Skip to main content
Log in

A new fast image compression–encryption scheme based on compressive sensing and parallel blocks

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

This paper proposes a new fast image compression–encryption scheme based on compressive sensing and parallel blocks. To reduce the encryption time in the proposed algorithm, the plain image is divided into a predetermined number of blocks, where these blocks are encrypted in parallel, and each block is encrypted using the same steps. Firstly, the block is transformed into a sparse matrix using DWT. Then, a permutation of rows is applied to the sparse matrix which works by generating a vector with the same length as the number of rows of the matrix using the improved Linear Feedback Shift Register. Each row is shifted by using one value of the vector to obtain the permuted matrix. Secondly, the compressed matrix is obtained by applying the CS between the permuted matrix and the measurement matrix, where the measurement matrix is constructed using a 5D hyperchaotic system. Thirdly, all the compressed matrices are combined to obtain the compressed image. Finally, the 5D hyperchaotic system generates a mask, which is then XORed with the compressed image to get the final cipher image. Experimental and analysis results show that the proposed algorithm has good performance in terms of security and compression, as well as low time complexity, and the number of chosen blocks does not affect negatively the security of the proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Hussain I, Shah T, Gondal MA (2013) Application of s-box and chaotic map for image encryption. Math Comput Model 57(9–10):2576–2579. https://doi.org/10.1016/j.mcm.2013.01.009

    Article  MATH  Google Scholar 

  2. Liu H, Kadir A, Niu Y (2014) Chaos-based color image block encryption scheme using S-box. AEU Int J Electron Commun 68(7):676–686. https://doi.org/10.1016/j.aeue.2014.02.002

    Article  Google Scholar 

  3. Zhang Y (2018) The unified image encryption algorithm based on chaos and cubic S-box. Inf Sci 450:361–377. https://doi.org/10.1016/j.ins.2018.03.055

    Article  MathSciNet  MATH  Google Scholar 

  4. Wang X, Yang J (2020) A novel image encryption scheme of dynamic S-boxes and random blocks based on spatiotemporal chaotic system. Optik 217:164884. https://doi.org/10.1016/j.ijleo.2020.164884

    Article  Google Scholar 

  5. Babaei A, Motameni H, Enayatifar R (2020) A new permutation–diffusion-based image encryption technique using cellular automata and DNA sequence. Optik 203:164000. https://doi.org/10.1016/j.ijleo.2019.164000

    Article  Google Scholar 

  6. Hadj Brahim A, Ali Pacha A, Hadj Said N (2021) A new image encryption scheme based on a hyperchaotic system & multi specific S-boxes. Inf. Secur. J. Glob. Perspect. 125:26. https://doi.org/10.1080/19393555.2021.1943572

    Article  Google Scholar 

  7. Huo D, Zhou D, Yuan S, Yi S, Zhang L, Zhou X (2019) Image encryption using exclusive-OR with DNA complementary rules and double random phase encoding. Phys Lett A 383(9):915–922. https://doi.org/10.1016/j.physleta.2018.12.011

    Article  Google Scholar 

  8. Pujari SK, Bhattacharjee G, Bhoi S (2018) A hybridized model for image encryption through genetic algorithm and DNA sequence. Procedia Comput Sci 125:165–171. https://doi.org/10.1016/j.procs.2017.12.023

    Article  Google Scholar 

  9. Zhu X, Liu H, Liang Y, Wu J (2020) Image encryption based on Kronecker product over finite fields and DNA operation. Optik 224:164725. https://doi.org/10.1016/j.ijleo.2020.164725

    Article  Google Scholar 

  10. Artiles JAP, Chaves DPB, Pimentel C (2019) Image encryption using block cipher and chaotic sequences. Signal Process Image Commun 79:24–31. https://doi.org/10.1016/j.image.2019.08.014

    Article  Google Scholar 

  11. Ghazanfaripour H, Broumandnia A (2020) Designing a digital image encryption scheme using chaotic maps with prime modular. Opt Laser Technol 131:106339. https://doi.org/10.1016/j.optlastec.2020.106339

    Article  Google Scholar 

  12. Han C (2019) An image encryption algorithm based on modified logistic chaotic map. Optik 181:779–785. https://doi.org/10.1016/j.ijleo.2018.12.178

    Article  Google Scholar 

  13. Ma Y, Li C, Ou B (2020) Cryptanalysis of an image block encryption algorithm based on chaotic maps. J Inf Secur Appl 54:102566. https://doi.org/10.1016/j.jisa.2020.102566

