1 +WXIXt + PI ⊙ Ct−1 + bI

)
,

C̃t = tanh
(
WHCHt−1 +WXCxt + bC

)
,

Ct = Ft ⊙ Ct−1 + It ⊙ C̃t,

Ot = 𝜎
(
WHOHt−1 +WXOXt + PO ⊙ Ct + bO

)
,

Ht = Ot ⊙ tanh
(
Ct

)

YLSTM
t

= 𝜎
(
WHYHt + bY

)

Fig. 2  RNN architecture
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bias terms in each equation. �(∙) indicates a sigmoid activation function, Tanh(∙) 
is a hyperbolic tangent function, and ⊙ is an element-wise multiplication operator. 
The forget gate decides what information from the past cell state Ct−1 is propagated 
to the updating process of the cell state at time t . If Ft = 1 , it keeps the informa-
tion received, while a value of 0 for Ft means the information is discarded. PF , PI , 
and PO are the peephole weights for the respective forget, input, and output gates. 
The peephole connections are a mechanism to enable the LSTM cell for inspecting 
its current internal states resulting in learning unsupervised stable and precise tim-
ing algorithms [11]. Since LSTM is a special variant of the RNN model, the same 
process for RNN weight updates and hyperparameter optimization methods can be 
exploited within LSTM networks [3].

2.6  Gated recurrent unit (GRU)

Although the LSTM cell has an outstanding learning capacity in comparison to the 
traditional RNN, its computational complexity is higher than RNN because of the 
extra parameters of the model. To reduce the number of parameters, the authors [8] 
introduced the GRU cell by integrating the forget and input gates into an update gate. 
Having only two gates, reset and update, the GRU removes a gating signal, and the 
associated parameters compared with the LSTM cell. Since GRU has fewer param-
eters to be learned it has fewer tensor operations which in turn results in slightly 
reduced computational time. Equation (20) represents the mathematical expressions 
of the GRU cell, and the corresponding architecture is visualized in Fig. 4.

(20)

Rt = 𝜎
(
WHRHt−1 +WXRXt + bR

)
,

Zt = 𝜎
(
WHZHt−1 +WXZXt + bZ

)
,

H̃t = tanh
(
WHH̃

(
Rt ⊙ Ht−1

)
+WXH̃Xt + bZ

)
,

Ht = (1 − Z)⊙ Ht−1 + Zt ⊙ H̃t

Fig. 3  LSTM architecture



4634 A. Dezhkam et al.

1 3

2.7  Classification task metrics

The AUC, or area under the receiver operating characteristic curve, is the most ver-
satile and common evaluation metric used to judge the quality of a binary classifica-
tion model. It is simply the probability that a randomly chosen positive data point 
will have a higher rank than a randomly chosen negative data point for the learning 
problem. So, a higher AUC means a more sensitive, better-performing model. When 
dealing with multi-class classification problems, it is common to use the accuracy 
score and to look at the overall confusion matrix to evaluate the quality of a model. 
Accuracy is the most straightforward to evaluate the overall performance of the clas-
sification task. Since financial time series are almost equally weighted across all 
classes, so all the individual dataset elements have approximately the same weight 
and contribute equally to the accuracy value. Therefore, the higher accuracy, the 
higher the probability that the model prediction is correct. Assigning up, down, and 
no-action labels to the market trends is a multi-class classification task in which the 
upward trends are positive, downward trends are negative, and non-essential fluc-
tuations are shown with 0. Therefore, the performance of the labeling task can be 
assessed by computing the confusion matrix of the corresponding three classes. For 
each class, the classification task should be assessed for the performance of recog-
nizing the class label correctly (true positives, TP), the number of correctly classi-
fied corresponding labels (true negatives, TN), the number of observations that were 
either incorrectly assigned to the class (false positives, FP) or those that incorrectly 
were not assigned to the class (false negatives, FN). Hence, the performance of the 
models for each class can be evaluated using precision, recall, and F1-Score metrics, 
and the overall performance of the classification task is assessed based on accuracy. 
Precision is defined as the ratio between the TP area and the area in the ellipse in 
Fig. 5. The recall is computed by finding the ratio between the TP area and the area 

Fig. 4  GRU cell. Forget and input gates in LSTM are now integrated into the update gate in the GRU 
model
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in the left rectangle. Accuracy is the sum of the TP and TN areas divided by the 
whole area (square). In the context of the stock market prediction, we would like to 
predict and capture as many as up-trends to maximize the profit, however, we want 
to be very sure about our prediction. It means we need to maximize both precision 
and recall. On the other hand, decreasing the FP area comes at a cost of increasing 
the FN area, because higher precision typically means fewer calls, hence the lower 
recall. A trade-off between recall and precision is obtained by taking the harmonic 
mean of them, which is known as the F1-score.

