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Abstract
Compound identification in ligand-based virtual screening is limited by two key 
issues: the quality and the time needed to obtain predictions. In this sense, we 
designed OptiPharm, an algorithm that obtained excellent results in improving the 
sequential methods in the literature. In this work, we go a step further and propose 
its parallelization. Specifically, we propose a two-layer parallelization. Firstly, an 
automation of the molecule distribution process between the available nodes in a 
cluster, and secondly, a parallelization of the internal methods (initialization, repro-
duction, selection and optimization). This new software, called pOptiPharm, aims to 
improve the quality of predictions and reduce experimentation time. As the results 
show, the performance of the proposed methods is good. It can find better solutions 
than the sequential OptiPharm, all while reducing its computation time almost pro-
portionally to the number of processing units considered.

Keywords High-performance computing · Virtual screening · Shape similarity · 
Evolutionary algorithms

1 Introduction

The emergence of COVID-19, a severe and highly contagious viral disease, has 
brought the drug development process to the forefront of the world stage [1]. Due 
to the impact on society, the number of people who have worked in both the pub-
lic and private sectors has made it possible to obtain a vaccine that considerably 
reduces health risks in less than a year [2]. However, this is an isolated milestone, 
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and the reality is that the process usually takes between 12 and 15 years and could 
cost almost $1 billion [3, 4].

This is a costly and time-consuming process because different stages are involved, 
from the target identification to the approval of a medicine. One of these initial 
stages consists of identifying candidate hits. One of the tools involved in this process 
is High Throughput Screening (HTS) [5] with excellent results [6, 7]. But without a 
doubt, Virtual Screening (VS) is the reference in this process due to its capacity to 
find possible molecules reducing time and cost enormously due to the simulation by 
means of mathematical models [8].

VS methods fall into two categories: Structure-Based (SBVS) [9] and Ligand-
Based VS (LBVS) [10]. Depending on the information obtained from the molecules, 
one method or the other can be applied. In the case of SBVS, it is necessary to know 
the three-dimensional structure of the therapeutic target, which can be obtained by 
building molecular models or experimental methods such as Nuclear Magnetic Res-
onance (NMR) [11] or X-ray crystallography [12]. An example of SBVS is dock-
ing, whose aim is to find the best docking position between a ligand and a receptor 
[13]. The second major category is LBVS and is applied when no structure informa-
tion is available, so active and inactive ligand information is exploited as well as 
descriptors comparison. This includes Quantitative Structure-Activity Relationship 
(QSAR), similarity search techniques using 2D/3D descriptors, and shape matching 
techniques (global or partial shape comparison between molecules).

One of the main problems faced by virtual screening is the huge databases to be 
processed, which involves a lot of computational time. Consequently, speeding up 
this process is of paramount importance in this area. In that sense, different pieces 
of software have been developed in recent years. The latest of them and designed by 
us, is OptiPharm, an evolutionary and parameterizable algorithm. OptiPharm has 
been compared against different state-of-art, getting betters results [14, 15]. The way 
it was designed allows adapting to the user’s needs. In the original work, two con-
figurations valid for any problem were proposed. One called FAST, with few evalu-
ations to obtain results quickly, and another, called ROBUST, where was allowed to 
explore deeper the search space to find better solutions in a longer but still measured 
time.

In this paper, we argue that the quality of the solution should not be compro-
mised by the need to find a quick answer. On the contrary, using high-performance 
computing, we could find alternatives to speed up the process without sacrificing 
accuracy. The aim of this article is twofold. On the one hand, we investigate whether 
there is still room for improvement. In other words, we analyze whether we can con-
figure OptiPharm to be more accurate, without worrying about the computing time. 
As will be seen, OptiPharm can provide much better results if more demanding con-
figurations are considered. On the other hand, we accelerated the virtual screening 
process by developing a parallel approach based on two levels. The first is related to 
the number of molecules in the database, while the second concerns the paralleliza-
tion of OptiPharm.

The rest of the paper is divided as follows. Section 2 describes some important 
details about OptiPharm, and explains the parameterizable features of the algorithm. 
Section 3 explains pOptiPharm, the parallel approach. There, many details about the 
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management of the solutions in the optimization process are given. Section 4 sum-
marizes the experimental context to test the algorithms, as the scoring function, the 
database, the algorithm configuration and the hardware where the experiments have 
been carried out. Finally, Sect. 5 shows the obtained results and Sect. 6 summarizes 
the conclusions and future research, highlighting the major contributions and some 
remarks.

2  OptiPharm: the sequential algorithm

This section is dedicated to briefly explaining the features of OptiPharm, focusing 
mainly on those that can influence the design and performance of the parallel ver-
sion. Algorithm 1 outlines its main procedures. However, we encourage the reader 
to visit the original article for a better understanding of the algorithm [14].

