Skip to main content

Advertisement

Log in

Improved team learning-based grey wolf optimizer for optimization tasks and engineering problems

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

Optimization refers to finding the optimal solution to minimize or maximize the objective function. In the field of engineering, this plays an important role in designing parameters and reducing manufacturing costs. Meta-heuristics such as the grey wolf optimizer (GWO) are efficient ways to solve optimization problems. However, the GWO suffers from premature convergence or low accuracy. In this study, a team learning-based grey wolf optimizer (TLGWO), which consists of two strategies, is proposed to overcome these shortcomings. The neighbor learning strategy introduces the influence of neighbors to improve the local search ability, whereas the random learning strategy provides new search directions to enhance global exploration. Four engineering problems with constraints and 21 benchmark functions were employed to verify the competitiveness of the TLGWO. The test results were compared with three derivatives of the GWO and nine other state-of-the-art algorithms. Furthermore, the experimental results were analyzed using the Friedman and mean absolute error statistical tests. The results show that the proposed TLGWO can provide superior solutions to the compared algorithms on most optimization tasks and solve engineering problems with constraints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Data availability

All data generated or analyzed during this study are included in this published article.

Abbreviations

GWO:

Grey wolf optimizer

TLGWO:

Team learning-based grey wolf optimizer

MVO:

Multi-verse optimizer

TEO:

Thermal exchange optimization

GSA:

Gravitational search algorithm

RO:

Ray optimization algorithm

PSO:

Particle swarm optimization

KH:

Krill herd algorithm

DE:

Differential evolution algorithm

ABC:

Artificial bee colony algorithm

ALO:

Ant lion optimizer

WOA:

Whale optimization algorithm

BOA:

Butterfly optimization algorithm

ELM:

Extreme learning machine

MDM-GWO:

Mutation-driven modified grey wolf optimizer

MsRwGWO:

Multi-strategy random weighted grey wolf optimizer

CGWO:

Gaze cues learning-based grey wolf optimizer

RBGWO:

Randomized balanced grey wolf optimizer

SGWO:

Society-based grey wolf optimizer

AGWO:

Adaptive grey wolf optimizer

RNA-GWO:

Grey wolf optimizer with RNA crossover operation

MCA:

Min-conflict local search algorithm

HGWOP:

Hybrid GWO with PSO

B-GWO:

Balanced grey wolf optimization

SGWO-FH:

Sparsity-based grey wolf optimization algorithm

HGWO:

Hybrid grey wolf optimizer

EEGWO:

Exploration-enhanced grey wolf optimizer

IGWO:

Improved grey wolf optimizer

HPSO:

Self-organizing hierarchical particle swarm optimizer

SADE:

Self-adapting differential evolution algorithm

MABC:

Modified artificial bee colony algorithm

DEKH:

Hybrid krill herd algorithm

sinDE:

Sinusoidal differential evolution algorithm

CMVO:

Chaotic multi-verse optimizer

BMWOA:

Associative learning-based exploratory whale optimizer

BBOA:

Enhanced butterfly optimization algorithm

DALO:

Improved antlion optimizer

MAE:

Mean absolute error

IK:

Inverse kinematics

DOF:

Degrees of freedom

References

  1. Jones DF, Mirrazavi SK, Tamiz M (2002) Multi-objective meta-heuristics: an overview of the current state-of-the-art. Eur J Oper Res 137(1):1–9. https://doi.org/10.1016/S0377-2217(01)00123-0

    Article  MATH  Google Scholar 

  2. Wang GG, Cai XJ, Cui ZH, Min GY, Chen JJ (2020) High performance computing for cyber physical social systems by using evolutionary multi-objective optimization algorithm. IEEE Trans Emerg Top Comput 8(1):20–30. https://doi.org/10.1109/TETC.2017.2703784

    Article  Google Scholar 

  3. Mirjalili S, Mirjalili SM, Hatamlou A (2016) Multi-Verse optimizer: a nature-inspired algorithm for global optimization. Neural Comput Appl 27:495–513. https://doi.org/10.1007/s00521-015-1870-7

    Article  Google Scholar 

  4. Kaveh A, Dadras A (2017) A novel meta-heuristic optimization algorithm: thermal exchange optimization. Adv Eng Softw 110:69–84. https://doi.org/10.1016/j.advengsoft.2017.03.014

    Article  Google Scholar 

  5. Rashedi E, Nezamabadi PH, Saryazdi S (2009) GSA: a gravitational search algorithm. Inf Sci 179:2232–2248. https://doi.org/10.1016/j.ins.2009.03.004