2.8  Hyperparameter optimization

A common practice for a learning machine to produce the desired output is to 
become optimized from the perspective of the parameters that control the learn-
ing process. These controlling measures are called hyperparameters. Hyperpa-
rameter optimization is a widespread technique that is done by maximizing or 
minimizing an objective function with a performance or loss metric to find a 
tuple of parameters that result in an optimal model. There are many techniques 
for this task including grid search, random search, gradient-based optimization, 
and so on. When it comes to problems with expensive-to-evaluate functions, 
Bayesian optimization is the first choice. It has the advantage of no predefined 

(21)

Accuracy =
TP + TN

TP + TN + FP + FN

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F1 =
2

1

Precision
+

1

Recall

Fig. 5  Confusion matrix. 
Source: [28]
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assumption for the functional form of problems. If x ∈ X , and the problem under 
the study is f (x) then the Bayesian hyperparameter optimization yields the result 
by Eq. (22):

where direction ∈ {Maximize,Minimize}.

In Eq.  (22), x belongs to the hyperparameter search space X , and direction 
shows either minimization when the goal is to minimize the loss function or 
maximizing toward higher values of some performance metrics such as accuracy.

Figure  6 illustrates the whole work of the prediction machine and trading 
simulation. The input vector of the machine includes a vector of various stock 
indices which is processed by the proposed labeling algorithm to indicate the 
ups and downs of the market. The labeled stock prices vector is fed into four 
independent classification models discussed earlier. The models are trained sep-
arately and are used for predicting the next close price trend from the unseen test 
data. These models are optimized by Bayesian optimization in a probabilistic 
search space. To run Bayesian optimization, we assume that for our classifier 
model function, f (x) , the performance of the model for a specific combination 
of hyperparameters is known as prior information. Then, we form the posterior 
probability function and exploit it to enhance the performance metric based on 
finding a better estimation of a new combination of hyperparameters. This pro-
cedure continues until it stops with no more improvement on the performance 
metric and the best tuning parameters for maximum performance are reported in 
the last stage, where the parameters are saved to be used for model preparation.

(22)x∗ = arg���������f (x)

Fig. 6  Trend prediction and trading framework pipeline
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2.9  Trading system

Trading strategies in financial markets are vital to profits, avoiding emotions and behav-
ioral finance biases. Therefore, traders should decide when to sell an asset or security 
to be less likely to succumb to the disposition effect, which causes them to hold on to 
stocks that have lost value and sell those that rise in value. Hence, traders need to care-
fully look for trade signals, buy an asset and then sell it at an opportune moment. Trade 
signals can be composed of complex indicators, including but not limited to techni-
cal signals, fundamental analysis, sentiment measures, macroeconomic indicators, and 
even inputs from other trading signal systems. However, it is recommended to provide 
traders with a simple trading module using only a handful of inputs. The advantage of 
the proposed architecture in this paper is its ability to extract upward and downward 
trends from the market based on its behavior and turn the buy or sell signal on. To eval-
uate the model’s performance using the predicted labels for test datasets, we conducted 
experiments using markets studied in this research. An initial capital has been assumed 
to be available at the time t0 to be used for trading. As soon as the system receives the 
buy signal at the time ti , the whole initial capital is used to purchase as many shares 
as possible from the target asset. The system puts aside the remaining capital in the 
balance and waits for the next coming sell signal. At time tj , the system detects a down-
ward market and issues the sell signal. Therefore, the whole shares are sold at the time 
tj and the total amount of the trade is summed into the available balance forming the 
new capital. This process is continued until the end of the study period. A sample run 
of this trading mechanism is shown in Fig. 7.

The primary goal of every trading system is to maximize the returns while consid-
ering risk and time spent with capital invested in the market. To compare the perfor-
mance of the system using predicted labeled series from ML/DL methods used in this 
study, we use the metrics for the rate of return per day ( RoR∕day ), and risk-return ratio 
( RRR ). The RoR∕day indicates the daily profit obtained in the market. Hence, the RoRt 
for some time t ∈ [i, j] is defined as follows:

And the daily RoR is computed by taking into account the whole days in between.

(23)RoRt =
Capitalj − Capitali

Capitali
× 100

(24)RoR∕day =
RoR

NumberofDaysinMarket

Fig. 7  A snapshot of the trading system using predicted labels. Buy and sell positions are taken upon 
receiving the appropriate signal. The first ‘1’ indicates a buy position and the next ‘− 1’ is the sell posi-
tion. ‘0’ labels are indicating the volatile market
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To calculate the RRR , we need to compute the maximum drawdown. The maxi-
mum drawdown ( MDD ) is the maximum amount of loss from a peak to a trough in a 
specific period before a new peak is attained, which indicates the downside risk over 
the period.

Having defined RoR , and MDD , it is now straightforward to calculate RRR:

The third metric is the Sharpe ratio which is used as a measure of the perfor-
mance of the system in making profitable trades while minimizing the risk. The 
Sharpe ratio is defined as the ratio of the excess expected return to the standard devi-
ation of the return.

where the Rf  is the risk-free rate, � is the mean of the one-period simple-return of an 
asset between dates t − 1 and t , and � is the corresponding standard deviation.