Algorithm 1 Simplified OptiPharm’s algorithm

Require: Two molecules (a query and a target), N,M, tmax, Rtmax

� Each method in [1-7] updates the counter globalFuncEval
1: Initial poses creation (M)
2: Optimization (N)
3: while k < tmax do
4: New poses creation (N)
5: Elitist selection (M)
6: Improvement (N,M)
7: end while

OptiPharm is an evolutionary global optimization algorithm specifically designed 
to solve similarity maximization problems between two compounds: a query mol-
ecule and a target molecule. The latter is rotated and translated to obtain the max-
imum similarity while the query keeps fixed. To do it, ten decision variables are 
used: seven of them are used to define a rotation, six to define the two 3D points, 
and one for the angle; the remaining three are used for the displacement in the three 
dimensions. This set � of decision variables is known as a solution (individual, pose 
or point) in OptiPharm.

OptiPharm applies mechanisms based on evolution, basically reproduction-
replacement-improvement sequences, to direct a set of initial points toward the 
global and local optima. Each particular solution has the potential to become a local 
or a global optimum independently of the remaining ones, that is, a point has the 
ability to evolve toward the optima without the participation of the remaining ones. 
This is significant from a parallelism point of view, as intrinsic parallelism can be 
easily exploited by dividing the number of candidate solutions by the number of 
available processing units. To this end, each candidate solution has a maximum 
budget in the number of function evaluations (f.e.) to reach an optimum, although 
not all of them are always consumed. This is because OptiPharm procedures are 
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designed to adapt to the specific instance being executed and reduce the computa-
tion time as much as possible. To keep track of the number of real evaluations con-
sumed, all candidate solutions share a counter, called globalFuncEval, throughout 
all iterations of the algorithm. This fact is also important when designing the paral-
lel version. Figure 1 exemplifies the concept of a candidate solution in the search 
space.

OptiPharm requires four user-given parameters to be defined: the number of f.e. 
allowed for the whole optimization process (N), the number of solutions kept in the 
list (M), the number of iterations ( tmax ), and the radius of the solutions created in the 
last iteration ( Rtmax

 ). The parameter N is just an upper limit to bound the computa-
tional time. The higher this number, the greater the budget allowed for each candi-
date solution to reach the optimum. M has a high impact on the exploration of the 
search space, in the sense that the higher it is, the deeper the exploration will be (see 
Fig. 1). The value of tmax indicates how many times the reproduction-substitution-
improvement sequence will take place during the optimization procedure. Finally, 
the radius is associated with each solution and conceptually connects the global and 
local exploration in OptiPharm. This radius is equal to the diameter of the search 
space in the initial solutions and decreases with each iteration of the algorithm up to 
a value specified by Rtmax

.
From an implementation point of view, the principal data structure of OptiPharm 

is a dynamic linked list in which elements are stored, deleted and updated. Depend-
ing on the particular phase of the algorithm, the list’s elements can be considered as 
isolated points without any relation to each other or, on the contrary, as a set to be 
analyzed as a whole.

Fig. 1  The procedures designed in OptPharm will direct candidate solutions toward promising areas of 
the search space, i.e., the more of them, the deeper the exploration. The higher the budget in the number 
of function evaluations per solution, the higher the chances of reaching the peak of the optimum
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In the Creating new poses method, for each pose in the list, a set of potential new 
candidates is calculated and evaluated to find promising new areas, thus increasing 
the number of elements in the list. It is essential to mention that each individual gen-
erates new ones on its own, independently of the others. After that, if there is a sur-
plus in the number of points in the population, the procedure Elitist selection orders 
the individuals according to their score value and eliminates those that are not the 
M best ones. Notice that this selection procedure requires knowledge of the entire 
population list. Finally, the method Improvement performs a local optimization on 
each solution, where the obtained local optimum replaces the called individual. Note 
that each point is optimized without taking into account the remaining ones. For a 
detailed description of the OptiPharm algorithm, see [14].

3  pOptiPharm: the parallel version

The problem addressed in this paper involves optimizing a particular query against 
a huge database. Two levels of parallelism can then be exploited. The first is related 
to the number of molecules in the database. From a conceptual point of view, this is 
an embarrassing parallelism problem, as it can be easily solved by launching OptiP-
harm processes to fully load a cluster. However, from a technical point of view, a 
considerable effort has to be made to automate this procedure and make it user-
friendly for non-experts in the parallelism framework. Due to the scope of this jour-
nal, we do not provide further details on the implementation of the corresponding 
scripts, but note that they are available upon request for the interested reader/user.

Then, this section focus on the second layer of parallelism, which concerns 
OptiPharm’s optimization of a single pair of compounds. In other words, the paral-
lelization of Algorithm 1. Broadly speaking, our parallel approximation follows a 
shared memory model, in which the problem is accelerated by conceptually splitting 
the data into chunks that are later processed by different processing units.