    Article  MATH  Google Scholar 

  6. Kaveh A, Khayatazad M (2012) A new meta-heuristic method: ray optimization. Comput Struct 112:283–294. https://doi.org/10.1016/j.compstruc.2012.09.003

    Article  Google Scholar 

  7. Kennedy J, Eberhart R (1995) Particle swarm optimization. IEEE Int Conf Neural Netw Proc 1995:1942–1948. https://doi.org/10.1109/ICNN.1995.488968

    Article  Google Scholar 

  8. Gandomi AH, Alavi AH (2012) Krill herd: A new bio-inspired optimization algorithm. Commun Nonlinear Sci Numer Simul 17(12):4831–4845. https://doi.org/10.1016/j.cnsns.2012.05.010

    Article  MathSciNet  MATH  Google Scholar 

  9. Storn R, Price K (1997) Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. J Global Optim 11(4):341–359. https://doi.org/10.1023/A:1008202821328

    Article  MathSciNet  MATH  Google Scholar 

  10. Dervis K, Celal O (2011) A novel clustering approach: Artificial Bee Colony (ABC) algorithm. Appl Soft Comput 11(1):652–657. https://doi.org/10.1016/j.asoc.2009.12.025

    Article  Google Scholar 

  11. Mirjalili S (2015) The ant lion optimizer. Adv Eng Softw 83:80–98

    Article  Google Scholar 

  12. Mirjalili S, Lewis A (2016) The whale optimization algorithm. Adv Eng Softw 95:51–67. https://doi.org/10.1016/j.advengsoft.2016.01.008

    Article  Google Scholar 

  13. Arora S, Singh S (2019) Butterfly optimization algorithm: a novel approach for global optimization. Soft Comput 23(3):715–734. https://doi.org/10.1007/s00500-018-3102-4

    Article  Google Scholar 

  14. Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61. https://doi.org/10.1016/j.advengsoft.2013.12.007

    Article  Google Scholar 

  15. Qiang T, Xue-Chen C, Xing-Cheng L (2019) Multi-strategy ensemble grey wolf optimizer and its application to feature selection. Appl Soft Comput 76:16–30. https://doi.org/10.1016/j.asoc.2018.11.047

    Article  Google Scholar 

  16. Khairuzzaman AK, Chaudhury S (2017) Multilevel thresholding using grey wolf optimizer for image segmentation. Expert Syst Appl 86:64–76. https://doi.org/10.1016/j.eswa.2017.04.029

    Article  Google Scholar 

  17. Jayabarathi T, Raghunathan T, Adarsh BR, Suganthan PN (2016) Economic dispatch using hybrid grey wolf optimizer. Energy 111:630–641. https://doi.org/10.1016/j.energy.2016.05.105

    Article  Google Scholar 

  18. Ma RQ, Karimzadeh M, Ghabussi A, Zandi Y, Baharom S, Selmi A, Maureira-Carsalade N (2021) Assessment of composite beam performance using GWO-ELM metaheuristic algorithm. Eng Comput. https://doi.org/10.1007/s00366-021-01363-1

    Article  Google Scholar 

  19. Shehata AAA, Tolba MAA, El-Rifaie AMM, Korovkin NV (2022) Power system operation enhancement using a new hybrid methodology for optimal allocation of FACTS devices. Energy Rep 8:217–238. https://doi.org/10.1016/j.egyr.2021.11.241

    Article  Google Scholar 

  20. Singh S, Bansal JC (2022) Mutation-driven grey wolf optimizer with modified search mechanism. Expert Syst Appl. https://doi.org/10.1016/j.eswa.2021.116450

    Article  Google Scholar 

  21. Inac T, Dokur E, Yuzgec U (2022) A multi-strategy random weighted grey wolf optimizer-based multi-layer perceptron model for short-term wind speed forecasting. Neural Comput Appl. https://doi.org/10.1007/s00521-022-07303-4

    Article  Google Scholar 

  22. Nadimi-Shahraki MH, Taghian S, Mirjalili S, Zamani H, Bahreininejad A (2022) GGWO: gaze cues learning-based grey wolf optimizer and its applications for solving engineering problems. J Comput Sci. https://doi.org/10.1016/j.jocs.2022.101636

    Article  Google Scholar 

  23. Adhikary J, Acharyya S (2022) Randomized balanced grey wolf optimizer (RBGWO) for solving real life optimization problems. Appl Soft Comput. https://doi.org/10.1016/j.asoc.2022.108429