3  Results and discussion

To test the proposed framework, we consider some stock indices from S&P500 since 
this market is widely used in computational finance literature. We have selected 
stocks based on their systematic risk compared with the market’s risk. Advanced 
Micro Devices, Inc., AMD, Apple Inc., AAPL, The Clorox Company, CLX, Macy’s 
Inc., M, Seagate Technology Holdings plc, STX, and Walmart Inc., WMT, are the 
selected stocks for further experimentation using our proposed framework. As can 
be seen from Table 1, Beta values range from 0.17 to 2.09 indicating less risk for 
stocks with a Beta smaller than 1. As Beta takes larger values than 1, the corre-
sponding asset is considered to have more risk than the market. Daily close prices 
for the selected assets are obtained from Yahoo finance. Trained models are back-
tested with out-of-sample data for the last two years from January 16, 2020, to 
November 23, 2021. For computation simplicity, we have assumed that the risk-free 
rate is zero and the transaction cost is zero throughout our simulations.

Descriptive statistics for the dataset are also listed in Table 1. The large values 
of Chi-Square and zero for the p value of the Jarque–Bera test confirm that the null 
hypothesis for all series to be normally distributed is rejected. The skewness values 
for most indices are negative, indicating these markets are downward most of the 
time and experience negative returns. The series skewed with high excess kurtosis, 
indicating the presence of high peaks and heavy tails. As a statistical measure, kur-
tosis shows the degree of presence of outliers in the underlying distribution. This 

(25)
DDt = Maxk∈(i,t)

(
RoRk

)
− RoRt

MDD = Maxt∈(i,j)
(
DDt

)
;i < k < j

(26)RRR =
RoR

MDD

(27)Sharpe Ratio =
� − Rf

�
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measure plays a crucial role in determining the associated risk in an asset in finan-
cial markets. High values of kurtosis imply there are high probabilities of extreme 
returns. Hence, these assets are risky and the returns experience a lot of outliers.

To train the models, we first need to construct the required input features. As 
described in Sect. 2, we first pass the adjusted daily close prices into the labeling 
algorithm to form the input features for the classification models. The result of 
applying our labeling algorithm to the stock price time series is shown in Fig. 8. As 
shown in Fig. 8a, c, the labeling algorithm follows the upward and downward trends 
in the AMD stock price while also annotating a wait signal, the ‘0’ label, whenever 
the market is slightly fluctuating hence it is hard to determine the exact direction of 
the trend. The same scenario is plotted in Fig. 8b, d for STX stock.

Combinatorial Embargoed Purging cross-validation process applied to the data 
set is shown in Fig. 9. The blue and red bars indicate the 8 training and 2 validation 
folds. As it is discussed in Sect. 2.2, when the validation set places before the train-
ing, the extracted overlapping region is doubled. The labels generated by the pro-
posed tri-state labeling algorithm are presented along the Target Label row.

The hyperparameters selected for tuning the models, along with the range of their 
corresponding possible values, are explained in Table  2. For the recurrent neural 
networks used in this research, LSTM and GRU, three neurons are in the output 
layer. This is because the problem under the study is a multi-class classification with 
three classes. Dropout value, the number of units in the hidden layer, and the learn-
ing rate are three hyperparameters that must be optimized for the maximum accu-
racy score of the classification task. The configuration for LSTM and GRU simula-
tion consists of 20 trials of running networks with 100 epochs. This configuration 
is repeated 25 times and each time the parameters’ values for the best trial are col-
lected. The objective function is set in the maximization direction to optimize the 
performance metrics, F1-Score and accuracy. Extreme gradient boosting, XGBoost, 
has a long list of hyperparameters that could be considered for optimization pur-
poses. We have selected some of the most significant parameters of XGBoost, such 
as the number of boosting stages, n_estimator, the maximum depth of the individual 
estimators, and the subsample ratio of columns when constructing each estimator, 
colsample_bytree. L1 and L2 regularization terms on weights in the list of hyper-
parameters are shown as reg_alpha and reg_lambda, respectively. Support vector 

Table 1  Descriptive statistics for datasets; the statistics are computed for the log return series

The values in the parentheses in the Jarque–Bera column indicate Chi-Square value and p value, respec-
tively

Stock Min Max Mean Std Skewness Kurtosis Jarque_Bera test Beta Observations

CLX − 0.1777 0.1246 0.0005 0.015 − 0.3623 11.1595 (40,634.0, 0.0) 0.17 7809
WMT − 0.1074 0.1107 0.0004 0.016 0.1196 5.1631 (8677.52, 0.0) 0.52 7808
M − 0.2244 0.1921 0.0002 0.0274 − 0.0893 7.4364 (17,299.2, 0.0) 2.09 7515
AAPL − 0.7312 0.2869 0.0008 0.028 − 2.2186 65.8689 (1,416,089.97, 