    Article  Google Scholar 

  14. Naim M, Ali Pacha A, Serief C (2021) A novel satellite image encryption algorithm based on hyperchaotic systems and Josephus problem. Adv Space Res 67(7):2077–2103. https://doi.org/10.1016/j.asr.2021.01.018

    Article  Google Scholar 

  15. Zahmoul R, Ejbali R, Zaied M (2017) Image encryption based on new Beta chaotic maps. Opt Lasers Eng 96:39–49. https://doi.org/10.1016/j.optlaseng.2017.04.009

    Article  Google Scholar 

  16. Alvarez G, Li S (2006) Some basic cryptographic requirements for chaos-based cryptosystems. Int J Bifurc Chaos 16(08):2129–2151. https://doi.org/10.1142/S0218127406015970

    Article  MathSciNet  MATH  Google Scholar 

  17. Donoho DL, Elad M, Temlyakov VN (2006) Stable recovery of sparse overcomplete representations in the presence of noise. IEEE Trans Inf Theory 52(1):6–18. https://doi.org/10.1109/TIT.2005.860430

    Article  MathSciNet  MATH  Google Scholar 

  18. Candès E, Romberg J, Tao T (2006) Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans Inf Theory 52(2):489–509

    Article  MathSciNet  MATH  Google Scholar 

  19. Chen J, Zhang Y, Qi L, Fu C, Xu L (2018) Exploiting chaos-based compressed sensing and cryptographic algorithm for image encryption and compression. Opt Laser Technol 99:238–248. https://doi.org/10.1016/j.optlastec.2017.09.008

    Article  Google Scholar 

  20. Hu G, Xiao D, Wang Y, Xiang T, Zhou Q (2017) Securing image information using double random phase encoding and parallel compressive sensing with updated sampling processes. Opt Lasers Eng 98:123–133. https://doi.org/10.1016/j.optlaseng.2017.06.013

    Article  Google Scholar 

  21. Chai X, Zheng X, Gan Z, Han D, Chen Y (2018) An image encryption algorithm based on chaotic system and compressive sensing. Signal Process 148:124–144. https://doi.org/10.1016/j.sigpro.2018.02.007

    Article  Google Scholar 

  22. Ponuma R, Amutha R (2019) Encryption of image data using compressive sensing and chaotic system. Multimed Tools Appl 78(9):11857–11881. https://doi.org/10.1007/s11042-018-6745-3

    Article  MATH  Google Scholar 

  23. Zhu S, Zhu C (2019) A new image compression–encryption scheme based on compressive sensing and cyclic shift. Multimed Tools Appl 78(15):20855–20875. https://doi.org/10.1007/s11042-019-7405-y

    Article  Google Scholar 

  24. Yang Y-G, Guan B-W, Li J, Li D, Zhou Y-H, Shi W-M (2019) Image compression–encryption scheme based on fractional order hyper-chaotic systems combined with 2D compressed sensing and DNA encoding. Opt Laser Technol 119:105661. https://doi.org/10.1016/j.optlastec.2019.105661

    Article  Google Scholar 

  25. Xie Y, Yu J, Guo S, Ding Q, Wang E (2019) Image encryption scheme with compressed sensing based on new three-dimensional chaotic system. Entropy 21(9):819. https://doi.org/10.3390/e21090819

    Article  MathSciNet  Google Scholar 

  26. Xu Q, Sun K, Cao C, Zhu C (2019) A fast image encryption algorithm based on compressive sensing and hyperchaotic map. Opt Lasers Eng 121:203–214. https://doi.org/10.1016/j.optlaseng.2019.04.011

    Article  Google Scholar 

  27. Chai X, Wu H, Gan Z, Zhang Y, Chen Y, Nixon KW (2020) An efficient visually meaningful image compression and encryption scheme based on compressive sensing and dynamic LSB embedding. Opt Lasers Eng 124:105837. https://doi.org/10.1016/j.optlaseng.2019.105837

    Article  Google Scholar 

  28. Brahim AH, Pacha AA, Said NH (2020) Image encryption based on compressive sensing and chaos systems. Opt Laser Technol 132:106489. https://doi.org/10.1016/j.optlastec.2020.106489

    Article  Google Scholar 

  29. Wang Z, Hussein ZS, Wang X (2020) Secure compressive sensing of images based on combined chaotic DWT sparse basis and chaotic DCT measurement matrix. Opt Lasers Eng 134:106246. https://doi.org/10.1016/j.optlaseng.2020.106246

    Article  Google Scholar 

  30. Xu Q, Sun K, He S, Zhu C (2020) An effective image encryption algorithm based on compressive sensing and 2D-SLIM. Opt Lasers Eng 134:106178. https://doi.org/10.1016/j.optlaseng.2020.106178