    Article  Google Scholar 

  24. Hosseini-Hemati S, Beigvand SD, Abdi H, Rastgou A (2022) Society-based grey wolf optimizer for large scale combined heat and power economic dispatch problem considering power losses. Appl Soft Comput. https://doi.org/10.1016/j.asoc.2021.108351

    Article  Google Scholar 

  25. Meidani K, Hemmasian A, Mirjalili S, Farimani AB (2022) Adaptive grey wolf optimizer. Neural Comput Appl 34(10):7711–7731. https://doi.org/10.1007/s00521-021-06885-9

    Article  Google Scholar 

  26. Liu X, Wang N (2021) A novel gray wolf optimizer with RNA crossover operation for tackling the non-parametric modeling problem of FCC process. Knowl-Based Syst 216:106751. https://doi.org/10.1016/j.knosys.2021.106751

    Article  Google Scholar 

  27. Makhadmeh SN, Khader AT, Al-Betar MA, Naim S, Abasi AK, Alyasseri ZAA (2021) A novel hybrid grey wolf optimizer with min-conflict algorithm for power scheduling problem in a smart home. Swarm Evol Comput 60:100793. https://doi.org/10.1016/j.swevo.2020.100793

    Article  Google Scholar 

  28. Zhang XM, Lin QY, Mao WT, Liu SW, Dou Z, Liu GQ (2021) Hybrid Particle Swarm and Grey Wolf Optimizer and its application to clustering optimization. Appl Soft Comput 101:107061. https://doi.org/10.1016/j.asoc.2020.107061

    Article  Google Scholar 

  29. Gupta A, Trivedi A, Prasad B (2022) B-GWO based multi-UAV deployment and power allocation in NOMA assisted wireless networks. Wirel Netw 28:3199–3211. https://doi.org/10.1007/s11276-022-03045-2

    Article  Google Scholar 

  30. Rajput SS (2022) S-GWO-FH: sparsity-based grey wolf optimization algorithm for face hallucination. Soft Comput 26:9323–9338. https://doi.org/10.1007/s00500-022-07250-1

    Article  Google Scholar 

  31. Wen L, Jian-Jun J, Xi-Ming L, Ming-Zhu T (2018) An exploration-enhanced grey wolf optimizer to solve high-dimensional numerical optimization. Eng Appl Artif Intell 68:63–80. https://doi.org/10.1016/j.engappai.2017.10.024

    Article  Google Scholar 

  32. Mohammad H, Shahraki N, Taghian S, Mirjalili S (2021) An improved grey wolf optimizer for solving engineering problems. Expert Syst Appl 166:113917. https://doi.org/10.1016/j.eswa.2020.113917

    Article  Google Scholar 

  33. Ratnaweera A, Halgamuge SK, Watson HC (2004) Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients. IEEE Trans Evol Comput 8(3):240–255. https://doi.org/10.1109/TEVC.2004.826071

    Article  Google Scholar 

  34. Brest J, Greiner S, Boskovic B, Mernik M, Zumer V (2006) Self-adapting control parameters in differential evolution: a comparative study on numerical benchmark problems. IEEE Trans Evol Comput 10(6):646–657. https://doi.org/10.1109/TEVC.2006.872133

    Article  Google Scholar 

  35. Akay B, Karaboga D (2012) A modified Artificial Bee Colony algorithm for real-parameter optimization. Inf Sci 192:120–142. https://doi.org/10.1016/j.ins.2010.07.015

    Article  Google Scholar 

  36. Wang GG, Gandomi AH, Alavi AH, Hao GS (2014) Hybrid krill herd algorithm with differential evolution for global numerical optimization. Neural Comput Appl 25:297–308. https://doi.org/10.1007/s00521-013-1485-9

    Article  Google Scholar 

  37. Draa A, Bouzoubia S, Boukhalfa I (2015) A sinusoidal differential evolution algorithm for numerical optimization. Appl Soft Comput 27:99–126. https://doi.org/10.1016/j.asoc.2014.11.003

    Article  Google Scholar 

  38. Ewees AA, Abd El Aziz M, Hassanien AE (2019) Chaotic multi-verse optimizer-based feature selection. Neural Comput Appl 31(4):991–1006. https://doi.org/10.1007/s00521-017-3131-4