0.0)
1.2 7808

STX − 0.2807 0.2458 0.0006 0.0292 − 0.6957 11.4471 (26,417.66, 0.0) 1.06 4779
AMD − 0.4769 0.4206 0.0005 0.039 − 0.3329 10.4935 (35,916.69, 0.0) 1.93 7808
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Fig. 8  Automatic labeling of AMD and CLX time series using the proposed algorithm. a, b Are price 
time series for AMD and CLX, respectively, while c, d show their continuous trend labeling. The vertical 
axis in (a, b) is in US dollars. In labeling diagrams, up-trends are shown by 1, and the down-trend is − 1, 
while 0 stands for no deterministic trend due to high volatility between two up and down situations. For 
both time series, the threshold value is set to 0.05

Fig. 9  Combinatorial embargoed purging K-fold CV. The blue and red bars indicate the training and vali-
dation sets, respectively. Target label is the labels extracted from price data using proposed framework. 
Green bars are + 1, Reds show − 1 and fluctuating periods are marked with yellow bars. Price data as 
input feature vector have been cross-validated with 8 training and 2 validation folds. Resource: research 
simulations
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machine classification task is conducted using Python’s scikit-learn package. The 
major examined hyperparameters for SVC are the regularization parameter, C, the 
kernel type to be used in the algorithm, Kernel, the degree of the polynomial kernel 
function, degree, and the kernel coefficient, gamma. The results show that the model 
with the radial basis function (RBF) kernel with the regularization parameter close 
to 1 and of degree 3 produces the best results. Therefore, we choose the same values 
to further conduct our simulation for future trading strategy experimentations. To 
search for the best hyperparameters we apply Bayesian optimization to search for 
values of hyperparameters maximizing the overall classification accuracy. Tables 3, 
4, 5, 6, 7, 8, 9 and 10 represent the results of the hyperparameter optimization proce-
dure along with the corresponding performance metrics values.

Having found the best hyperparameters’ values for our problem and the dataset 
that we study, it is time to perform full experimentation including both the model 
training and then performing trading simulation using the labels predicted by the 
model. In Table 11, we have shown the report of classification metrics used in our 
experimentation for CLX stock. It can be seen that for all models, the overall perfor-
mance in terms of accuracy shows satisfying numbers.

From Table 12, we can see that the XGBoost algorithm, in most cases, outper-
formed the other three algorithms based on the Sharpe ratio (SR) and maximum 
drawdown (MDD) values. The SR shows the excess return from the excess risk 
taken by the trading algorithm. The ratio indicates a good and very good invest-
ment in case the SR is in order of 1 or 2, respectively, and if it reaches 3 or higher, 
investment performance is considered excellent. Our tri-state labeling algorithm 
could produce SR values greater than 2 for each of the assets under management 
while maintaining a very low MDD value for each of them. As it can be seen from 
Table  12, the percentage of maximum drawdown in most cases does not exceed 
10. The average performance of our proposed framework is shown in Table  13. 
First, it can be seen from the Proposed Framework column that XGBoost has out-
performed other algorithms in our experimentation in terms of annualized Sharpe 
ratio. The “Comparison Frameworks” column in Table 13 compares our proposed 
framework with more sophisticated frameworks. Based on Convolutional Neural 
Networks (CNN), Hoseinzade and Haratizadeh [17] introduced 2D-CNNpred and 
3D-CNNpred frameworks to extract features for market trend prediction automati-
cally. 2D-CNNpred predicts future market trends based on its historical perfor-
mance, while 3D-CNNpred does the task by incorporating other markets’ historical 
information. The authors exploited 82 variables for their input feature vector. Their 
annualized SR values for 2D-CNNpred and 3D-CNNpred are reported in Table 13. 
Their highest score is 2.257, belonging to 2D-CNNpred, which is about 25% below 
our best SR value, 2.823. Kim and Khushi [22] introduced a Deterministic Policy 
Gradient with 2D Relative-attentional Gated Transformer (DPGRGT) model in 
the combination of historical OHLCV data to maximize the portfolio optimization 
reward using deep reinforcement learning. Their model could achieve an annualized 
SR equal to 0.6418 which is 339.9% less than what our model achieved. In another 
sophisticated model to attempt market trend prediction, Picasso et al. [32] exploited 
both technical and sentiment analysis to solve the problem as a classification task. 
They combined 10 technical indicators as information from historical stock data 
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with textual financial news about the stock under study. Their highest annualized SR 
was reported for the case they had applied the dictionary of Loughran and Mcdonald 
[26] (L&Mc) to textual data for feature extraction. As can be seen from Table 13, 
L&Mc (News) and L&Mc (News and Price) are 1.235 and 0.756, while our mod-
el’s performance is 128.6% and 273.4% higher than their models, respectively. Our 
comparison with some recent sophisticated studies in terms of both models used to 
predict the market and the feature engineering process exploited indicates that our 
proposed labeling algorithm could have successfully extracted more effective buy 
and sell opportunities resulting in higher annual trading performance.

