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Abstract

Financial time series have been extensively studied within the past decades; how-
ever, the advent of machine learning and deep neural networks opened new horizons
to apply supercomputing techniques to extract more insights from the underlying
patterns of price data. This paper presents a tri-state labeling approach to classify
the underlying patterns in price data into up, down and no-action classes. The intro-
duction of a no-action state in our novel approach alleviates the burden of denoising
the dataset as a preprocessing task. The performance of our labeling algorithm is
experimented with using machine learning and deep learning models. The frame-
work is augmented by applying the Bayesian optimization technique for the selec-
tion of the best tuning values of the hyperparameters. The price trend prediction
module generates the required trading signals. The results show that the average
annualized Sharpe ratio as the trading performance metric is about 2.823, indicating
the framework produces excellent cumulative returns.

Keywords Trend prediction - Machine learning - Deep learning - Financial time
series - Feature engineering - Classification

1 Introduction

Although the outbreak of the COVID-19 pandemic triggered a sharp decline in
stock prices across the financial market, a closer look at the recent figures on the
market indices and stock prices illustrates that the trends are showing a pattern of
great acceleration. Financial markets’ data form in time series and have been studied
by researchers within the past decades, though the main objective of these studies is
to find more insight into the underlying market trends. The more insight extracted
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from the market behavior; the better asset pricing is likely to be achieved. This is
precisely the most significant aspect of portfolio formation part of the investment
process. However, according to the EMH,' it is impossible to forecast the prices for
future time intervals because the information propagation across the markets rapidly
results in updating prices. On the other hand, many studies have been conducted
proving that financial markets are indeed a combination of efficient and non-efficient
markets; therefore, the stock prices are, to some extent, predictable [31].

Prediction is the process of finding the next plausible outcome based on past
experiences and observations. Hence, feeding the most relevant observations to the
prediction model is a crucial task to improve the accuracy of the desired output.
This process is called feature engineering. When it comes to financial time series,
substantial considerations should be noted. In the case of image, text, and speech
observations, the input signal has almost all the required information for modeling
the prediction process. On the other hand, asset pricing is a complex problem influ-
enced by multiple endogenous and exogenous factors including but not limited to
systematic risk, market behavior, interdependence between markets, macroeconomic
variables, firm-specific information, investors’ sentiment, and news. Authors [4]
proposed a comprehensive taxonomy of input features prevalent among financial
market researchers. According to their literature review, the authors have shown that
the technical indicators have higher prediction power, while the informative signals
from social media could boost the models’ performance. Hence, the feature selec-
tion and engineering process is a stone step toward building an overarching portfolio
formation and optimization model.

Researchers have tackled the feature extraction and engineering process using
techniques from the time—frequency domain, statistical methodologies, traditional
machine learning approaches, and recently deep learning frameworks. For exam-
ple, the autoregressive integrated moving average (ARIMA) has extensively been
used by researchers in financial time series analysis. The ARIMA model is a linear
nonstationary model based on the autoregressive moving average (ARMA) model,
including a new difference operator to convert nonstationary series to stationary and
take the volatility clustering into account [19, 47]. Both ARMA and ARIMA belong
to the univariate class of statistical analysis approaches since the only input variable
is time series. There are other statistical methods in the same category, such as the
generalized autoregressive conditional heteroscedastic (GARCH), and the Smooth
Transition Autoregressive (STAR). Researchers in [47] also mentioned the second
class of multivariate statistical methodologies, including linear discriminant analysis
(LDA), quadratic discriminant analysis (QDA), linear regression (LR), and support
vector machines (SVM).

Among time—frequency techniques, discrete wavelet transform (DWT) has been
broadly exploited for feature extraction from financial time series. Authors [45]
applied wavelet decomposition to the crude oil time series, turning the time series
into different forecasting horizons. Applying the DWT to average monthly crude
oil prices, they framed their procedure to compartment the whole signal into low-
and high-frequency parts. The coarse scales follow the main trends, while the finer

! Efficient market hypothesis.
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scales’ seasonal fluctuations, singular events, and noise appear. Based on the power
of wavelet transform in extracting features from various types of data, researchers
have always shown specific interest in applying DWT as a preprocessing stage on
the financial time series combining it with other frameworks like quantile regres-
sion, neural networks, and other applicable methods [1, 10, 12, 20, 23, 29, 42, 43].

Dimensionality reduction for extracting the abstract and high-level features to
feed the subsequent modules of the prediction models has been studied in many
research works such as [39, 46]. In [46], Zhang et al. applied principal component
analysis (PCA) to perform dimensionality reduction and extract the abstract and
high-level features to feed the next module of their framework, an LSTM predict-
ing the next trading day’s close price. They took the first four principal components
of the cumulative contribution rate of the Shanghai Composite Index as the train-
ing sample data fed into LSTM. The authors [7] designed a framework to extract
features from 24 randomly selected stocks in the SSE 50 index (Shanghai Stock
Exchange), using a hybrid method based on the XGBoost and IFA. The generated
features are then used in a mean—variance model for portfolio formation.

Around the second decade of the twenty-first century, the winter of neural net-
work applications across the science and technology realm turned to spring. Accord-
ingly, deep learning models found their way into the financial market analysis to
find better solutions for complex problems such as asset pricing, stock price predic-
tion, contagion between financial markets, spillovers, and other problems. A note-
worthy application of deep learning models is feature extraction and engineering
due to their multi-layer cascading non-linear units, enabling them to capture non-
linear dependencies and underlying trends in data. Although most of the early works
in the context of financial market analysis are based on long short-term memory,
LSTM, there is also a rise in applying other architectures like RL units, Q-learning,
ensemble learning, transformer networks, and recently generative adversarial net-
works (GAN) [5, 13, 22, 23]. The authors [25] investigated the contribution of addi-
tional information from the US stock market to South Korea’s stock prediction. They
exploited a multimodal deep learning framework to capture the cross-modal cor-
relation at different levels and showed that deep multimodal networks can leverage
the complementarity of stock data and provide more robust predictions. The authors
[27] proposed a two-phase solution for the structural break problem in stock markets
using deep reinforcement learning and continuous wavelet CNN. To estimate the
occurrence probability of a structural break, within the first phase, they combined
the time-domain and frequency-domain extracted by LSTM and continuous wavelet
CNN, respectively, and after that, the pairs trading strategy in the next phase is opti-
mized using deep Q-learning. Authors [40] applied a preprocessing stage based on
the genetic algorithm, GA, on a train and test dataset and then trained a back propa-
gation neural network to predict the closing price of the Shanghai and Shenzhen 300
index for the next 100 trading days.

To enable neural networks to receive the input vector sequentially, recurrent neu-
ral networks (RNN) emerged from the traditional feedforward networks. However,
these models have severe problems dealing with long input sequences since they can
only handle a few steps back. Hence, a developed variation of RNNs named LSTM
was introduced to tackle these problems by adding three gates to the original RNN
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architecture: (1) a forget gate to control what information requires to be thrown away
from the LSTM memory; (2) an input gate to indicate if new information will be
added into the memory, and (3) an output gate controlling the output state. To intro-
duce a threshold-based portfolio [24], the authors built three architectures, S-RNN,
LSTM, and GRU, to forecast 1-month-ahead stock returns and then used the last
business day OHLCV of each month for building portfolios. Tian et al. [36] pro-
posed a hybrid deep learning model based on multilayer bidirectional LSTM net-
works to solve the stock price prediction problem. They first analyzed the attributes
of 10 different stocks using the Pearson correlation coefficient and then applied the
LSTM model to forecast the retained attributes after the analysis.