    Article  Google Scholar 

  39. Heidari AA, Aljarah I, Faris H, Chen HL, Luo J, Mirjalili S (2020) An enhanced associative learning-based exploratory whale optimizer for global optimization. Neural Comput Appl 32(9):5185–5211. https://doi.org/10.1007/s00521-019-04015-0

    Article  Google Scholar 

  40. Sharma TK (2020) Enhanced butterfly optimization algorithm for reliability optimization problems. J Ambient Intell Hum Comput 12(7):7595–7619. https://doi.org/10.1007/s12652-020-02481-2

    Article  Google Scholar 

  41. Dong H, Xu YL, Li XP, Yang ZL, Zou CH (2021) An improved antlion optimizer with dynamic random walk and dynamic opposite learning. Knowl-Based Syst. https://doi.org/10.1016/j.knosys.2021.106752

    Article  Google Scholar 

  42. Wei-Feng G, Liu S-Y, Ling-Ling H (2013) A novel artificial bee colony algorithm based on modified search equation and orthogonal learning. IEEE Trans Cybern 43(3):1011–1024. https://doi.org/10.1109/TSMCB.2012.2222373

    Article  Google Scholar 

  43. Derrac J, Garcia S, Molina D, Herrera F (2011) A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol Comput 1(1):3–18. https://doi.org/10.1016/j.swevo.2011.02.002

    Article  Google Scholar 

  44. Belegundu AD, Arora JS (1985) A study of mathematical programming methods for structural optimization. Int J Numer Methods Eng 21(9):1583–1599. https://doi.org/10.1002/nme.1620210904

    Article  MathSciNet  MATH  Google Scholar 

  45. Coello CAC (2000) Use of a self-adaptive penalty approach for engineering optimization problems. Comput Ind 41(2):113–127. https://doi.org/10.1016/S0166-3615(99)00046-9

    Article  Google Scholar 

  46. Kannan BK, Kramer SN (1994) An augmented Lagrange multiplier based method for mixed integer discrete continuous optimization and its applications to mechanical design. J Mech Des 116(2):405–411. https://doi.org/10.1115/1.2919393

    Article  Google Scholar 

  47. Deb K (2000) An efficient constraint handling method for genetic algorithms. Comput Methods Appl 186(2–4):311–338. https://doi.org/10.1016/S0045-7825(99)00389-8

    Article  MATH  Google Scholar 

  48. Dereli S, Koker R (2020) A meta-heuristic proposal for inverse kinematics solution of 7-DOF serial robotic manipulator: quantum behaved particle swarm algorithm. Artif Intell Rev 53:949–964. https://doi.org/10.1007/s10462-019-09683-x

    Article  Google Scholar 

  49. Deng H, Xie C (2021) An improved particle swarm optimization algorithm for inverse kinematics solution of multi-DOF serial robotic manipulators. Soft Comput 25:13695–13708. https://doi.org/10.1007/s00500-021-06007-6

    Article  Google Scholar 

  50. Rokbani N, Mirjalili S, Slim M, Alimi AM (2022) A beta salp swarm algorithm meta-heuristic for inverse kinematics and optimization. Appl Intell 52:10493–10518. https://doi.org/10.1007/s10489-021-02831-3

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded by the National Natural Science Foundation of China under Grant 11672290, 11972343 and 62173047.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. The theoretical research and test experiments of the proposed algorithm were completed by JC. Material preparation, data collection, and analysis were performed by JC, TL, and MZ. The first draft of the manuscript was written by JC, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Zhenbang Xu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix 1: Engineering problems

Appendix 1: Engineering problems

1.1 Appendix 1.1: Tension/compression spring design problem

Consider \(x = \left[ {x_{1} x_{2} x_{3} } \right] = \left[ {d_{w} d_{c} N} \right]\)

$$\begin{aligned} & {\text{Minimize}}\;f\left( x \right) = \left( {x_{3} + 2} \right)x_{2} x_{1}^{2} \\ & {\text{Subject to}} \\ & g_{1} \left( x \right) = 1 - \frac{{x_{2}^{3} x_{3} }}{{71785x_{1}^{4} }} \le 0, \\ & g_{2} \left( x \right) = \frac{{4x_{2}^{2} - x_{1} x_{2} }}{{12566\left( {x_{2} x_{1}^{3} - x_{1}^{4} } \right)}} + \frac{1}{{5108x_{1}^{2} - 1}} \le 0, \\ & g_{3} \left( x \right) = 1 - \frac{{140.45x_{1} }}{{x_{2}^{2} x_{3} }} \le 0, \\ & g_{4} \left( x \right) = \frac{{x_{1} + x_{2} }}{1.5} - 1 \le 0 \\ \end{aligned}$$
$$\begin{aligned} {\text{Variable}}\;{\text{range}}\; & 0.05 \le x_{1} \le 2.00, \\ & 0.25 \le x_{2} \le 1.30, \\ & 2.00 \le x_{3} \le 15.0 \\ \end{aligned}$$