In Fig. 10, we have plotted each stock’s RoR to illustrate the evolution of our 
trading system’s return to measure how much profits are made using our system 
through an investment, over time. The comparison charts prove that our labeling 
algorithm successfully achieves a high positive return even with a stock such 

Table 3  Hyperparameter optimization of recurrent neural networks for AMD stock

Best tuning values and the respective performance metrics are shown in bold

LSTM GRU 

Accuracy F1-Score Dropout Units l.r Accuracy F1-Score Dropout Units l.r

0.91209 0.90832 0.2 24 0.0013 0.88571 0.87882 0.2 48 0.00102
0.9033 0.89778 0.4 64 0.00165 0.91209 0.90491 0.35 32 0.00923
0.9033 0.90412 0.3 48 0.00421 0.88352 0.87358 0.4 64 0.00503
0.88791 0.88588 0.3 24 0.00146 0.91209 0.90408 0.2 64 0.00274
0.9033 0.89748 0.35 64 0.00168 0.90549 0.90176 0.2 64 0.00813
0.89451 0.89012 0.4 64 0.03355 0.90769 0.89919 0.25 48 0.00127
0.8989 0.89013 0.25 64 0.00108 0.9033 0.89012 0.4 48 0.00242
0.87033 0.8709 0.3 32 0.00252 0.89451 0.87688 0.3 24 0.00343
0.88132 0.88102 0.25 48 0.02173 0.89451 0.88433 0.35 48 0.00101
0.89451 0.87768 0.4 64 0.02368 0.82857 0.75089 0.35 48 0.01142
0.9011 0.89575 0.3 32 0.00979 0.8967 0.89996 0.25 32 0.00372
0.90549 0.89988 0.2 48 0.00117 0.82857 0.75089 0.35 48 0.00211
0.90989 0.90269 0.2 48 0.02547 0.90549 0.89981 0.35 48 0.00935
0.89231 0.88145 0.25 32 0.0182 0.89451 0.8785 0.3 24 0.00259
0.88571 0.87547 0.2 32 0.0246 0.82857 0.75089 0.2 64 0.00112
0.9011 0.89999 0.4 48 0.00131 0.91429 0.90919 0.2 32 0.00339
0.88791 0.87228 0.3 32 0.00776 0.87692 0.85466 0.35 64 0.00402
0.8967 0.88018 0.35 48 0.00194 0.89011 0.87852 0.2 24 0.00425
0.86813 0.84878 0.3 24 0.02053 0.9033 0.89882 0.2 24 0.0072
0.89011 0.88068 0.2 64 0.00106 0.9033 0.89793 0.25 24 0.00611
0.88791 0.88289 0.4 24 0.00166 0.91648 0.91218 0.2 24 0.00183
0.90769 0.89961 0.3 48 0.00132 0.89231 0.87961 0.35 64 0.00233
0.90769 0.90329 0.4 48 0.02314 0.91429 0.91066 0.35 32 0.00394
0.89231 0.88607 0.3 32 0.03195 0.89231 0.8795 0.25 64 0.01113
0.86813 0.87035 0.3 24 0.03019 0.89451 0.88695 0.25 32 0.00204
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as Macy’s Inc., M, which has a high systematic risk value with a high likeli-
hood to show extreme negative returns. As it can be seen from Fig. 10-, although 
the trained GRU model has failed to show a positive return on our labeled test 
set, XGBoost has surprisingly shown a high percentage of return, i.e., greater 
than 150% at the end of the test period. In Fig. 11, we have depicted the pick-
to-trough decline during our investment test period. Drawdowns are considered 
a measure of downside volatility and are essential in monitoring the trading 
performance. Since volatile markets and large drawdowns are problematic for 
most investors, they usually choose to avoid values greater than 20 percent. In 
most cases, the drawdown value does not exceed 10 percent. This is a signifi-
cant improvement that comes from our proposed labeling algorithm since when 
a trading strategy keeps the investor out of trouble, it results in starting to com-
pound at a higher level.