There have been various attempts to tailor the structure of deep learning net-
works to the observations’ characteristics across different contexts. For example,
the authors [9] proposed a model to place another attention mechanism over the
document-level attention. The so-called attention-over-attention reader model was
exploited to provide a solution to the cloze-style reading comprehension task. The
authors [14] crafted a CNN-bLSTM deep learning model for improving the perfor-
mance of conversational speech recognition tasks. Although increasing the number
of layers in multi-layer deep models results in the enhanced learning ability of the
network, it turns the model to face the problems such as exploding and vanishing
gradients. To tackle the incurred problems, researchers proposed a handful of tech-
niques such as dropout, batch normalization, and residual [2, 15, 16, 18, 35]. There
are attempts to extend the sentiment analysis techniques and apply the results to
price prediction models to enhance the performance of the task. In a recent study
[38], the authors augmented a Bidirectional Encoder Representations from Trans-
formers, BERT, with CNN structure to capture important local information in the
financial texts. Inspired by the word vectorization technique in natural language pro-
cessing, the authors [30] introduced stock vectors and proposed two LSTM archi-
tectures for dimension reduction and price prediction, one with an embedded layer
and the other based on an automatic encoder. Their experimentation for Shanghai
A-shares composite index showed that the deep LSTM with the embedded layer per-
forms 0.3% better in terms of the accuracy metric.

In recent decades, much research has been done based on price prediction as a
regression task. However, researchers have shown that trend prediction as a clas-
sification task can dramatically improve machine learning and deep learning model
predictions [32, 37, 44]. The task of labeling financial times series has a signifi-
cant impact on the prediction model’s performance, though the problem has not
been widely studied in the literature. Recently, Wu et al. [41] proposed a price data
labeling method to extract the continuous trend features of financial time series data
and group them into two upward and downward classes. However, sometimes the
market has unpredictable fluctuations; in this situation, investors risk losing their
money. Thus, the labeling algorithm should have an extra state that shows these
unpredictable and risky situations to prevent investors from investing their money
in that period. Hence, proposing a price data labeling algorithm to help produce
a more informative input feature vector for the market trend prediction task is of
great significance. Accordingly, in this study, we introduce a novel tri-state labeling
algorithm that significantly improves the quality of predictions by introducing three
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states that show upward and downward trends, besides the risky situation with the
no-action state.

The rest of the paper is organized as follows: In Sect. 2, we cover the method-
ology of our research work. It contains eight sub-sections starting from Sect. 2.1,
which is the complete description of our proposed tri-state labeling algorithm.
Since our experimentation will be conducted on financial time series, in Sect. 2.2,
we have thoroughly covered the reasons for using embargoed purging cross-vali-
dation instead of the traditional K-fold CV. Then, we included the required back-
ground on the machine learning and deep networks we aim to use as our predictive
machines. We first explain support vector machines in Sect. 2.3 and then continue
the ML methods with XGBoost in Sect. 2.4. The basics of LSTM and GRU are also
discussed in Sects. 2.5 and 2.6. In Sect. 2.7, the reader will be refreshed with our
approach to the performance evaluation of the classification task. The hyperparam-
eters’ value tuning using Bayesian optimization is discussed in Sect. 2.8. Section 2.9
provides readers with all our steps to design and evaluate our trading system. The
reader can find all information about our experimentation and the associated results
and discuss the findings within Sect. 3. Finally, Sect. 4 concludes the research find-
ings and the further possibilities for future research works.

2 Methodology
2.1 Proposed labeling algorithm

The first part of our proposed framework is a labeling algorithm to extract continu-
ous upward and downward trends from daily close price time series. Our input is the
close price time series denoted by X, where x, is close price at time . The algorithm
finds x, such that:

X =X 2 ™4 (1)
where x, is the close price at the time 7, and 7 denotes a threshold value which is a
hyperparameter. According to Eq. (1) if the condition is satisfied then the trend is
labeled as upward, otherwise, the direction of the changes is downward. Once the
overall direction of the price changes is found, in the second phase of the algorithm,
the labeling algorithm will deal with directional changes as follows: Suppose that
the labeling algorithm reads X the price at ;, and the direction at time 7; has been
labeled as upward. However, the algorithm should decide the exact time of changing
direction while keeping the upward trend until the next prices are still at higher lev-
els. Therefore, the following three cases are determined:
Case 1

x,/ > xti )

In this case, we still label the trend with + 1 as upward since the coming price at
the time ; is at a higher level compared with the price at the time ;.

@ Springer



A Bayesian-based classification framework for financial... 4627

Case 2

tj—fi>W 3)

where w is the window size for the period with no price fluctuations with much larger
or smaller values than x,, the last updated price shows an upward trend. This means
the upward trend has ended and we now can label all the coming time instances with
0, as a “no-action” trend. It is worth mentioning that w is also a hyperparameter that
needs to be determined.

Case 3

X, — X, 21X, )

This means that the upward trend ends and we now should change the direction to
downward. This means while we label all instances with + 1, the state space will be
ready to follow the downward direction.

On the other hand, if the state space shows the no-action, label (denoted by 0), the
algorithm is adjusted to handle the corresponding three cases:

Case 1

xtj > X, + X, 5)

In this situation, the trend shows the start of an upward direction.
Case 2

Y, S X, =T (6)

This means the current price at the time ; is lower than x,, the price at the last no-
action state, with a factor of z. Hence, the algorithm detects a change from a no-action
state to falling prices and starts to label the past time instances with label O and pre-
pares the state space for the coming downward trend follow-up.

Case 3

lj >l W @

Since the price time series is still fluctuating, we continue to update the no-action
trend with label 0.

The third and final state for our proposed tri-state labeling algorithm is —1 or the
“downward,” for which exist three cases: (1) remaining at the current state, (2) chang-
ing to an upward direction, or (3) putting the system to the no-action state.

Case 1

X; <Xx; (8)

where x; is a previous time instance of a downward trend, hence we only update the
current downward trend.
Case 2

tj_ti>w )
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where £, is the latest time instance of the price at an upward trend, hence, the prices

are still fluctuating which means the bullish trend has ended and we are ready to

enter a no-action trend while the labeling process of the past trend with — 1 is done.
Case 3

Nz X T (10)

where x; is the last time instance at which the trend has been labeled with a down-
ward direction. Therefore, the direction is changed to upward. This means we must
set the state space for the start of a new upward direction, while the past instances
are labeled with — 1, as a downward trend.

2.2 Combinatorial purged K-fold cross-validation

For a machine learning algorithm to properly learn the general structure of the data
and prevent it from the extreme fidelity to the data, we usually split observations
into two training and test sets, where the cross-validation (CV) technique is used to
prevent overfitting. K-fold CV is widely used among machine learning researchers
among popular CV methods. However, for two reasons, this cross-validation method
produces undesired results when applied to financial time series.