    Article  Google Scholar 

  31. Chai X, Bi J, Gan Z, Liu X, Zhang Y, Chen Y (2020) Color image compression and encryption scheme based on compressive sensing and double random encryption strategy. Signal Process 176:107684. https://doi.org/10.1016/j.sigpro.2020.107684

    Article  Google Scholar 

  32. Zhu Z, Song Y, Zhang W, Yu H, Zhao Y (2020) A novel compressive sensing-based framework for image compression–encryption with S-box. Multimed Tools Appl 79(35–36):25497–25533. https://doi.org/10.1007/s11042-020-09193-x

    Article  Google Scholar 

  33. Gan Z, Chai X, Zhang J, Zhang Y, Chen Y (2020) An effective image compression–encryption scheme based on compressive sensing (CS) and game of life (GOL). Neural Comput Appl 32(17):14113–14141. https://doi.org/10.1007/s00521-020-04808-8

    Article  Google Scholar 

  34. Gan L (2007) Block compressed sensing of natural images. In: 2007 15th International Conference on Digital Signal Processing, Cardiff, pp 403–406. https://doi.org/10.1109/ICDSP.2007.4288604.

  35. Mun S, Fowler JE (2010) Block compressed sensing of images using directional transforms. In: 2010 Data Compression Conference, Snowbird, UT, USA, pp 547–547. https://doi.org/10.1109/DCC.2010.90

  36. Zhang B, Yang L, Wang K, Cao Y (2018) Block compressed sensing using two-dimensional random permutation for image encryption-then-compression applications. In: 2018 14th IEEE International Conference on Signal Processing (ICSP), Beijing, China, pp 312–316. https://doi.org/10.1109/ICSP.2018.8652451

  37. Pan C, Ye G, Huang X, Zhou J (2019) Novel meaningful image encryption based on block compressive sensing. Secur Commun Netw 2019:1–12. https://doi.org/10.1155/2019/6572105

    Article  Google Scholar 

  38. Wei D, Jiang M (2021) A fast image encryption algorithm based on parallel compressive sensing and DNA sequence. Optik 238:166748. https://doi.org/10.1016/j.ijleo.2021.166748

    Article  Google Scholar 

  39. Luo Y, Liang Y, Zhang S, Liu J, Wang F (2022) An image encryption scheme based on block compressed sensing and Chen system. In Review, preprint, https://doi.org/10.21203/rs.3.rs-1604114/v1

  40. Chai X, Fu J, Gan Z, Lu Y, Zhang Y (2022) An image encryption scheme based on multi-objective optimization and block compressed sensing. Nonlinear Dyn 108(3):2671–2704. https://doi.org/10.1007/s11071-022-07328-3

    Article  Google Scholar 

  41. Xue L, Wang Y, Wang Z (2022) Secure image block compressive sensing using complex Hadamard measurement matrix and bit-level XOR. IET Inf Secur 16(6):417–431. https://doi.org/10.1049/ise2.12067

    Article  Google Scholar 

  42. Deepthi PP, Sathidevi PS (2009) Design, implementation and analysis of hardware efficient stream ciphers using LFSR based hash functions. Comput Secur 28(3–4):229–241. https://doi.org/10.1016/j.cose.2008.11.006

    Article  Google Scholar 

  43. Chakraborty A, Mazumdar B, Mukhopadhyay D (2014) Fibonacci LFSR vs. Galois LFSR: which is more vulnerable to power attacks?. In: Chakraborty RS, Matyas V, Schaumont P (Eds) Security, privacy, and applied cryptography engineering, vol 8804. Springer, Cham, pp 14–27. https://doi.org/10.1007/978-3-319-12060-7_2

  44. Vaidyanathan S, Sambas A, Azar AT, Rana KPS, Kumar V (2021) A new 5-D hyperchaotic four-wing system with multistability and hidden attractor, its backstepping control, and circuit simulation. Backstepping control of nonlinear dynamical systems. Elsevier, pp 115–138. https://doi.org/10.1016/B978-0-12-817582-8.00013-1

    Chapter  Google Scholar 

  45. Ranjbar FK (2016) Evaluation compressive sensing recovery algorithms in crypto steganography system. Int J Image Graph Signal Process 8(10):53–63. https://doi.org/10.5815/ijigsp.2015.10.07