From the implementation point of view, OptiPharm’s main data structure is a 
linked list in which the poses are stored, sorted, and optimized. These operations are 
core parts of the algorithm, and thus it is of vital importance to make them as per-
formant as possible. Those operations are applied in a locked-step, single-threaded 
process despite the self-reliance of the candidate solutions in the list. In fact, pOp-
tiPharm’s changes are mainly based on this property of the solutions. More pre-
cisely, pOptiPharm implements a custom thread-pool in order to help parallelize the 
work of the algorithm. This pool has two main operations: submit work and wait for 
all the work currently submitted to finish.

In the following, we will explain how the different steps of Algorithm  1 have 
been parallelized:

• Initial poses creation In the initialization phase, the query and the target are 
aligned and centered at the origin of the coordinates. In the sequential version, 
from this initial situation, a population of M poses is composed: (i) the first pose 
represents this initial stage, i.e., the query is not moved with respect to the target, 
which remains fixed, (ii) the following three poses are obtained by rotating the 
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variable molecule � radians at each axis (always from the initial state), the final 
M − 4 poses are randomly computed to prevent a possible drift to local optima. 
For the parallel version, we have reduced the number of random poses to just one 
and increased the number of them generated from rotations of the variable mole-
cule. In particular, we compute p poses, each rotated 2�

p
 radians in each axis, 

where p = max(min(2,M), 13) . Notice that 13 is an experimental value, i.e., 
reducing the angle more than 13 times produces no significant changes. During 
the creation of the initial poses, they have to be evaluated once before the rest of 
the algorithm can continue. In the original version, any initial candidate solution 
is evaluated right before being appended into the global poses list. In contrast, in 
the parallel version, the initial poses are first appended into the list, then evalu-
ated in parallel using the thread-pool. The parallelization of this very step does 
not directly translate into a significant speed gain, but it helps to reduce the eval-
uation time of the initial poses and it allow us to increase the number of initial 
poses without increasing the execution time of the program.

• New poses creation During this step, new poses or “children” poses are created 
from the ones currently in the global poses list. For each one of them, one after 
another, “children” are generated into local linked (poses) lists that are later 
joined into the global list. Doing this same process in a multi-threaded environ-
ment requires us to block the global list every time a pose appends its “children” 
(see Fig. 2). Notice that, to make the process as fast and efficient as possible, the 
implemented algorithm has more synchronization and signaling than the ones 
indicated in the figure.

• Elitist selection Although this step is relatively simple in the sequential OptiP-
harm version, as it only consists on sorting the global poses list and then pruning 
the elements below the poses limit, in the parallel version this requires a paral-

Fig. 2  Parallel new poses creation
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lel sorting method. For pOptiPharm, a slightly modified parallel merge sort has 
been implemented (see Fig. 3). After the sorting, the poses over the limit (M) are 
pruned in the same way as OptiPharm.

• Optimization At this stage of the algorithm, every pose in the list has to run through 
a custom version of an improving method. This is a very costly operation as this 
step runs the evaluation function a myriad of times for each single pose. To acceler-
ate this process, in the parallel version, each pose in the global poses list runs the 
complete optimization process in a core provided by the thread-pool.

Finally, it is important to mention that due to the fact that all candidate solutions 
along all iterations of the algorithm share a counter for the current number of evalua-
tions globalFuncEval, there has to be some synchronization to keep track of the evalua-
tions in the parallel version correctly. For that, all the tasks submitted to the thread-pool 
share an atomic number which later is used to increment the global counter without 
causing any data race.

Fig. 3  Parallel merge sort
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4  Experimental context

To implement the parallel version, C++ standard threading library 
std::threads (available from C++ 11 onwards) has been used. In the follow-
ing, the framework for the computational experiments is explained. In particular, 
it is defined the objective function used to measure the similarity between two 
given molecules, the database, and hardware used in the experimentation, as well 
as the configurations of the different algorithms.

4.1  Shape similarity score

OptiPharm is a general-purpose algorithm that can solve any optimization prob-
lem involving the computation of the similarity of two input compounds. pOp-
tiPharm maintains this important attribute. In this work, to illustrate the per-
formance of the parallel version, we have solved a maximization problem that 
consists of finding the s solution that maximizes the Tc function defined in Eq. 1.

It returns a value in the range [0, 1], where 0 indicates that there is no similarity 
between the input molecules A and B, and 1 implies that the similarity between the 
two molecules is maximal.

Each of the values V(A, B), V(A, A) and V(B, B) is obtained by Eq. 2 where wi 
and wj are the weights represented by atom i and j of molecule A and B, respec-
tively. On the other hand, vij is a product of Gaussian functions between atom i 
and j. This value represents the intersection of the volumes of these two atoms, 
so that by adding up all the intersections of the atoms, the total overlap value of 
molecule A with respect to molecule B (and vice versa) is calculated. For a better 
understanding of this scoring function widely used in the literature, we recom-
mend reading the following papers [14, 16–18].