Table 4  Hyperparameter optimization of recurrent neural networks for CLX stock

Best tuning values and the respective performance metrics are shown in bold

LSTM GRU 

Accuracy F1-Score Dropout Units l.r Accuracy F1-Score Dropout Units l.r

0.85403 0.83438 0.25 32 0.00305 0.91068 0.90667 0.2 64 0.00107
0.91285 0.90024 0.2 24 0.00189 0.90196 0.8878 0.4 32 0.00264
0.90414 0.89121 0.25 64 0.00269 0.87582 0.8568 0.4 32 0.00169
0.90196 0.89477 0.25 24 0.02077 0.9085 0.89966 0.2 32 0.00167
0.89107 0.87656 0.25 32 0.0029 0.91068 0.90265 0.2 32 0.00216
0.84096 0.79521 0.4 32 0.03533 0.90414 0.89104 0.2 32 0.00171
0.89542 0.88591 0.25 64 0.0021 0.9085 0.8975 0.25 64 0.00103
0.90285 0.90176 0.25 24 0.00335 0.88671 0.87622 0.25 48 0.00232
0.88017 0.86976 0.2 48 0.02179 0.89107 0.88824 0.25 24 0.00234
0.9085 0.90066 0.2 48 0.0129 0.81481 0.73167 0.3 48 0.0058
0.90196 0.89181 0.2 64 0.00236 0.93028 0.9234 0.2 24 0.00191
0.89978 0.88549 0.2 32 0.02723 0.90632 0.89653 0.35 32 0.00499
0.90414 0.89392 0.4 32 0.0026 0.81481 0.73167 0.4 64 0.00142
0.88453 0.87549 0.3 32 0.01627 0.89325 0.87644 0.35 32 0.00179
0.8976 0.88662 0.2 24 0.01153 0.88453 0.87057 0.3 32 0.00222
0.90196 0.89527 0.25 24 0.00406 0.91068 0.90066 0.25 48 0.00128
0.85839 0.83964 0.25 32 0.00245 0.90414 0.89726 0.2 32 0.00153
0.91503 0.90515 0.25 32 0.0027 0.90414 0.89101 0.25 48 0.00117
0.90632 0.89613 0.3 64 0.00358 0.84532 0.7925 0.2 32 0.00182
0.85621 0.82603 0.2 48 0.00223 0.90196 0.89281 0.2 48 0.00202
0.87364 0.86368 0.3 64 0.00437 0.9085 0.89956 0.2 32 0.00118
0.87582 0.8611 0.2 64 0.03391 0.92157 0.91621 0.2 32 0.00148
0.91068 0.90329 0.4 24 0.00407 0.89978 0.88628 0.4 64 0.00109
0.89542 0.89053 0.3 24 0.01018 0.89325 0.88721 0.25 32 0.00436
0.85839 0.83285 0.2 24 0.00366 0.91503 0.90694 0.25 24 0.00354
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4  Conclusion

In this paper, we designed a multi-class classification framework to tackle the price 
trend prediction problem. The framework was implemented using two machine learn-
ing models, SVM and XGBoost, and two recurrent neural networks, LSTM and GRU. 
The reason behind exploiting different classification models in our trend prediction 
module is to show that regardless of the classifier used, the tri-state labeling algorithm 
extracts more profitable buy and sell opportunities from price data. This study contrib-
uted to the market trend prediction problem in four ways. First, our tri-state labeling 
algorithm helps filter low-confidence states of the market. For example, when the clas-
sification machine is not confident enough about whether the trend is upward or down-
ward, it changes the system status to the idle state (denoted by 0). This is a safe position 
that is taken by the machine not to pose a threat to the investor’s capital in a highly vola-
tile market. Second, in the model training part of the work, the combinatorial purged 