First, financial time series do not possess the properties of an independent and
identically distributed (IID) process. Finance observations are serially correlated,
meaning that the feature at time ¢ is highly correlated with the feature at time ¢ + 1.
Therefore, the prediction process from overlapping data points results in a label at
time 7 + 1 which is derived from overlapping features from time ¢. A second reason
for CV’s failure in finance is the multiple testing and selection bias. The solution for
the second problem is to purge all overlapping labeled samples from the training and
test sets. For the serial correlation problem between financial features, the solution
is to embargo those samples in the series that immediately follow another sample
in the test set. This purging and embargoing cross-validation technique is known as
PURGED K-FOLD CV [28]. As shown in Fig. 1a [28], within one partition of the
K-fold cross-validation, two overlapping regions need to be purged to prevent data
leakage between training and test sets. As shown in Fig. 1b [28], the embargo pro-
cess is imposed on training samples directly after a test set to bolster leakage preven-
tion between training and test observations.
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Fig. 1 a Purging overlap in the training set; b Embargo of post-test train observations [28]

Algorithm 1. PURGED K-FOLD CV

consider a label Y; that is a function of some
observations
Y; = f(£); t € [tjo, tj1]
Purging:
For every two consecutive observations
If t}',O < ti,O < tj,l then
Drop the observation
If tj,O < ti,l < tj,l then
Drop the observation
If tio<tjo=<t1 =t then
Drop the observation
Embargoing:
Define a hyper-parameter, embargo period h
drop the observations that take place immedi-
ately after the test,
tia<tig<ti1+h

2.3 Support vector machines (SVM)

V(—J_\Y . 1 . \[—Aﬁ

MA/W 2000 M
i 1800 i

embargo

train

(_Aﬁ

2016

SVMs are a set of widely used supervised learning algorithms for classification,
regression, and outlier detection tasks through finding the optimal hyperplane using
margin maximization. The basic idea behind SVM is to apply a non-linear transfor-
mation to map the input vector x into a high-dimensional feature space. Suppose the

input feature is x

ii=l..n

€ RP, where p is the total number of data patterns, and the
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corresponding target is y; € R. Then, the SVM computes a decision function of the
following form:

Yo = w(x) + b (11)

The objective is to maximize the margin plane parameterized by w and b. Class
labels are then assigned by sgn function:

label = sgn(y(x)) (12)
The parameters w and b are estimated by solving the following minimization

problem:

N 3 )
Mlg}gglze sz +C Z (C,- + ¢ )

i=1

d;—w(x;) —b; < e+ ()
subject to wd)(xi) +th—yi<e+ (]
Cﬂ gi* 2 0

where C is the penalty parameter, and ¢, ¢ are the slack variables. The above-men-
tioned optimization problem is solved by the Lagrangian method:

n n n n
% % 1 * %
Maxaz;di(ai—ai)—ez; (ai+al.)— 3 Z;Z; (ai—ai)<aj—aj >K(x,-,xj)
i= i= i=1 j=

n
subject to Zai=20ﬁ; O0<La,a <C, i=12,...,n

i
i=1 i=1

(14)
where K (x;, xj) is the kernel function:

K(x[’-xj) = d)(xi) © d)(xj) (15)

where the © is the inner product operator. The solution for «; determines the param-
eters w and b for the optimal hyperplane.

2.4 Extreme gradient boosting (XGBoost)

In the context of machine learning, a weak learner is a classification model that can
perform marginally better than random guessing. Authors [33] developed boosting
in a successful attempt to answer the question “Can a set of weak learners create a
single strong learner?” proposed by [21]. The main idea behind most of the boost-
ing algorithms is to iteratively apply a weak learner to training data and assign more
weights to misclassified observations to find a new decision stump for them. Finally,
all learned models are aggregated to form a strong learner able to classify all train-
ing samples correctly. Therefore, a decision tree ensemble model with K additive
functions is used to predict the target.
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K
% =¢x;) = D i) €F (16)
k=1

In Eq. (16), x is the m-dimensional input feature vector, y is the one-
dimensional target vector forming the »n cardinality sample space
D = {(xi,yi);|D| =n,x; € R"y, € IR}. The space of classification and
regression trees (CART) with T leaves in each tree is also indicated by
F={fx)=wy3q : R" > T,we RT} where f, represents an independent tree
structure g whose leaf weights are w. To classify the observations, the decision rules
in the trees are applied to calculate the predicted target by summing up all w;, the
weights in the corresponding leaves. Equation (17) shows the objective function
used to learn the set of functions used in the model.

I(¢) = Z 1(9,.y;) + zk: Q(f) (17)

where Q(f) = yT + 3 Allwll*.

As it can be seen from Eq. (17), the model is trained in an additive manner instead
of using traditional optimization methods in the Euclidean space. Hence, while the
adaptive boosting techniques try to weigh misclassified samples more, in gradient
boosting, base learners are generated sequentially so that the current model is always
more effective than the previous one by ameliorating a loss function. Therefore, the
objective function to be optimized is modified to include greedily adding f;.

o — i l(yi’ygr—l) +f,(xi>> + Q( z)

i=1 (18)
1
Q) =yT+ Eiuwnz

XGBoost [6] is a highly enhanced version of gradient boosting, and it mainly aims
at increasing computation speed and efficiency since the gradient boosting algorithm
analyzes the datasets sequentially resulting in a very low rate performance. Further-
more, XGBoost supports parallelization by creating decision trees in a parallel way
like the random forest. It also exploits distributed computing methods to evaluate
large and complex models and uses Out-of-Core computation to analyze large and
varied datasets. Using cache optimization is another technique used in XGBoost to
achieve a higher level of optimal resource utilization. Therefore, XGBoost, as a sim-
ple to utilize and interpretable prediction model, has been widely used and has out-
performed most modern and state-of-the-art deep learning methods for classification
and clustering of tabular data [34].

2.5 Long short-term memory (LSTM)
Learning in the human brain is an accumulative process that prevents it from restart-

ing thinking and learning from scratch every second. This is in contrast to what hap-
pens in traditional neural networks, as they cannot consider the previous events to infer
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Fig.2 RNN architecture

about the later ones. To overcome this shortcoming, recurrent neural networks (RNNs)
have been widely adopted concerned with applications in time series and sequential
data such as price prediction, speech recognition, and image recognition. As it is shown
in Fig. 2, the goal of the RNN is to have a model which can take the n current observa-
tions in the associated vector #,, send it into a neural network and using the knowledge
from the previous stage as the hidden vector £, and predict the next target?,, .
Vanishing gradient, exploding gradient, long-term dependency, and unidirectional-
ity are the major drawback of the RNN model. The long short-term memory, LSTM,
model is one way to solve these problems. LSTM has introduced a memory unit called
the cell into the network. Different researchers adopted various architectures for the
LSTM model, but the original design incorporates a forget gate, an input gate, and an
output gate with a peephole connection. The mathematical equations according to the
connections and gates in the LSTM architecture, Fig. 3, are expressed as follows:

!
I

=0 (WypH,_| + WypX, + Pr © C,_y + by),
L=0(WyH,_, +WyX,+P,0C_, +b),
C, = tanh (WycH,_| + Wyex, + be),
C,=F,0C_ +I,6C, (19)
0, = o(WyoH,_, + WypX, + P, © C, + by),
H,= 0,0 tanh (C,)
YH™ = 6(WyyH, + by)

where F,, 1,, and O, are the forget gate, input gate, and output gate at time #, respec-
tively. W s and b s in Eq. (19) represent the corresponding weight matrices and
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bias terms in each equation. o(s) indicates a sigmoid activation function, Tanh(e)
is a hyperbolic tangent function, and © is an element-wise multiplication operator.
The forget gate decides what information from the past cell state C,_; is propagated
to the updating process of the cell state at time ¢. If F, = 1, it keeps the informa-
tion received, while a value of 0 for F, means the information is discarded. P, P,,
and P, are the peephole weights for the respective forget, input, and output gates.
The peephole connections are a mechanism to enable the LSTM cell for inspecting
its current internal states resulting in learning unsupervised stable and precise tim-
ing algorithms [11]. Since LSTM is a special variant of the RNN model, the same
process for RNN weight updates and hyperparameter optimization methods can be
exploited within LSTM networks [3].