Note that the computational cost of the scoring function depends on the number of 
atoms in each molecule, i.e., the more atoms there are, the more intersections have 
to be computed and thus the longer the computation time. To exemplify this in a real 
scenario, lets compare the following molecules: DB03754 and DB09159. They have 
20 and 18 atoms, respectively. The time to evaluate the scoring function is 0.027 
ms. On the other hand, molecules DB01337 and DB01339 have 101 and 98 atoms, 
and in this case, 0.699 ms were needed to obtain the similarity score. As the results 
will show, this is an important aspect that can affect the performance of the parallel 
version.

(1)Tc(A,B) =
V(A,B)

V(A,A) + V(B,B) − V(A,B)

(2)V(A,B) =
∑

i∈A,j∈B

wiwjvij
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4.2  FDA database

The database used in this work is the DrugBank [19, 20]. This database contains 
approximately 10,000 compounds, of which 2037 are FDA-approved small molecule 
drugs. The FDA, U.S. Food and Drug Administration, is an American agency that is 
responsible for protecting and promoting public health by controlling, among other 
things, prescription and over-the-counter pharmaceutical drugs (medicines). It is a 
common practice [21], in the current scenario, to identify which pairs of compounds 
in the FDA database share a high degree of shape similarity.

In a comprehensive analysis to study the performance of the algorithms, a selec-
tion of query molecules has been performed. For that purpose, the database has 
been divided into three parts depending on the size of the molecules, i.e., small 
(1–49 atoms), medium (50–99), and large (100–801) as can be seen in Fig. 4. Then, 
three random molecules were chosen from each group and marked as queries. Spe-
cifically, in the group of small molecules, we randomly selected the compounds 
DB00920 (41 atoms), DB01124 (36) and DB03754 (20); as medium molecules we 
chose DB00479 (83), DB01130 (71) and DB09135 (56); finally, as large molecules 
we considered DB00970 (176), DB01282 (138) and DB01337 (101). Note that the 
number in brackets indicates the number of atoms in each molecule. Each mole-
cule was pitted against the entire database to find the compound with the highest 
similarity.

4.3  OptiPharm configuration

Being parameterizable is one of the strengths of OptiPharm, as it can be tuned depend-
ing on whether the user prefers acceptable solutions with a reasonable computational 
time or, on the contrary, prefers to obtain better solutions at the cost of higher computa-
tional effort. With these two aims, several combinations of the parameters were tried in 
[14], to finally propose two main groups of input parameters: 

Fig. 4  Size distribution of molecules in the database. a shows the number of compounds with up to 100 
atoms, and b shows the number of compounds with 100–801 atoms. The black and red lines indicate 
the division points of the 3 groups in the database, i.e., small, medium and large molecules (color figure 
online)
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 (i) Fast configuration ( FC ) The parameters are tuned so that OptiPharm run-
time is small but reasonable solutions are obtained. The values considered for 
this configuration are: N = 1000 function evaluations, M = 5 starting poses, 
tmax = 5 iterations and a minimum radius of Rtmax

= 5.
 (ii) Robust Configuration ( RC ) This configuration parameters are tuned to make 

OptiPharm more reliable and robust, although it is more computationally 
expensive than the previous one: N = 200,000 function evaluations, M = 5 
starting poses, tmax = 5 iterations and a minimum radius of Rtmax

= 1.

However, with the use of parallel techniques, we can speed up the OptiPharm proce-
dures without compromising the quality of the proposed solutions. This could be a huge 
step forward in the context of virtual screening, as most techniques in the literature do 
not sufficiently explore the search space due to the computational effort involved. In 
this study, we analyze OptiPharm’s effectiveness by fine-tuning its parameters to obtain 
the best possible solution. To this end, building on the robust configuration proposed in 
the original paper [14], and referred to as RC(5) hereafter, three other robust configura-
tions are proposed, each of which seeks to explore the search space more deeply: 

 (i) Robust Configuration—15 poses ( RC (15) ) This RC configuration parameters 
are: N = 250,000 function evaluations, M = 15 starting poses, tmax = 5 itera-
tions and a minimum radius of Rtmax

= 1.
 (ii) Robust Configuration—25 poses ( RC (25) ) This RC configuration parameters 

are: N = 370,000 function evaluations, M = 25 starting poses, tmax = 5 itera-
tions and a minimum radius of Rtmax

= 1.
 (iii) Robust Configuration—50 poses ( RC (50) ) This RC configuration parameters 

are: N = 500,000 function evaluations, M = 50 starting poses, tmax = 5 itera-
tions and a minimum radius of Rtmax

= 1.