Table 5  Hyperparameter optimization of recurrent neural networks for M stock

Best tuning values and the respective performance metrics are shown in bold

LSTM GRU 

Accuracy F1-Score Dropout Units l.r Accuracy F1-Score Dropout Units l.r

0.86822 0.84763 0.3 24 0.00467 0.86047 0.86183 0.35 24 0.00199
0.83915 0.76576 0.2 32 0.01753 0.87597 0.85821 0.3 64 0.01056
0.8469 0.78649 0.35 48 0.00597 0.83915 0.76576 0.35 24 0.03173
0.8469 0.78338 0.4 32 0.01301 0.8469 0.83781 0.25 48 0.01737
0.87209 0.86186 0.4 32 0.0162 0.81395 0.8018 0.25 24 0.01998
0.8469 0.84341 0.3 24 0.00853 0.85078 0.84806 0.25 32 0.01251
0.85078 0.8074 0.35 48 0.01066 0.85078 0.85066 0.2 64 0.00283
0.78295 0.80698 0.35 48 0.02937 0.87597 0.87195 0.2 64 0.00781
0.85853 0.85415 0.4 32 0.00521 0.86434 0.85796 0.25 32 0.01924
0.87209 0.84343 0.35 64 0.01607 0.83333 0.83791 0.2 48 0.00374
0.85465 0.84037 0.35 48 0.01052 0.86047 0.85982 0.35 24 0.00381
0.83527 0.78557 0.2 64 0.01132 0.87016 0.86487 0.35 24 0.00274
0.86434 0.84591 0.4 64 0.01385 0.83915 0.76576 0.35 64 0.01673
0.83915 0.76576 0.2 32 0.00811 0.8469 0.78338 0.35 32 0.01054
0.85078 0.84877 0.3 24 0.01377 0.85465 0.85722 0.2 64 0.00661
0.82752 0.79296 0.35 24 0.00533 0.85271 0.85549 0.25 32 0.00704
0.83915 0.76576 0.4 64 0.00476 0.87403 0.86877 0.2 24 0.0026
0.85078 0.8462 0.4 48 0.00704 0.83915 0.76576 0.25 48 0.01857
0.83915 0.76576 0.2 24 0.01712 0.83333 0.84691 0.3 32 0.0135
0.83915 0.76576 0.35 24 0.01963 0.85853 0.84222 0.2 48 0.00768
0.85271 0.80062 0.3 24 0.02079 0.84884 0.84699 0.2 32 0.00239
0.87582 0.8611 0.2 64 0.03391 0.91403 0.8702 0.2 24 0.00636
0.91068 0.90329 0.2 24 0.00193 0.8469 0.81967 0.4 24 0.01267
0.89542 0.89053 0.3 24 0.01018 0.83915 0.76576 0.25 32 0.00389
0.85839 0.83285 0.2 24 0.00366 0.86434 0.82619 0.3 48 0.0185
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K-Fold cross-validation is applied to the training and test dataset splitting task to pre-
vent data leakage and look-ahead bias. This type of cross-validation assures less bias 
in the prediction because of data leakage between training and validation chunks of 
the input vector. This is in marked contrast to most of the previous works applying the 
common K-fold cross-validation technique which is ill-suited to deal with data leakage 
and look-ahead bias. Third, we have trained the final model with the best tuning hyper-
parameters found by applying a Bayesian hyperparameter optimization process. Finally, 
we have successfully back-tested our framework on selected stocks from the S&P-500 
market and showed through extensive experiments that our training regime is applica-
ble to different models, resulting in high performance of the trading task.

The proposed study has some limitations that can be considered as anchor 
points for further extensions and improvements. While the study provides valu-
able insights on trend following based on price changes, the labeling mechanism 

Table 6  Hyperparameter 
optimization for SVM 
classification

The values are reported for AMD stock
Best tuning values and the respective performance metrics are shown 
in bold

SVC

Accuracy F1-Score C Kernel Degree gamma Time (s)

0.88791 0.86462 0.97 rbf 4 6.35122 34.08338
0.88791 0.86267 0.74 rbf 4 4.61141 34.47854
0.83516 0.76597 0.6 rbf 3 4.1091 34.66601
0.89011 0.86669 0.92 rbf 2 8.8002 33.99457
0.88791 0.86374 0.69 rbf 2 5.24261 33.50706
0.89011 0.86669 0.7 rbf 4 5.92944 33.40672
0.89011 0.86665 0.97 rbf 4 2.56692 35.21639
0.88791 0.86271 0.56 rbf 4 4.81323 34.29156
0.89451 0.87525 1 rbf 3 8.67797 32.86624
0.89011 0.86665 0.99 rbf 4 8.42303 33.2351
0.85714 0.80872 0.85 rbf 4 4.69465 34.28548
0.88571 0.86038 0.94 rbf 3 2.38 34.4737
0.84615 0.78804 1 rbf 4 7.12775 34.51734
0.89231 0.87146 0.95 rbf 4 8.49369 33.89479
0.88571 0.85976 0.92 rbf 2 5.8358 34.21499
0.89011 0.86665 0.88 rbf 2 6.29374 32.85993
0.89451 0.8742 0.96 rbf 3 6.2801 33.20176
0.81538 0.8109 0.9 rbf 4 3.55488 32.62426
0.88352 0.85675 0.69 rbf 3 3.60119 34.24339
0.88571 0.8619 0.92 rbf 3 6.67293 33.9439
0.86374 0.82297 0.89 rbf 4 6.7315 33.09472
0.86593 0.82634 0.88 rbf 3 7.93163 34.81558
0.84396 0.78431 0.92 rbf 3 8.93898 33.51085
0.88791 0.86271 1 rbf 4 8.9172 34.22566
0.89011 0.86669 0.59 rbf 4 3.71744 34.04539
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can be further enhanced to show more robustness against higher levels of volatil-
ity. Besides, we believe that there is also more room for improvement in labe-
ling the trends using an adaptive threshold. Such an adaptive parameter optimiza-
tion may lead the system through more volatile periods to capture trends better. 
Finally, the activity at each price level results in changes in volume, which affects 
the price. This means we need to study the mutual effect of price and volume in 
future works to extract the trends better.