2.6 Gated recurrent unit (GRU)

Although the LSTM cell has an outstanding learning capacity in comparison to the
traditional RNN, its computational complexity is higher than RNN because of the
extra parameters of the model. To reduce the number of parameters, the authors [8]
introduced the GRU cell by integrating the forget and input gates into an update gate.
Having only two gates, reset and update, the GRU removes a gating signal, and the
associated parameters compared with the LSTM cell. Since GRU has fewer param-
eters to be learned it has fewer tensor operations which in turn results in slightly
reduced computational time. Equation (20) represents the mathematical expressions
of the GRU cell, and the corresponding architecture is visualized in Fig. 4.

R, = 6(WygH,_, + WX, + by),

Z, =0 (WyH,_, + Wy X, + by),

H, = tanh (Wy5(R, © H,_|) + Wy X, + b),
H=(1-Z2)0H,_,+Z 0OH,

(20)
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Fig.4 GRU cell. Forget and input gates in LSTM are now integrated into the update gate in the GRU
model

2.7 Classification task metrics

The AUC, or area under the receiver operating characteristic curve, is the most ver-
satile and common evaluation metric used to judge the quality of a binary classifica-
tion model. It is simply the probability that a randomly chosen positive data point
will have a higher rank than a randomly chosen negative data point for the learning
problem. So, a higher AUC means a more sensitive, better-performing model. When
dealing with multi-class classification problems, it is common to use the accuracy
score and to look at the overall confusion matrix to evaluate the quality of a model.
Accuracy is the most straightforward to evaluate the overall performance of the clas-
sification task. Since financial time series are almost equally weighted across all
classes, so all the individual dataset elements have approximately the same weight
and contribute equally to the accuracy value. Therefore, the higher accuracy, the
higher the probability that the model prediction is correct. Assigning up, down, and
no-action labels to the market trends is a multi-class classification task in which the
upward trends are positive, downward trends are negative, and non-essential fluc-
tuations are shown with 0. Therefore, the performance of the labeling task can be
assessed by computing the confusion matrix of the corresponding three classes. For
each class, the classification task should be assessed for the performance of recog-
nizing the class label correctly (true positives, TP), the number of correctly classi-
fied corresponding labels (true negatives, TN), the number of observations that were
either incorrectly assigned to the class (false positives, FP) or those that incorrectly
were not assigned to the class (false negatives, FN). Hence, the performance of the
models for each class can be evaluated using precision, recall, and F1-Score metrics,
and the overall performance of the classification task is assessed based on accuracy.
Precision is defined as the ratio between the TP area and the area in the ellipse in
Fig. 5. The recall is computed by finding the ratio between the TP area and the area
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Fig.5 Confusion matrix. POSITIVES NEGATIVES
Source: [28]
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in the left rectangle. Accuracy is the sum of the TP and TN areas divided by the
whole area (square). In the context of the stock market prediction, we would like to
predict and capture as many as up-trends to maximize the profit, however, we want
to be very sure about our prediction. It means we need to maximize both precision
and recall. On the other hand, decreasing the FP area comes at a cost of increasing
the FN area, because higher precision typically means fewer calls, hence the lower
recall. A trade-off between recall and precision is obtained by taking the harmonic
mean of them, which is known as the F1-score.

TP + TN
TP+ TN + FP + FN
_rw
TP + FP
TP 21
TP + FN
2

1 1
Precision Recall

Accuracy =

Precision =

Recall =

Fl=

2.8 Hyperparameter optimization

A common practice for a learning machine to produce the desired output is to
become optimized from the perspective of the parameters that control the learn-
ing process. These controlling measures are called hyperparameters. Hyperpa-
rameter optimization is a widespread technique that is done by maximizing or
minimizing an objective function with a performance or loss metric to find a
tuple of parameters that result in an optimal model. There are many techniques
for this task including grid search, random search, gradient-based optimization,
and so on. When it comes to problems with expensive-to-evaluate functions,
Bayesian optimization is the first choice. It has the advantage of no predefined
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OHLCV I OHLCV
Close Price
Selected Stocks
(OHLCV)
Tri-State Labeling Algorithm
1
Target Vector
Bayesian Hyperparameter Classifier
Optimization (XGB - SVM - LSTM - GRU)
1
Trade Signal Sequence
v
[ Trade Simulator ]

Fig.6 Trend prediction and trading framework pipeline

assumption for the functional form of problems. If x € X, and the problem under
the study is f(x) then the Bayesian hyperparameter optimization yields the result
by Eq. (22):

x* = argdirectionf(x) (22)

where direction € {Maximize, Minimize}.

In Eq. (22), x belongs to the hyperparameter search space X, and direction
shows either minimization when the goal is to minimize the loss function or
maximizing toward higher values of some performance metrics such as accuracy.

Figure 6 illustrates the whole work of the prediction machine and trading
simulation. The input vector of the machine includes a vector of various stock
indices which is processed by the proposed labeling algorithm to indicate the
ups and downs of the market. The labeled stock prices vector is fed into four
independent classification models discussed earlier. The models are trained sep-
arately and are used for predicting the next close price trend from the unseen test
data. These models are optimized by Bayesian optimization in a probabilistic
search space. To run Bayesian optimization, we assume that for our classifier
model function, f(x), the performance of the model for a specific combination
of hyperparameters is known as prior information. Then, we form the posterior
probability function and exploit it to enhance the performance metric based on
finding a better estimation of a new combination of hyperparameters. This pro-
cedure continues until it stops with no more improvement on the performance
metric and the best tuning parameters for maximum performance are reported in
the last stage, where the parameters are saved to be used for model preparation.
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Date 1/28/2020 1/29/2020 1/30/2020 1/31/2020 | 2/3/2020 | 2/4/2020 | 2/5/2020 | - | 4/15/2021 | 4/16/2021 | 4/19/2021 | 4/20/2021 | -
Price 50.529999 47.509998 48.779999 47 48.02 49.45 49.84 | | 83.010002 82.15 81.11 79.27
Label 1 -1 -1 -1 -1 1 1] 1 0 0 1]

Signal | Buy Sell Buy - | Buy Sell
#Shares | 197902.24 [} 0 0 0| 1901382 | 190138.2 | - | 111086.64 | 111086.6 | 111086.6 o~
Capital | 10000000 | 9402335.037 | 9402335.037 | 9402335.037 | 9402335 | 9402335 | 9476489 | - | 9221302.5 | 9125768 | 9010238 | 8805838 | -

Fig.7 A snapshot of the trading system using predicted labels. Buy and sell positions are taken upon
receiving the appropriate signal. The first ‘1’ indicates a buy position and the next ‘— 1’ is the sell posi-
tion. ‘0’ labels are indicating the volatile market

2.9 Trading system

Trading strategies in financial markets are vital to profits, avoiding emotions and behav-
ioral finance biases. Therefore, traders should decide when to sell an asset or security
to be less likely to succumb to the disposition effect, which causes them to hold on to
stocks that have lost value and sell those that rise in value. Hence, traders need to care-
fully look for trade signals, buy an asset and then sell it at an opportune moment. Trade
signals can be composed of complex indicators, including but not limited to techni-
cal signals, fundamental analysis, sentiment measures, macroeconomic indicators, and
even inputs from other trading signal systems. However, it is recommended to provide
traders with a simple trading module using only a handful of inputs. The advantage of
the proposed architecture in this paper is its ability to extract upward and downward
trends from the market based on its behavior and turn the buy or sell signal on. To eval-
uate the model’s performance using the predicted labels for test datasets, we conducted
experiments using markets studied in this research. An initial capital has been assumed
to be available at the time #, to be used for trading. As soon as the system receives the
buy signal at the time ¢, the whole initial capital is used to purchase as many shares
as possible from the target asset. The system puts aside the remaining capital in the
balance and waits for the next coming sell signal. At time 7;, the system detects a down-
ward market and issues the sell signal. Therefore, the whole shares are sold at the time
1; and the total amount of the trade is summed into the available balance forming the
new capital. This process is continued until the end of the study period. A sample run
of this trading mechanism is shown in Fig. 7.