Basically, we have increased the number of candidate points M and the total number of 
function evaluations N, with the aim of finding higher quality solutions.

4.4  Hardware setup

All the experiments carried out in this work have been executed in a Bull Sequana 
X440-A5, which consists of 2 AMD EPYC Rome 7642 (48 cores), 512 GB RAM and 
240 GB SSD.

5  Results

This section shows the quality results of the OptiPharm and its parallel version pOp-
tiPharm, as well as the speed-up of the experiments. It is important to mention that, 
due to the stochastic nature of both algorithms, the results gathered for the following 
experiments are computed from a 15-tries average (Fig. 5).
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5.1  Qualitative analysis

For a better understanding of the numbers, we will initially focus on a single case, 
namely the query molecule DB09135. This query has been confronted with all the 
target compounds in the FDA database. More specifically, for each pair of mole-
cules, OptiPharm has been run looking for the rotation and translation of the target 
that achieves the maximum overlap with the query. All the configurations listed in 
Sect. 4.3 have been considered. With configuration FC , we found that the molecule 
with the highest similarity was DB08947 with a Tc value of 0.68027. In contrast, 
with the robust configurations, OptiPharm has achieved increasingly higher similar-
ity values, from 0.71610 with RC (5) up to 0.71645 with RC (50) . Of course, this 
increase comes at the cost of a longer calculation time, whereas with FC configura-
tion, OptiPharm spends 0.04646 s, it needs 21.50573 s with RC (50).

Similar analyses have been performed for the set of molecules listed in Sect. 4.2. 
More specifically, for each query, the best compound with the highest Tc is obtained. 
The corresponding results have been summarized in two complementary tables. On 
the one hand, Table 1 shows the value of Tc obtained by OptiPharm when run with 
all the configurations indicated in Sect.  4.3. Note that the results are displayed in 
three groups based on the size of the molecules. For each group, we have calculated 
the mean of the Tc values. Finally, the mean of the averages is also calculated and 
shown in the last row (Total Av). On the other hand, Table 2 shows the set of mol-
ecules (more than one can be obtained) from the database selected as the best com-
pounds, and whose similarity score Tc is that of Table 1.

A detailed analysis of Table 1 shows that there is a first leap in the quality of the 
solutions between FC and RC configurations. However, focusing on the last three 
columns, especially on the average values (Av), it can be observed that although 
the differences are much smaller in these columns, there exists an increasing 

Fig. 5  Comparison of poses 
for target DB08947 and query 
DB09135. The figure shows the 
target in three different poses. In 
pink is represented the solution 
obtained by OptiPharm when 
running with the FC configura-
tion, in green, the one obtained 
when considering RC (5) and 
in white the one obtained by 
RC (50) . As can be seen, there 
are differences in position 
among the three solutions, 
which highlights the importance 
of achieving better optimization 
(color figure online)
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improvement. Other interesting results appears in Table 2. As can be seen, OptiP-
harm with the robust configurations is able to provide, in some cases, more than 
one molecule with the maximum value of Tc. As an example, for DB03754, FC 
obtains as the best compound the molecule DB09159 with a Tc = 0.89745 , but all 
the RC configurations obtain besides DB09159, the molecule DB09154. These 
results can have a major impact on the virtual selection process, as it offers more 
than one equally valid alternative. As an illustration, we show in Fig. 6 this concrete 
example using VIDA [22], i.e., the overlap between the query DB03754 and the two 
molecules DB09159 and DB09154. It is important to mention that for the molecule 
DB01282 two isolated cases exist where the parallel version only offers a single 
solution, i.e., for RC (15) and RC (50) . In those cases, the second molecule with the 

Table 1  Tc value obtained for 
OptiPharm with the different 
parameter configurations

FC RC (5) RC (15) RC (25) RC (50)

DB00920 0.87934 0.90577 0.90577 0.90578 0.90578
DB01124 0.91306 0.92158 0.92160 0.92160 0.92160
DB03754 0.89745 0.90058 0.90075 0.90075 0.90075
Avsmall 0.89662 0.90931 0.90937 0.90938 0.90938
DB00479 0.64120 0.67618 0.67618 0.67618 0.67618
DB01130 0.69204 0.71956 0.72036 0.72036 0.72059
DB09135 0.68027 0.71610 0.71610 0.71637 0.71645
Avmedium 0.67117 0.70395 0.70421 0.70430 0.70441
DB00970 0.48769 0.49854 0.49876 0.49883 0.49895
DB01282 0.52667 0.55137 0.55137 0.55137 0.55137
DB01337 0.73025 0.73979 0.91139 0.91139 0.91140
Avlarge 0.58154 0.59657 0.65384 0.65386 0.65391
Total Av 0.71644 0.73661 0.75581 0.75585 0.75590

Table 2  Molecules obtained as the best compound by OptiPharm with the different parameter settings