Table 10  Hyperparameter 
optimization for SVM 
classification

The values are reported for CLX stock
Best tuning values and the respective performance metrics are shown 
in bold

SVC

Accuracy F1-Score C Kernel Degree gamma Time (s)

0.54773 0.42636 0.96 rbf 2 8.96451 68.55751
0.58864 0.51771 0.6 rbf 3 3.23122 61.5789
0.58182 0.50193 1 rbf 4 8.94659 63.0378
0.61591 0.56178 0.75 rbf 4 5.24323 60.19616
0.69318 0.66328 0.44 rbf 4 8.99035 63.81414
0.70909 0.68182 0.98 rbf 2 8.99531 62.34934
0.70455 0.67627 0.4 rbf 4 8.71733 62.89979
0.87115 0.85123 0.99 rbf 3 7.43513 64.88739
0.71136 0.68461 0.97 rbf 4 8.86893 62.36296
0.68636 0.65382 0.44 rbf 2 8.9409 62.44242
0.52045 0.35631 0.69 rbf 3 8.8603 63.15386
0.53409 0.39643 0.8 rbf 3 8.83122 60.07399
0.70227 0.67503 0.93 rbf 2 8.81325 60.41432
0.70909 0.68228 0.84 rbf 3 8.87425 62.6169
0.71136 0.68461 0.96 rbf 3 8.6247 64.30415
0.88691 0.86695 1 rbf 3 7.332 60.75189
0.70455 0.67738 0.68 rbf 2 8.98146 63.31783
0.70909 0.68228 1 rbf 4 7.34932 60.10106
0.69318 0.66289 0.82 rbf 4 3.2027 62.91097
0.68864 0.66082 0.68 rbf 4 8.98826 63.06187
0.70227 0.67419 0.71 rbf 3 8.27532 62.57946
0.70455 0.67712 1 rbf 3 8.57879 60.85747
0.59318 0.51773 0.98 rbf 3 8.96061 63.29737
0.625 0.60501 0.7 rbf 4 7.19191 60.17934
0.69091 0.66149 0.71 rbf 4 8.82945 61.37867
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Table 11  Classification metrics report for CLX stock

The threshold and window size are 0.05 and 11, respectively

Class label BB-XGBoost BB-SVM

Precision Recall F1-score Support Precision Recall F1-score Support

− 1 0.870 0.455 0.597 44 0.941 0.364 0.525 44
0 0.914 0.992 0.951 374 0.894 0.997 0.943 374
1 0.767 0.561 0.648 41 0.720 0.439 0.545 41
Summary
 Accuracy 0.902 459 0.887 459
 Macro avg 0.850 0.669 0.732 459 0.852 0.600 0.671 459
 Weighted avg 0.896 0.902 0.890 459 0.883 0.887 0.867 459

Class label BB-LSTM BB-GRU 

Precision Recall F1-score Support Precision Recall F1-score Support

− 1 0.692 0.409 0.514 44 0.950 0.432 0.594 44
0 0.883 0.992 0.935 374 0.917 0.981 0.948 374
1 0.692 0.220 0.333 41 0.744 0.707 0.725 41
Summary
 Accuracy 0.867 459 0.904 459
 Macro avg 0.756 0.540 0.594 459 0.870 0.707 0.756 459
 Weighted avg 0.848 0.867 0.841 459 0.905 0.904 0.894 459

Table 12  Performance comparison of LSTM, GRU, XGBoost, and SVM

Best tuning values and the respective performance metrics are shown in bold

Stock Algorithm SR MDD Time (s) Stock Algorithm SR MDD Time (s)

AMD LSTM 2.66 7.22 211.84 STX LSTM 1.94 2.16 127.58
GRU 2.44 2.32 241.81 GRU 1.96 17.27 145.10
XGBoost 3.55 6.98 4.155 XGBoost 2.55 2.16 1.204
SVM 2.56 7.22 2.565 SVM 2.16 2.16 0.873

WMT LSTM 1.28 7.38 213.89 M LSTM 0.73 2.98 327.65
GRU − 1.98 8.97 236.885 GRU 2.39 1.79 325.11
XGBoost 3.10 4.03 3.668 XGBoost 2.52 1.79 3.897
SVM 1.37 7.71 3.498 SVM 2.34 2.61 1.925

AAPL LSTM 2.61 10.37 215.11 CLX LSTM 0.81 2.76 218.7
GRU 2.52 10.38 238.48 GRU 2.72 2.76 237.30
XGBoost 2.67 4.24 4.657 XGBoost 2.55 1.83 5.528
SVM 2.57 6.25 2.179 SVM 1.04 2.56 1.302
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Table 13  Average performance 
comparison

Sharpe ratio for all studies is reported in annualized rate

Proposed framework Comparison frameworks

Algorithm SR Algorithm SR

LSTM 1.672 2D-CNNpred [17] 2.257
GRU 1.675 3D-CNNpred [17] 2.243
XGBoost 2.823 DPGRGT [22] 0.642
SVM 2.007 L&Mc (News) [32] 1.235

L&Mc (News and Price) [32] 0.756

Fig. 10  RoR diagrams to show how much return is produced within each learning model. The horizontal 
axis represents date and the vertical one is the percentage of RoR. The charts show the RoR from Janu-
ary 2020 to November 2021
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