    Article  Google Scholar 

  46. Candès E (2006) Compressive sampling. In: Proceedings of the International Congress of Mathematicians, pp 1433–1452

  47. Donoho DL (2006) Compressed sensing. IEEE Trans. Inf. Theory 52(4):1289–1306

    Article  MathSciNet  MATH  Google Scholar 

  48. Candes EJ, Tao T (2005) Decoding by linear programming. IEEE Trans Inf Theory 51(12):4203–4215. https://doi.org/10.1109/TIT.2005.858979

    Article  MathSciNet  MATH  Google Scholar 

  49. Zhou N, Yang J, Tan C, Pan S, Zhou Z (2015) Double-image encryption scheme combining DWT-based compressive sensing with discrete fractional random transform. Opt Commun 354:112–121. https://doi.org/10.1016/j.optcom.2015.05.043

    Article  Google Scholar 

  50. Rukhin A, Soto J, Nechvatal J, Smid M, Barker E, Leigh S, Levenson M, Vangel M, Banks D, Heckert A, Dray J, Vo S (2010) NIST Special Publication 800-22, A statistical test suite for random and pseudorandom number generators for cryptographic applications

  51. Hore A, Ziou D (2010) Image quality metrics: PSNR vs. SSIM. In: 2010 20th International Conference on Pattern Recognition, Istanbul, Turkey, pp 2366–2369. https://doi.org/10.1109/ICPR.2010.579

  52. Xu J, Mou J, Liu J, Hao J (2022) The image compression–encryption algorithm based on the compression sensing and fractional-order chaotic system. Vis Comput 38(5):1509–1526. https://doi.org/10.1007/s00371-021-02085-7

    Article  Google Scholar 

  53. Kumar D, Joshi AB, Mishra VN (2020) Optical and digital double color-image encryption algorithm using 3D chaotic map and 2D-multiple parameter fractional discrete cosine transform. Results Opt 1:100031. https://doi.org/10.1016/j.rio.2020.100031

    Article  Google Scholar 

  54. Gagunashvili ND (2009) Chi-square tests for comparing weighted histograms. Nuclear Instrum Methods Phys Res Sect Accel Spect Detect Assoc Equip 614(2):287–296. https://doi.org/10.1016/j.nima.2009.12.037

    Article  Google Scholar 

  55. Zhou K, Fan J, Fan H, Li M (2020) Secure image encryption scheme using double random-phase encoding and compressed sensing. Opt Laser Technol 121:105769. https://doi.org/10.1016/j.optlastec.2019.105769

    Article  Google Scholar 

  56. Liu J, Zhang M, Tong X, Wang Z (2021) Image compression and encryption algorithm based on compressive sensing and nonlinear diffusion. Multimed Tools Appl 80(17):25433–25452. https://doi.org/10.1007/s11042-021-10884-2

    Article  Google Scholar 

  57. Zarebnia M, Pakmanesh H, Parvaz R (2019) A fast multiple-image encryption algorithm based on hybrid chaotic systems for gray scale images. Optik 179:761–773. https://doi.org/10.1016/j.ijleo.2018.10.025

    Article  Google Scholar 

  58. Valandar MY, Barani MJ, Ayubi P (2019) A fast color image encryption technique based on three dimensional chaotic map. Optik 193:162921. https://doi.org/10.1016/j.ijleo.2019.06.021

    Article  Google Scholar 

  59. Wu Y, Zhou Y, Saveriades G, Agaian S, Noonan JP, Natarajan P (2013) Local Shannon entropy measure with statistical tests for image randomness. Inf Sci 222:323–342. https://doi.org/10.1016/j.ins.2012.07.049

    Article  MathSciNet  MATH  Google Scholar 

  60. Wang X-Y, Li Z-M (2019) A color image encryption algorithm based on Hopfield chaotic neural network. Opt Lasers Eng 115:107–118. https://doi.org/10.1016/j.optlaseng.2018.11.010

    Article  Google Scholar 

Download references

Funding

No funding was received to assist with the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors have participated in (a) conception and design, or analysis and interpretation of the data; (b) drafting the article or revising it critically for important intellectual content; and (c) approval of the final version.

Corresponding author

Correspondence to A. Hadj Brahim.

Ethics declarations

Conflict of interest

The interest statement is not applicable to the manuscript. The authors have no affiliation with any organization with a direct or indirect financial interest in the subject matter discussed in the manuscript.

Ethical approval

This manuscript has not been submitted to, nor is it under review at, another journal or other publishing venue.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hadj Brahim, A., Ali Pacha, A. & Hadj Said, N. A new fast image compression–encryption scheme based on compressive sensing and parallel blocks. J Supercomput 79, 8843–8889 (2023). https://doi.org/10.1007/s11227-022-04999-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-022-04999-y

Keywords

Navigation