FC RC (5) RC (15) RC (25) RC (50)

DB00920 DB00719 DB00719 DB00719 DB00719 DB00719
DB01124 DB00672 DB00672 DB00672 DB00672 DB00672
DB03754 DB09159 DB09159

DB09154
DB09159
DB09154

DB09159
DB09154

DB09159
DB09154

DB00479 DB00288 DB00684 DB00684 DB00684 DB00684
DB01130 DB00596 DB01340 DB01340 DB01340 DB01340
DB09135 DB08947 DB08947 DB08947 DB08947 DB08947
DB00970 DB08890

DB06287
DB08890
DB06287

DB08890
DB06287

DB06287
DB08890

DB06287
DB08890

DB01282 DB00864 DB01211
DB06439

DB01211 DB06439
DB01211

DB06439

DB01337 DB00728 DB00728 DB01339 DB01339 DB01339
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best Tc value was DB06439 (the missing molecule in the table). It can happen due to 
the stochastic nature of the algorithm.

These valuable results can be explained by the fact that, in general, OptiPharm is 
designed to maintain population diversity and investigate many promising solutions 
in parallel, avoiding genetic drift toward a single (local or global) optimal position. 
However, depending on the set of parameters selected, the accuracy in approximat-
ing the optima may be higher or lower. Of course, the larger the values of M and N, 
the greater the computational effort allowed and, consequently, the better the accu-
racy and the scoring results.

All this means that better solutions can be accomplished by using robust configu-
rations when there are no time constraints. However, if lower execution times are 
required, using high-performance computing approaches, we could save computa-
tional time without giving up an improvement in the quality of the solution.

5.2  Performance analysis

Next, we analyze the performance of the parallel version when run with all the con-
figurations listed in Sect. 4.3. From an efficiency point of view, pOptiPharm with all 
the configurations offer the same quality results as those indicated in Tables 1 and 2. 
We then focus on their efficiency.

The virtual screening problem we are dealing with is terribly irregular, in the 
sense that solving a particular instance involves running a huge number of optimiza-
tion problems (as many as molecules in the database), all of them with a different 
computational burden. Therefore, to understand the results, we need to analyze par-
tial results.

Table  3 refers to the speed-up values obtained by pOptiPharm with RC (15) . 
For this case, we have faced the query against the whole database and computed 
the speed-up for each query-target pair. However, for the sake of brevity and clar-
ity, we have extracted some partial results. In particular, the speed-up obtained 

Fig. 6  For the query DB03754, two different solutions has been found by OptiPharm with RC (5) . The 
query molecule, painted in green, remains fixed in all subfigures (color figure online)
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when the target is the molecule with the highest similarity value Tc, i.e., the one 
shown in Table  2. This will be identified by the symbol “ ∗ ”. Furthermore, we 
have selected the target with the best speed-up value for 32 threads (denoted with 
“ ↑ ”) and also the one with the worst value (denoted with “ ↓”). For these three 
targets, we show their number of atoms in the column A. Finally, to have a global 
view of the whole problem, we have calculated the speed-up for the entire data-
base. This result is indicated in the table with the symbol “

”. In this case, the column A refers to the number of atoms, on average, in the 
whole database. The speed-up has been calculated for th = 2, 4, 8, 16, 32 threads and 
shown in Spd(th) columns. For completeness, the computation time Ts(1) spent by 
OptiPharm (the sequential algorithm) when it is run with RC (15) configuration, is 
also provided.

A detailed analysis of Table 3 shows that pOptiPharm scales almost linearly up 
to 16 threads for the entire database (see row in bold associated to 

), independently of the query considered. Something similar happens for the 
pair with the best similarity (*) and the best speed-up ( ↑ ). In fact, up to 8 threads, a 
super speed-up is obtained in some cases. On the contrary, comparing any of the pre-
viously mentioned pairs against the one with the worst speed-up ( ↓ ), we can clearly 
see the existing in-balanced, which affects the algorithm workload and makes speed-
up less than optimal. It happens because the speed-up of this problem is molecule-
size dependent. As mentioned when describing the objective function in Sect. 4.1, 
more atoms make the objective function more expensive. Consequently, if there are 
not enough atoms, the computational cost of creating and managing threads is more 
time-consuming than the execution of the scoring function itself. In this table we can 
also see that adding more than 16 threads poorly contributes to improving the speed-
up, even causing speed-up loss when there are more threads than work available.