1.2 Appendix 1.2: Welded beam design problem

Consider \(x = \left[ {x_{1} x_{2} x_{3} x_{4} } \right] = \left[ {h l T b} \right]\)

$$\begin{aligned} & {\text{Minimize}}\;f\left( x \right) = 1.10471x_{1}^{2} x_{2} + 0.04811x_{3} x_{4} \left( {14.0 + x_{2} } \right) \\ & {\text{Subject to}} \\ & g_{1} \left( x \right) = \tau \left( x \right) - \tau_{\max } \le 0, \\ & g_{2} \left( x \right) = \sigma \left( x \right) - \sigma_{\max } \le 0, \\ & g_{3} \left( x \right) = \delta \left( x \right) - \delta_{max} \le 0, \\ & g_{4} \left( x \right) = x_{1} - x_{4} \le 0, \\ & g_{5} \left( x \right) = P - P_{c} \left( x \right) \le 0, \\ & g_{6} \left( x \right) = 0.125 - x_{1} \le 0, \\ & g_{7} \left( x \right) = 1.10471x_{1}^{2} + 0.04811x_{3} x_{4} \left( {14.0 + x_{2} } \right) - 5.0 \le 0 \\ \end{aligned}$$

where \(\tau \left( x \right) = \sqrt {\left( {\tau^{\prime}} \right)^{2} + 2\tau^{\prime}\tau^{\prime\prime}\frac{{x_{2} }}{2R} + \left( {\tau^{\prime\prime}} \right)^{2} } ,\)

$$\begin{aligned} & \tau^{\prime } = \frac{P}{{\sqrt 2 x_{1} x_{2} }},\;\tau^{\prime \prime } = \frac{MR}{J},\;M = P\left( {L + \frac{{x_{2} }}{2}} \right),\;R = \sqrt {\frac{{x_{2}^{2} }}{4} + \left( {\frac{{x_{1} + x_{3} }}{2}} \right)^{2} } , \\ & J = 2\left\{ {\sqrt 2 x_{1} x_{2} \left[ {\frac{{x_{2}^{2} }}{4} + \left( {\frac{{x_{1} + x_{3} }}{2}} \right)^{2} } \right]} \right\},\;\sigma \left( x \right) = \frac{6PL}{{x_{3}^{2} x_{4} }},\;\delta \left( x \right) = \frac{{6PL^{3} }}{{Ex_{3}^{2} x_{4} }}, \\ & P_{c} \left( x \right) = \frac{{4.013E\sqrt {\frac{{x_{3}^{2} x_{4}^{6} }}{36}} }}{{L^{2} }}\left( {1 - \frac{{x_{3} }}{2L}\sqrt{\frac{E}{4G}} } \right), \\ & P = 6000\;{\text{lb}},\;L = 14\;{\text{in}}.,\;\delta_{\max } = 0.25\;{\text{in}}., \\ & E = 30 \times 10^{6} \;{\text{psi}},\;G = 12 \times 10^{6} \;{\text{psi}},\;\tau_{\max } = 13,600\;{\text{psi}}, \;\sigma_{\max } = 30,000\;{\text{psi}} \\ \end{aligned}$$
$$\begin{aligned} {\text{Variable}}\;{\text{range}} \; & 0.1 \le x_{1} \le 2.0, \\ & 0.1 \le x_{2} \le 10.0, \\ & 0.1 \le x_{3} \le 10.0, \\ & 0.1 \le x_{4} \le 2.0. \\ \end{aligned}$$