The primary goal of every trading system is to maximize the returns while consid-
ering risk and time spent with capital invested in the market. To compare the perfor-
mance of the system using predicted labeled series from ML/DL methods used in this
study, we use the metrics for the rate of return per day (RoR/day), and risk-return ratio
(RRR). The RoR/day indicates the daily profit obtained in the market. Hence, the RoR,
for some time ¢ € [i,j]is defined as follows:

Capital. — Capital,
RoR, = !

% 100
Capital; 23)

And the daily RoR is computed by taking into account the whole days in between.

RoR
NumberofDaysinMarket

RoR/day = (24)
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To calculate the RRR, we need to compute the maximum drawdown. The maxi-
mum drawdown (MDD) is the maximum amount of loss from a peak to a trough in a
specific period before a new peak is attained, which indicates the downside risk over
the period.

DD, = Max;; , (RoR,) — RoR,

25
MDD = Max,c; (DD, ):i < k < j (2)
Having defined RoR, and MDD, it is now straightforward to calculate RRR:
RoR
RRR =
MDD (26)

The third metric is the Sharpe ratio which is used as a measure of the perfor-
mance of the system in making profitable trades while minimizing the risk. The
Sharpe ratio is defined as the ratio of the excess expected return to the standard devi-
ation of the return.

- R

Sharpe Ratio = K (27)

o
where the R/ is the risk-free rate, y is the mean of the one-period simple-return of an
asset between dates ¢ — 1 and ¢, and o is the corresponding standard deviation.

3 Results and discussion

To test the proposed framework, we consider some stock indices from S&P500 since
this market is widely used in computational finance literature. We have selected
stocks based on their systematic risk compared with the market’s risk. Advanced
Micro Devices, Inc., AMD, Apple Inc., AAPL, The Clorox Company, CLX, Macy’s
Inc., M, Seagate Technology Holdings plc, STX, and Walmart Inc., WMT, are the
selected stocks for further experimentation using our proposed framework. As can
be seen from Table 1, Beta values range from 0.17 to 2.09 indicating less risk for
stocks with a Beta smaller than 1. As Beta takes larger values than 1, the corre-
sponding asset is considered to have more risk than the market. Daily close prices
for the selected assets are obtained from Yahoo finance. Trained models are back-
tested with out-of-sample data for the last two years from January 16, 2020, to
November 23, 2021. For computation simplicity, we have assumed that the risk-free
rate is zero and the transaction cost is zero throughout our simulations.

Descriptive statistics for the dataset are also listed in Table 1. The large values
of Chi-Square and zero for the p value of the Jarque—Bera test confirm that the null
hypothesis for all series to be normally distributed is rejected. The skewness values
for most indices are negative, indicating these markets are downward most of the
time and experience negative returns. The series skewed with high excess kurtosis,
indicating the presence of high peaks and heavy tails. As a statistical measure, kur-
tosis shows the degree of presence of outliers in the underlying distribution. This
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Table 1 Descriptive statistics for datasets; the statistics are computed for the log return series

Stock Min Max Mean Std Skewness  Kurtosis  Jarque_Bera test Beta Observations
CLX —0.1777  0.1246  0.0005  0.015 —0.3623 11.1595  (40,634.0,0.0)  0.17 7809
WMT  -0.1074 0.1107 0.0004 0.016 0.1196 5.1631  (8677.52,0.0) 0.52 7808
M —0.2244  0.1921  0.0002 0.0274 —0.0893 7.4364  (17,299.2,0.0) 2.09 7515
AAPL  -0.7312 0.2869 0.0008  0.028 —2.2186 65.8689  (1,416,089.97, 1.2 7808
0.0)
STX —0.2807 0.2458 0.0006 0.0292  —0.6957 11.4471  (26,417.66,0.0) 1.06 4779

AMD  -0.4769 04206 0.0005 0.039 -0.3329 104935  (35,916.69,0.0)0 193 7808

The values in the parentheses in the Jarque—Bera column indicate Chi-Square value and p value, respec-
tively

measure plays a crucial role in determining the associated risk in an asset in finan-
cial markets. High values of kurtosis imply there are high probabilities of extreme
returns. Hence, these assets are risky and the returns experience a lot of outliers.

To train the models, we first need to construct the required input features. As
described in Sect. 2, we first pass the adjusted daily close prices into the labeling
algorithm to form the input features for the classification models. The result of
applying our labeling algorithm to the stock price time series is shown in Fig. 8. As
shown in Fig. 8a, c, the labeling algorithm follows the upward and downward trends
in the AMD stock price while also annotating a wait signal, the ‘0’ label, whenever
the market is slightly fluctuating hence it is hard to determine the exact direction of
the trend. The same scenario is plotted in Fig. 8b, d for STX stock.

Combinatorial Embargoed Purging cross-validation process applied to the data
set is shown in Fig. 9. The blue and red bars indicate the 8 training and 2 validation
folds. As it is discussed in Sect. 2.2, when the validation set places before the train-
ing, the extracted overlapping region is doubled. The labels generated by the pro-
posed tri-state labeling algorithm are presented along the Target Label row.

The hyperparameters selected for tuning the models, along with the range of their
corresponding possible values, are explained in Table 2. For the recurrent neural
networks used in this research, LSTM and GRU, three neurons are in the output
layer. This is because the problem under the study is a multi-class classification with
three classes. Dropout value, the number of units in the hidden layer, and the learn-
ing rate are three hyperparameters that must be optimized for the maximum accu-
racy score of the classification task. The configuration for LSTM and GRU simula-
tion consists of 20 trials of running networks with 100 epochs. This configuration
is repeated 25 times and each time the parameters’ values for the best trial are col-
lected. The objective function is set in the maximization direction to optimize the
performance metrics, F1-Score and accuracy. Extreme gradient boosting, XGBoost,
has a long list of hyperparameters that could be considered for optimization pur-
poses. We have selected some of the most significant parameters of XGBoost, such
as the number of boosting stages, n_estimator, the maximum depth of the individual
estimators, and the subsample ratio of columns when constructing each estimator,
colsample_bytree. L1 and L2 regularization terms on weights in the list of hyper-
parameters are shown as reg_alpha and reg_lambda, respectively. Support vector
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Fig.8 Automatic labeling of AMD and CLX time series using the proposed algorithm. a, b Are price
time series for AMD and CLX, respectively, while ¢, d show their continuous trend labeling. The vertical
axis in (a, b) is in US dollars. In labeling diagrams, up-trends are shown by 1, and the down-trend is — 1,
while O stands for no deterministic trend due to high volatility between two up and down situations. For
both time series, the threshold value is set to 0.05
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Fig.9 Combinatorial embargoed purging K-fold CV. The blue and red bars indicate the training and vali-
dation sets, respectively. Target label is the labels extracted from price data using proposed framework.
Green bars are + 1, Reds show —1 and fluctuating periods are marked with yellow bars. Price data as
input feature vector have been cross-validated with 8 training and 2 validation folds. Resource: research
simulations
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machine classification task is conducted using Python’s scikit-learn package. The
major examined hyperparameters for SVC are the regularization parameter, C, the
kernel type to be used in the algorithm, Kernel, the degree of the polynomial kernel
function, degree, and the kernel coefficient, gamma. The results show that the model
with the radial basis function (RBF) kernel with the regularization parameter close
to 1 and of degree 3 produces the best results. Therefore, we choose the same values
to further conduct our simulation for future trading strategy experimentations. To
search for the best hyperparameters we apply Bayesian optimization to search for
values of hyperparameters maximizing the overall classification accuracy. Tables 3,
4,5,6,7,8,9 and 10 represent the results of the hyperparameter optimization proce-
dure along with the corresponding performance metrics values.