Similar studies were carried out for the RC (25) and RC (50) configurations, but to 
save time, only th = 2, 8, 32 were considered. The conclusions drawn were similar to 
those highlighted above. So, for the sake of brevity, we do not include those tables, 
but a summary that includes the speedup results for the whole database, i.e., the one 
corresponding to the 

 line. That is Table 4.
As seen in the table, pOptiPharm shows a linear speed up for a small number of 

threads. On the contrary, for great values, it does not reach the ideal one. Neverthe-
less, we can observe scalability, i.e., the speed-up increases as the configurations are 
more demanding, rising from 14.2 for RC (15) to 24.3 when RC (50) is considered. 
This trend is similar for all the molecules studied.

pOptiPharm behaves as expected, since its parallelism comes from the M number 
of solutions in the population list. We have also observed that the speedup does not 
increase proportionally from the RC (25) to the RC (50) configuration. This is because 
the number N of function evaluations in the configurations does not increase pro-
portionally to the number M of poses in the list, so the budget (number of function 
evaluations per solution) does not grow proportionally either. On the contrary, we have 
increased it based on our experience and following the guidelines provided in [14, 23] 
to obtain higher quality solutions. If we had done so, we could have improved the trend 
experienced by pOptiPharm in terms of speedup for 32 threads or more, but we would 
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have overestimated the budget per point looking for an improvement in speedup and 
not looking for a balance between time and quality of the solution found. Another fact, 
that may explain the drop in the speed-up for 32 threads is that the parallel version has 
several synchronization points to maintain consistency with the sequential version. The 
effect of these synchronization points is greater as the number of threads increases.

Table 3  Speed-up analysis for RC (15)

Query Target A T
s
(1) Spd (2) Spd (4) Spd (8) Spd (16) Spd (32)

DB00920 * DB00719 44 8.4 2.1 4.3 8.5 16.4 15.4
DB00920 ↑ DB01111 212 38.7 2.2 4.5 8.9 17.5 16.7
DB00920 ↓ DB09315 1 0.2 0.8 1.7 3.3 4.5 3.7
DB00920  50 15262.2 2.0 4.0 7.9 15.3 14.2
DB01124 * DB00672 30 5.0 2.0 4.1 8.1 14.9 13.3
DB01124 ↑ DB06402 228 36.0 2.2 4.4 8.7 17.2 16.3
DB01124 ↓ DB09315 1 0.2 0.8 1.6 3.2 4.0 3.2
DB01124  50 13609.4 2.0 4.0 7.9 15.1 13.5
DB03754 * DB09159 18 1.8 1.9 3.8 7.5 13.6 11.4
DB03754 ↑ DB00159 52 5.4 2.3 4.7 9.3 17.9 16.9
DB03754 ↓ DB09315 1 0.1 0.6 1.3 2.6 3.2 2.8
DB03754  50 7903.6 2.0 4.0 7.9 15.2 13.9
DB00479 * DB00684 71 25.6 2.2 4.4 8.6 16.8 16.1
DB00479 ↑ DB00803 179 65.4 2.2 4.5 8.9 17.5 17.2
DB00479 ↓ DB09315 1 0.3 1.1 2.2 4.3 6.5 6.1
DB00479  50 29875.3 2.0 4.0 7.9 15.4 14.5
DB01130 * DB01340 61 19.3 2.2 4.3 8.5 16.5 15.8
DB01130 ↑ DB01193 53 18.2 2.4 4.7 9.3 18.1 16.5
DB01130 ↓ DB09315 1 0.3 1.04 2.08 4.07 4.2 4.6
DB01130  50 25745.2 2.0 4.0 7.9 15.3 14.1
DB09135 * DB08947 53 13.3 2.2 4.3 8.6 16.7 15.2
DB09135 ↑ DB06813 56 15.2 2.4 4.7 9.4 18.3 16.3
DB09135 ↓ DB09315 1 0.2 0.9 1.9 3.7 5.1 3.9
DB09135  50 20455.6 2.0 4.0 7.9 15.3 14.0
DB00970 * DB08890 184 137.4 2.2 4.3 8.7 16.9 16.5
DB00970 ↑ DB01337 101 78.6 2.2 4.5 9.0 17.8 17.3
DB00970 ↓ DB09315 1 0.6 1.4 2.7 5.4 9.4 8.1
DB00970  50 26531.9 2.0 4.0 7.9 15.5 14.9
DB01282 * DB01211 122 74.1 2.2 4.5 8.8 17.3 17.0
DB01282 ↑ DB01336 96 64.3 2.4 4.9 9.7 19.0 18.6
DB01282 ↓ DB09315 1 0.5 1.3 2.5 5.1 8.7 6.4
DB01282  50 26452.9 2.0 4.0 7.9 15.5 14.7
DB01337 * DB01339 98 44.0 2.2 4.4 8.7 17.0 16.4
DB01337 ↑ DB00644 160 71.1 2.2 4.5 9.0 17.7 17.0
DB01337 ↓ DB09315 1 0.4 1.1 2.3 4.6 7.5 6.2
DB01337  50 26540.9 2.0 4.0 7.9 15.4 14.6
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Once the efficiency results are analyzed, we can conclude that pOptiPharm is a good 
alternative to speed-up the virtual screening process, while improving the quality of the 
solutions provided.