1.3 Appendix 1.3: Pressure vessel design problem

Consider \(x = \left[ {x_{1} x_{2} x_{3} x_{4} } \right] = \left[ {T_{s} T_{h} R L} \right]\)

$$\begin{aligned} & {\text{Minimize}}\;f\left( x \right) = 0.6224x_{1} x_{3} x_{4} + 1.7781x_{2} x_{3}^{2} + 3.1661x_{1}^{2} x_{4} + 19.84x_{1}^{2} x_{3} \\ & {\text{Subject to}} \\ & g_{1} \left( x \right) = - x_{1} + 0.0193 x_{3} \le 0, \\ & g_{2} \left( x \right) = - x_{2} + 0.00954 x_{3} \le 0, \\ & g_{3} \left( x \right) = - \pi x_{3}^{2} x_{4} - \frac{4}{3}\pi x_{3}^{3} + 1,296,000 \le 0, \\ & g_{4} \left( x \right) = x_{4} - 240 \le 0 \\ \end{aligned}$$
$$\begin{aligned} {\text{Variable}}\;{\text{range}}\; & 0 \le x_{1} \le 99, \\ & 0 \le x_{2} \le 99, \\ & 10 \le x_{3} \le 200, \\ & 10 \le x_{4} \le 200 \\ \end{aligned}$$

1.4 Appendix 1.4: Inverse kinematics problem

The solution of the IK problem can be expressed as

$$x = \left[ {x_{1} x_{2} x_{3} x_{4} x_{5} x_{6} x_{7} x_{8} } \right] = \left[ {d_{1} \theta_{2} \theta_{3} \theta_{4} \theta_{5} \theta_{6} \theta_{7} \theta_{8} } \right]$$

where \(d_{1}\) is the joint variable of the translational joint (unit: m), \(\theta_{2}\) ~ \(\theta_{8}\) are the joint variables of the rotational joints (unit: °).

The fitness function is designed as follows:

$$f\left( x \right) = k_{1} P_{{{\text{err}}}} + k_{2} O_{{{\text{err}}}}$$

where \(k_{1} = k_{2} = 0.5\) are the weight coefficients. \(P_{{{\text{err}}}}\) is the position error between the robot end-effector and the target point, and \(O_{{{\text{err}}}}\) is the orientation error between the end-effector and the target point. They are calculated as follows:

$$P_{{{\text{err}}}} = \left\| {P_{e} - P_{t} } \right\|_{2}$$
$$O_{{{\text{err}}}} = \left\| { \varphi_{1} \rho_{2} - \varphi_{2} \rho_{1} + \rho_{1} \times \rho_{2} } \right\|_{2}$$

where \(P_{e}\) and \(P_{t}\) are the position vectors of the end-effector and the target point, respectively. {\(\varphi_{1} , \rho_{1}\)} and {\(\varphi_{2} , \rho_{2}\)} are quaternions corresponding to the orientation matrices of the end-effector and the target point, respectively. When the orientation of the end-effector coincides with the orientation of the target point, \(O_{{{\text{err}}}} = 0\); otherwise, \(O_{{{\text{err}}}} = 1\).

The position and orientation of the end-effector or target point are solved by forward kinematics, which is expressed as follows:

$$f\left( x \right) = \left[ {\begin{array}{*{20}c} R & P \\ 0 & 1 \\ \end{array} } \right] = {}_{8}^{0} T = {}_{1}^{0} T{}_{2}^{1} T{}_{3}^{2} T{}_{4}^{3} T{}_{5}^{4} T{}_{6}^{5} T{}_{7}^{6} T{}_{8}^{7} T$$
$${}_{i}^{i - 1} T = \left[ { \begin{array}{*{20}c} {\cos \theta_{i} } & { - \sin \theta_{i} } & 0 & {a_{i - 1} } \\ {\sin \theta_{i} \cos \alpha_{i - 1} } & {\cos \theta_{i} \cos \alpha_{i - 1} } & { - \sin \alpha_{i - 1} } & { - \sin \alpha_{i - 1} d_{i} } \\ {\sin \theta_{i} \sin \alpha_{i - 1} } & {\cos \theta_{i} \sin \alpha_{i - 1} } & {\cos \alpha_{i - 1} } & {\cos \alpha_{i - 1} d_{i} } \\ 0 & 0 & 0 & 1 \\ \end{array} } \right]$$

where \(R\) is the orientation matrix and \(P\) is the position matrix. \({}_{i}^{i - 1} T\) is the transformation matrix of the coordinate system {i} relative to the coordinate system {i − 1}. \({}_{i}^{i - 1} T\) can be obtained from DH parameters of the robot, which are shown in Table

Table 15 DH parameters of the robot

15.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, J., Liu, T., Zhu, M. et al. Improved team learning-based grey wolf optimizer for optimization tasks and engineering problems. J Supercomput 79, 10864–10914 (2023). https://doi.org/10.1007/s11227-022-04930-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-022-04930-5

Keywords