Having found the best hyperparameters’ values for our problem and the dataset
that we study, it is time to perform full experimentation including both the model
training and then performing trading simulation using the labels predicted by the
model. In Table 11, we have shown the report of classification metrics used in our
experimentation for CLX stock. It can be seen that for all models, the overall perfor-
mance in terms of accuracy shows satisfying numbers.

From Table 12, we can see that the XGBoost algorithm, in most cases, outper-
formed the other three algorithms based on the Sharpe ratio (SR) and maximum
drawdown (MDD) values. The SR shows the excess return from the excess risk
taken by the trading algorithm. The ratio indicates a good and very good invest-
ment in case the SR is in order of 1 or 2, respectively, and if it reaches 3 or higher,
investment performance is considered excellent. Our tri-state labeling algorithm
could produce SR values greater than 2 for each of the assets under management
while maintaining a very low MDD value for each of them. As it can be seen from
Table 12, the percentage of maximum drawdown in most cases does not exceed
10. The average performance of our proposed framework is shown in Table 13.
First, it can be seen from the Proposed Framework column that XGBoost has out-
performed other algorithms in our experimentation in terms of annualized Sharpe
ratio. The “Comparison Frameworks” column in Table 13 compares our proposed
framework with more sophisticated frameworks. Based on Convolutional Neural
Networks (CNN), Hoseinzade and Haratizadeh [17] introduced 2D-CNNpred and
3D-CNNpred frameworks to extract features for market trend prediction automati-
cally. 2D-CNNpred predicts future market trends based on its historical perfor-
mance, while 3D-CNNpred does the task by incorporating other markets’ historical
information. The authors exploited 82 variables for their input feature vector. Their
annualized SR values for 2D-CNNpred and 3D-CNNpred are reported in Table 13.
Their highest score is 2.257, belonging to 2D-CNNpred, which is about 25% below
our best SR value, 2.823. Kim and Khushi [22] introduced a Deterministic Policy
Gradient with 2D Relative-attentional Gated Transformer (DPGRGT) model in
the combination of historical OHLCV data to maximize the portfolio optimization
reward using deep reinforcement learning. Their model could achieve an annualized
SR equal to 0.6418 which is 339.9% less than what our model achieved. In another
sophisticated model to attempt market trend prediction, Picasso et al. [32] exploited
both technical and sentiment analysis to solve the problem as a classification task.
They combined 10 technical indicators as information from historical stock data
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Table 3 Hyperparameter optimization of recurrent neural networks for AMD stock

LSTM GRU

Accuracy F1-Score Dropout Units Lr Accuracy F1-Score Dropout Units L.r
0.91209  0.90832 0.2 24 0.0013 0.88571 0.87882 0.2 48 0.00102
0.9033 0.89778 0.4 64 0.00165 0.91209 0.90491 0.35 32 0.00923
0.9033 090412 0.3 48 0.00421 0.88352  0.87358 04 64 0.00503
0.88791  0.88588 0.3 24 0.00146 0.91209  0.90408 0.2 64 0.00274
0.9033 0.89748 035 64 0.00168 0.90549  0.90176 0.2 64 0.00813
0.89451  0.89012 04 64 0.03355 0.90769  0.89919 0.25 48 0.00127
0.8989 0.89013  0.25 64 0.00108 0.9033 0.89012 0.4 48 0.00242
0.87033  0.8709 0.3 32 0.00252 0.89451 0.87688 0.3 24 0.00343
0.88132  0.88102 0.25 48 0.02173 0.89451  0.88433 0.35 48 0.00101
0.89451 0.87768 0.4 64 0.02368 0.82857  0.75089  0.35 48 0.01142
0.9011 0.89575 0.3 32 0.00979 0.8967 0.89996  0.25 32 0.00372
0.90549  0.89988 0.2 48 0.00117 0.82857  0.75089  0.35 48 0.00211
0.90989  0.90269 0.2 48 0.02547 0.90549  0.89981 0.35 48 0.00935
0.89231 0.88145 0.25 32 0.0182  0.89451  0.8785 0.3 24 0.00259
0.88571  0.87547 0.2 32 0.0246  0.82857  0.75089 0.2 64 0.00112
0.9011 0.89999 04 48 0.00131 0.91429  0.90919 0.2 32 0.00339
0.88791  0.87228 0.3 32 0.00776  0.87692  0.85466  0.35 64 0.00402
0.8967 0.88018  0.35 48 0.00194 0.89011  0.87852 0.2 24 0.00425
0.86813  0.84878 0.3 24 0.02053 0.9033 0.89882 0.2 24 0.0072
0.89011  0.88068 0.2 64 0.00106 0.9033 0.89793  0.25 24 0.00611
0.88791  0.88289 0.4 24 0.00166 0.91648 091218 0.2 24 0.00183
0.90769  0.89961 0.3 48 0.00132 0.89231  0.87961  0.35 64 0.00233
0.90769  0.90329 04 48 0.02314 091429 091066 0.35 32 0.00394
0.89231  0.88607 0.3 32 0.03195 0.89231  0.8795 0.25 64 0.01113
0.86813  0.87035 0.3 24 0.03019 0.89451  0.88695 0.25 32 0.00204

Best tuning values and the respective performance metrics are shown in bold

with textual financial news about the stock under study. Their highest annualized SR
was reported for the case they had applied the dictionary of Loughran and Mcdonald
[26] (L&Mc) to textual data for feature extraction. As can be seen from Table 13,
L&Mc (News) and L&Mc (News and Price) are 1.235 and 0.756, while our mod-
el’s performance is 128.6% and 273.4% higher than their models, respectively. Our
comparison with some recent sophisticated studies in terms of both models used to
predict the market and the feature engineering process exploited indicates that our
proposed labeling algorithm could have successfully extracted more effective buy
and sell opportunities resulting in higher annual trading performance.