6  Conclusions

A new algorithm called OptiPharm was recently proposed to accelerate drug discov-
ery processes. Experiments showed that OptiPharm was reliable in terms of predic-
tion accuracy and runtime, and very competitive compared to approaches previously 
described in the literature.

One of the main strengths of OptiPharm is that it is easily parameterizable, so that 
very different configuration schemes can be tested. In this work, we have explored 
this fact, finding configurations that improve the provided solution, not only in terms 

Table 4  Speed-up summary for 
RC (15) , RC (25) and RC (50)

Query RC Ts(1) Spd (2) Spd (8) Spd (32)

DB00920 RC (15) 15262.2 2.0 7.9 14.2
DB00920 RC (25) 19959.4 2.0 7.9 22.8
DB00920 RC (50) 27213.8 2.0 7.9 24.3
DB01124 RC (15) 13609.4 2.0 7.9 13.5
DB01124 RC (25) 17941.1 2.1 7.9 17.6
DB01124 RC (50) 24314.9 2.0 7.8 20.7
DB03754 RC (15) 7903.6 2.0 7.9 13.9
DB03754 RC (25) 10336.1 2.1 7.8 21.3
DB03754 RC (50) 14052.7 2.0 7.8 24.1
DB00479 RC (15) 29875.3 2.0 7.9 14.5
DB00479 RC (25) 39065.3 2.0 7.8 23.7
DB00479 RC (50) 53307.4 2.0 7.9 24.4
DB01130 RC (15) 25745.2 2.0 7.9 14.1
DB01130 RC (25) 33934.1 2.1 7.9 19.3
DB01130 RC (50) 46066.3 2.0 7.6 22.0
DB09135 RC (15) 20455.6 2.0 7.9 14.0
DB09135 RC (25) 26979.0 2.1 7.8 18.7
DB09135 RC (50) 36599.1 2.0 7.5 21.6
DB00970 RC (15) 26531.9 2.0 7.9 14.9
DB00970 RC (25) 34709.5 2.0 7.7 24.7
DB00970 RC (50) 47382.9 2.0 7.9 24.4
DB01282 RC (15) 26452.9 2.0 7.9 14.7
DB01282 RC (25) 34837.5 2.1 7.8 21.0
DB01282 RC (50) 47334.0 2.0 7.8 23.1
DB01337 RC (15) 26540.9 2.0 7.9 14.6
DB01337 RC (25) 34688.9 2.0 7.8 23.9
DB01337 RC (50) 47318.3 2.0 7.8 24.4
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of accuracy but, more importantly, in terms of the number of solutions with maxi-
mum similarity. To address this drawback, we have proposed a high-performance 
computing approach, named pOptiPharm. Parallelism in pOptiPharm has been 
applied at two levels: (i) by automatically distributing the database molecules on the 
different nodes of the cluster and (ii) by exploiting the intrinsic parallelism of OptiP-
harm, basically by dividing the number of solutions among the available processing 
units to perform the replication, selection and optimization operations individually.

Computational experiments have shown that the size of the molecules strongly 
influences the accelerations obtained. Thus, pOptiPharm is able to obtain ideal or 
super-ideal accelerations for large molecules, while it obtains very low values for 
small compounds. These results are as expected since the computational load must 
be sufficient to compensate for the parallelism overhead. However, since the data-
bases are composed of molecules of different sizes, the final speed-up will depend 
on the number of molecules of each size included in each database.

Focusing on those cases with a sufficiently high computational load, i.e., those 
instances with molecules with a large number of atoms, we can see that good speed-
up results have been achieved, mainly up to th = 16 threads, where an almost linear 
or even superlinear speed-up is obtained. For larger values of th we do not obtain 
ideal values, but we still obtain good speed-ups. Finally, it is important to mention 
that pOptiPharm scales and obtains better efficiency results as the computational 
load increases.

Considering all these results, pOptiPharm is a good alternative to OptiPharm 
regarding solution quality and computational cost savings. The latter is signifi-
cant for two main reasons: (i) other descriptors are used as objective functions that 
require more time, and (ii) the databases to be processed are enormously large. This 
contribution is not only relevant in the current context, where molecules are consid-
ered rigid, but may become even more critical in VS problems where molecules are 
flexible, as the databases are even more extensive (see [24–27]).

In future, other programming paradigms based on both shared and distributed 
memory architectures will be implemented and analyzed. In particular, a parallel 
version of OptiPharm will be implemented to be executed on GPUs. Additionally, 
pOptiPharm will be incorporated into the BRUSELAS platform [28], where the 
sequential version is also available so that any user can freely execute the code. In 
the meantime, the interested reader can obtain the code on request. Finally, pOp-
tiPharm will be applied to solve the problem where the molecules are considered 
flexible.
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