In Fig. 10, we have plotted each stock’s RoR to illustrate the evolution of our
trading system’s return to measure how much profits are made using our system
through an investment, over time. The comparison charts prove that our labeling
algorithm successfully achieves a high positive return even with a stock such
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Table 4 Hyperparameter optimization of recurrent neural networks for CLX stock

LSTM GRU

Accuracy F1-Score Dropout Units Lr Accuracy F1-Score Dropout Units L.r
0.85403  0.83438  0.25 32 0.00305 0.91068  0.90667 0.2 64 0.00107
0.91285 0.90024 0.2 24 0.00189 0.90196  0.8878 0.4 32 0.00264
0.90414  0.89121  0.25 64 0.00269 0.87582  0.8568 0.4 32 0.00169
0.90196  0.89477 0.25 24 0.02077 0.9085 0.89966 0.2 32 0.00167
0.89107  0.87656  0.25 32 0.0029  0.91068  0.90265 0.2 32 0.00216
0.84096  0.79521 0.4 32 0.03533 0.90414  0.89104 0.2 32 0.00171

0.89542  0.88591 0.25 64 0.0021  0.9085 0.8975 0.25 64 0.00103
0.90285 090176  0.25 24 0.00335 0.88671  0.87622  0.25 48 0.00232

0.88017 0.86976 0.2 48 0.02179 0.89107 0.88824  0.25 24 0.00234
0.9085 0.90066 0.2 48 0.0129  0.81481 0.73167 0.3 48 0.0058

0.90196  0.89181 0.2 64 0.00236 0.93028  0.9234 0.2 24 0.00191
0.89978  0.88549 0.2 32 0.02723 0.90632  0.89653  0.35 32 0.00499
0.90414  0.89392 04 32 0.0026  0.81481 0.73167 0.4 64 0.00142
0.88453  0.87549 0.3 32 0.01627 0.89325 0.87644 0.35 32 0.00179
0.8976 0.88662 0.2 24 0.01153 0.88453  0.87057 0.3 32 0.00222
0.90196  0.89527  0.25 24 0.00406 0.91068  0.90066  0.25 48 0.00128
0.85839  0.83964  0.25 32 0.00245 0.90414  0.89726 0.2 32 0.00153
091503 090515 0.25 32 0.0027 090414  0.89101  0.25 48 0.00117
0.90632  0.89613 0.3 64 0.00358 0.84532  0.7925 0.2 32 0.00182
0.85621  0.82603 0.2 48 0.00223 0.90196  0.89281 0.2 48 0.00202
0.87364 0.86368 0.3 64 0.00437 0.9085 0.89956 0.2 32 0.00118
0.87582  0.8611 0.2 64 0.03391 0.92157 091621 0.2 32 0.00148
091068  0.90329 04 24 0.00407 0.89978  0.88628 0.4 64 0.00109
0.89542  0.89053 0.3 24 0.01018 0.89325 0.88721 0.25 32 0.00436
0.85839  0.83285 0.2 24 0.00366 0.91503  0.90694  0.25 24 0.00354

Best tuning values and the respective performance metrics are shown in bold

as Macy’s Inc., M, which has a high systematic risk value with a high likeli-
hood to show extreme negative returns. As it can be seen from Fig. 10-, although
the trained GRU model has failed to show a positive return on our labeled test
set, XGBoost has surprisingly shown a high percentage of return, i.e., greater
than 150% at the end of the test period. In Fig. 11, we have depicted the pick-
to-trough decline during our investment test period. Drawdowns are considered
a measure of downside volatility and are essential in monitoring the trading
performance. Since volatile markets and large drawdowns are problematic for
most investors, they usually choose to avoid values greater than 20 percent. In
most cases, the drawdown value does not exceed 10 percent. This is a signifi-
cant improvement that comes from our proposed labeling algorithm since when
a trading strategy keeps the investor out of trouble, it results in starting to com-
pound at a higher level.
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Table 5 Hyperparameter optimization of recurrent neural networks for M stock

LSTM GRU

Accuracy F1-Score Dropout Units Lr Accuracy F1-Score Dropout Units L.r
0.86822  0.84763 0.3 24 0.00467 0.86047  0.86183  0.35 24 0.00199
0.83915  0.76576 0.2 32 0.01753 0.87597  0.85821 0.3 64 0.01056
0.8469 0.78649  0.35 48 0.00597 0.83915  0.76576  0.35 24 0.03173
0.8469 0.78338 04 32 0.01301 0.8469 0.83781 0.25 48 0.01737
0.87209 0.86186 0.4 32 0.0162  0.81395  0.8018 0.25 24 0.01998
0.8469 0.84341 03 24 0.00853 0.85078  0.84806  0.25 32 0.01251
0.85078  0.8074 0.35 48 0.01066 0.85078  0.85066 0.2 64 0.00283
0.78295  0.80698  0.35 48 0.02937 0.87597  0.87195 0.2 64 0.00781
0.85853  0.85415 04 32 0.00521 0.86434  0.85796 0.25 32 0.01924
0.87209  0.84343  0.35 64 0.01607 0.83333  0.83791 0.2 48 0.00374
0.85465  0.84037 0.35 48 0.01052 0.86047  0.85982  0.35 24 0.00381
0.83527  0.78557 0.2 64 0.01132 0.87016  0.86487 0.35 24 0.00274
0.86434  0.84591 0.4 64 0.01385 0.83915  0.76576  0.35 64 0.01673
0.83915  0.76576 0.2 32 0.00811 0.8469 0.78338  0.35 32 0.01054
0.85078  0.84877 0.3 24 0.01377 0.85465 0.85722 0.2 64 0.00661
0.82752  0.79296  0.35 24 0.00533 0.85271  0.85549 0.25 32 0.00704
0.83915  0.76576 0.4 64 0.00476 0.87403  0.86877 0.2 24 0.0026
0.85078  0.8462 0.4 48 0.00704 0.83915  0.76576  0.25 48 0.01857
0.83915  0.76576 0.2 24 0.01712 0.83333  0.84691 0.3 32 0.0135
0.83915  0.76576  0.35 24 0.01963 0.85853  0.84222 0.2 48 0.00768
0.85271  0.80062 0.3 24 0.02079 0.84884  0.84699 0.2 32 0.00239
0.87582  0.8611 0.2 64 0.03391 0.91403  0.8702 0.2 24 0.00636
0.91068  0.90329 0.2 24 0.00193 0.8469 0.81967 04 24 0.01267
0.89542  0.89053 0.3 24 0.01018 0.83915 0.76576  0.25 32 0.00389
0.85839  0.83285 0.2 24 0.00366 0.86434  0.82619 0.3 48 0.0185

Best tuning values and the respective performance metrics are shown in bold

4 Conclusion

In this paper, we designed a multi-class classification framework to tackle the price
trend prediction problem. The framework was implemented using two machine learn-
ing models, SVM and XGBoost, and two recurrent neural networks, LSTM and GRU.
The reason behind exploiting different classification models in our trend prediction
module is to show that regardless of the classifier used, the tri-state labeling algorithm
extracts more profitable buy and sell opportunities from price data. This study contrib-
uted to the market trend prediction problem in four ways. First, our tri-state labeling
algorithm helps filter low-confidence states of the market. For example, when the clas-
sification machine is not confident enough about whether the trend is upward or down-
ward, it changes the system status to the idle state (denoted by 0). This is a safe position
that is taken by the machine not to pose a threat to the investor’s capital in a highly vola-
tile market. Second, in the model training part of the work, the combinatorial purged
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Table 6 Hyperparameter svVC
optimization for SVM
classification Accuracy F1-Score C Kernel Degree gamma Time (s)

0.88791  0.86462 0.97 rbf
0.88791  0.86267 0.74 rbf
0.83516  0.76597 0.6  rbf
0.89011  0.86669 0.92 rbf
0.88791  0.86374 0.69 rbf
0.89011  0.86669 0.7  rbf
0.89011  0.86665 0.97 rbf
0.88791  0.86271 0.56 rbf
0.89451 0.87525 1 rbf
0.89011  0.86665 0.99 rbf
0.85714  0.80872  0.85 rbf
0.88571  0.86038  0.94 rbf
0.84615  0.78804 1 rbf
0.89231  0.87146  0.95 rbf
0.88571  0.85976  0.92 rbf
0.89011  0.86665 0.88 rbf
0.89451 0.8742 0.96 rbf
0.81538  0.8109 0.9  rbf
0.88352  0.85675 0.69 rbf
0.88571  0.8619 0.92 rbf
0.86374  0.82297 0.89 rbf
0.86593  0.82634 0.88 rbf
0.84396  0.78431 0.92 rbf
0.88791 0.86271 1 rbf
0.89011  0.86669 0.59 rbf

6.35122 34.08338
4.61141 34.47854
4.1091  34.66601
8.8002  33.99457
5.24261 33.50706
5.92944 33.40672
2.56692 3521639
4.81323 34.29156
8.67797 32.86624
8.42303 33.2351

4.69465 34.28548
2.38 34.4737

7.12775 3451734
8.49369 33.89479
5.8358  34.21499
6.29374 32.85993
6.2801  33.20176
3.55488 32.62426
3.60119 34.24339
6.67293 33.9439

6.7315  33.09472
7.93163 34.81558
8.93898 33.51085
89172  34.22566
3.71744 34.04539

A A LW LW PR W LW PR W PRDND PR B W BB BB DR WS B

The values are reported for AMD stock

Best tuning values and the respective performance metrics are shown
in bold

K-Fold cross-validation is applied to the training and test dataset splitting task to pre-
vent data leakage and look-ahead bias. This type of cross-validation assures less bias
in the prediction because of data leakage between training and validation chunks of
the input vector. This is in marked contrast to most of the previous works applying the
common K-fold cross-validation technique which is ill-suited to deal with data leakage
and look-ahead bias. Third, we have trained the final model with the best tuning hyper-
parameters found by applying a Bayesian hyperparameter optimization process. Finally,
we have successfully back-tested our framework on selected stocks from the S&P-500
market and showed through extensive experiments that our training regime is applica-
ble to different models, resulting in high performance of the trading task.

The proposed study has some limitations that can be considered as anchor
points for further extensions and improvements. While the study provides valu-
able insights on trend following based on price changes, the labeling mechanism
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Table 10 Hyperparameter svVC

optimization for SVM

classification Accuracy F1-Score C Kernel Degree gamma Time (s)
0.54773  0.42636 0.96 rbf 2 8.96451 68.55751
0.58864  0.51771 0.6  rbf 3 3.23122 61.5789
0.58182  0.50193 1 rbf 4 8.94659 63.0378
0.61591  0.56178 0.75 rbf 4 5.24323 60.19616
0.69318  0.66328 0.44 rbf 4 8.99035 63.81414
0.70909  0.68182 0.98 rbf 2 8.99531 62.34934
0.70455  0.67627 0.4  rbf 4 8.71733 62.89979
0.87115 0.85123  0.99 rbf 3 7.43513  64.88739
0.71136  0.68461 0.97 rbf 4 8.86893 62.36296
0.68636  0.65382  0.44 rbf 2 8.9409  62.44242
0.52045  0.35631 0.69 rbf 3 8.8603  63.15386
0.53409  0.39643 0.8  rbf 3 8.83122 60.07399
0.70227  0.67503  0.93 rbf 2 8.81325 60.41432
0.70909  0.68228 0.84 rbf 3 8.87425 62.6169
0.71136  0.68461  0.96 rbf 3 8.6247  64.30415
0.88691  0.86695 1 rbf 3 7.332 60.75189
0.70455  0.67738  0.68 rbf 2 8.98146 63.31783
0.70909  0.68228 1 rbf 4 7.34932  60.10106
0.69318  0.66289 0.82 rbf 4 3.2027  62.91097
0.68864  0.66082  0.68 rbf 4 8.98826 63.06187
0.70227  0.67419 0.71 r1bf 3 8.27532 62.57946
0.70455  0.67712 1 rbf 3 8.57879 60.85747
0.59318  0.51773 098 rbf 3 8.96061 63.29737
0.625 0.60501 0.7 rbf 4 7.19191 60.17934
0.69091 0.66149 0.71 rbf 4 8.82945 61.37867

The values are reported for CLX stock

Best tuning values and the respective performance metrics are shown

in bold

can be further enhanced to show more robustness against higher levels of volatil-
ity. Besides, we believe that there is also more room for improvement in labe-
ling the trends using an adaptive threshold. Such an adaptive parameter optimiza-
tion may lead the system through more volatile periods to capture trends better.
Finally, the activity at each price level results in changes in volume, which affects
the price. This means we need to study the mutual effect of price and volume in
future works to extract the trends better.
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Table 11 Classification metrics report for CLX stock

Class label BB-XGBoost BB-SVM
Precision Recall Fl-score Support Precision Recall Fl-score Support
-1 0.870 0455 0.597 44 0.941 0.364  0.525 44
0 0914 0.992 0.951 374 0.894 0.997 0.943 374
1 0.767 0.561  0.648 41 0.720 0.439  0.545 41
Summary
Accuracy 0.902 459 0.887 459
Macro avg 0.850 0.669  0.732 459 0.852 0.600 0.671 459
Weighted avg  0.896 0.902  0.890 459 0.883 0.887  0.867 459
Class label BB-LSTM BB-GRU
Precision Recall Fl-score Support Precision Recall Fl-score Support
-1 0.692 0409 0.514 44 0.950 0432 0.594 44
0 0.883 0.992 0.935 374 0.917 0.981 0.948 374
1 0.692 0.220  0.333 41 0.744 0.707  0.725 41
Summary
Accuracy 0.867 459 0.904 459
Macro avg 0.756 0.540  0.594 459 0.870 0.707  0.756 459
Weighted avg  0.848 0.867  0.841 459 0.905 0.904 0.894 459
The threshold and window size are 0.05 and 11, respectively
Table 12 Performance comparison of LSTM, GRU, XGBoost, and SVM
Stock Algorithm SR MDD Time(s) Stock Algorithm SR MDD  Time (s)
AMD LSTM 2.66 722  211.84 STX LSTM 1.94 2.16  127.58
GRU 2.44 232 24181 GRU 1.96 17.27 145.10
XGBoost 3.55 6.98 4.155 XGBoost 2.55 2.16 1.204
SVM 2.56 7.22 2.565 SVM 2.16 2.16 0.873
WMT LSTM 1.28 7.38  213.89 M LSTM 0.73 298  327.65
GRU —-1.98 8.97 236.885 GRU 2.39 1.79  325.11
XGBoost 3.10 4.03 3.668 XGBoost 2.52 1.79 3.897
SVM 1.37 7.71 3.498 SVM 2.34 2.61 1.925
AAPL LSTM 261 10.37 215.11 CLX LSTM 0.81 276 2187
GRU 252 1038 238.48 GRU 2.72 2.76  237.30
XGBoost 2.67 4.24 4.657 XGBoost 2.55 1.83 5.528
SVM 2.57 6.25 2.179 SVM 1.04 2.56 1.302

Best tuning values and the respective performance metrics are shown in bold
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Table 13 Average performance

. Proposed framework Comparison frameworks
comparison
Algorithm SR Algorithm SR
LSTM 1.672 2D-CNNpred [17] 2.257
GRU 1.675 3D-CNNpred [17] 2.243
XGBoost 2.823 DPGRGT [22] 0.642
SVM 2.007 L&Mc (News) [32] 1.235
L&Mc (News and Price) [32] 0.756
Sharpe ratio for all studies is reported in annualized rate
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Fig. 10 RoR diagrams to show how much return is produced within each learning model. The horizontal
axis represents date and the vertical one is the percentage of RoR. The charts show the RoR from Janu-
ary 2020 to November 2021
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Fig. 11 Draw-Down comparison between classification algorithms used within the proposed framework.
XGBoost has smaller DDs during the back-testing period
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