Skip to main content
Log in

Reliability of augmented k-ary n-cubes under the extra connectivity condition

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

Fault tolerance is critical to the reliability analysis of interconnection networks because the vulnerability of components increases with the growth of network scale. Extra connectivity and extra diagnosability are two decisive indicators to measure network fault tolerance and diagnostic capability. Recently, the extra fault tolerance of many triangle-free networks has been widely studied. However, many social networks, ad hoc networks, and complex networks are designed with girth 3 as the basic topology. At present, the extra fault tolerance analysis of such networks has not been studied. Therefore, this paper mainly discusses the extra fault tolerance of the augmented k-ary n-cube \(AQ_{n, k}\) with girth 3, including the g-extra connectivity and the g-extra diagnosability. In detail, the g-extra connectivity of \(AQ_{n, k}\) is \(4n(1+g)-\lfloor \frac{5(1+g)^{2}}{2}\rfloor\) (\(n\ge 4\), \(k\ge 4\), and \(0\le g\le n-2\)), and the g-extra diagnosability of \(AQ_{n, k}\) is \(4n(1+g)-\lfloor \frac{5(1+g)^{2}}{2}\rfloor +g\) under the PMC model (\(n\ge 4\), \(k\ge 4\), and \(0\le g\le n-2\)) and the MM* model (\(n\ge 7\), \(k\ge 4\), and \(1\le g\le \frac{n-5}{2}\)). In addition, we explore the diagnosis algorithm of \(AQ_{n, k}\) based on extra faults.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

All of the material is owned by the authors, and/or no permissions are required.

References

  1. Angjeli A, Cheng E, Lipták L (2013) Linearly many faults in augmented cubes. Int J Parallel Emergent Distrib Syst 28(5):475–483. https://doi.org/10.1080/17445760.2012.735234

    Article  MATH  Google Scholar 

  2. Cheng B, Fan J, Lin C-K, Wang Y, Wang G (2020) An improved algorithm to construct edge-independent spanning trees in augmented cubes. Discret Appl Math 277:55–70. https://doi.org/10.1016/j.dam.2019.09.021

    Article  MathSciNet  MATH  Google Scholar 

  3. Cheng B, Fan J, Lyu Q, Lin C-K, Li X, Chen G (2020) Constructing node-independent spanning trees in augmented cubes. Fundam Inform 176(2):103–128. https://doi.org/10.3233/FI-2020-1965

    Article  MathSciNet  MATH  Google Scholar 

  4. Chang N-W, Hsieh S-Y (2012) Conditional diagnosability of augmented cubes under the PMC model. IEEE Trans Dependable Secur Comput 9(1):46–60. https://doi.org/10.1109/TDSC.2010.59

    Article  Google Scholar 

  5. Cheng E, Qiu K, Shen Z (2022) On the \(g\)-extra diagnosability of enhanced hypercubes. Theor Comput Sci 921:6–19. https://doi.org/10.1016/j.tcs.2022.03.037

    Article  MathSciNet  MATH  Google Scholar 

  6. Choudum SA, Sunitha V (2002) Augmented cubes. Networks 40(2):71–84. https://doi.org/10.1002/net.10033

    Article  MathSciNet  MATH  Google Scholar 

  7. Dally WJ (1990) Performance analysis of \(k\)-ary \(n\)-cube interconnection networks. IEEE Trans Comput 39(6):775–785. https://doi.org/10.1109/12.53599

    Article  MathSciNet  Google Scholar 

  8. Dahbura AT, Masson GM (1984) An \(O(n^{2.5})\) faulty identification algorithm for diagnosable systems. IEEE Trans Comput 33(6):486–492. https://doi.org/10.1109/TC.1984.1676472

    Article  MATH  Google Scholar 

  9. Fàbrega J, Fiol MA (1996) On the extraconnectivity of graphs. Discret Math 155:49–57. https://doi.org/10.1016/0012-365X(94)00369-T

    Article  MathSciNet  MATH  Google Scholar 

  10. Gu M-M, Chang J-M, Hao R-X (2021) Strong menger connectedness of augmented \(k\)-ary \(n\)-cubes. Comput J 64(5):812–825. https://doi.org/10.48550/arXiv.1910.00852

    Article  MathSciNet  Google Scholar 

  11. Hsieh S-Y, Kao C-Y (2013) The conditional diagnosability of \(k\)-ary \(n\)-cubes under the comparison diagnosis model. IEEE Trans Comput 62(4):839–843. https://doi.org/10.1109/TC.2012.18

    Article  MathSciNet  MATH  Google Scholar 

  12. Lv Y, Fan J, Hsu DF, Lin C-K (2018) Structure connectivity and substructure connectivity of \(k\)-ary \(n\)-cube networks. Inf Sci 433–434:115–124. https://doi.org/10.1016/j.ins.2017.11.047

    Article  MathSciNet  MATH  Google Scholar 

  13. Lv M, Fan J, Zhou J, Yu J, Jia X (2022) The reliability of \(k\)-ary \(n\)-cube based on component connectivity. Comput J 65(8):2197–2208. https://doi.org/10.1093/comjnl/bxab054

    Article  MathSciNet  Google Scholar 

  14. Lin L, Huang Y, Xu L, Hsieh S-Y (2022) A pessimistic fault diagnosability of large-scale connected networks via extra connectivity. IEEE Trans Parallel Distrib Syst 33(2):415–428. https://doi.org/10.1109/TPDS.2021.3093243

    Article  Google Scholar 

  15. Li X, Jia X, Fan J, Lin C-K (2020) Reliability analysis of data center networks based on precise and imprecise diagnosis strategies. Theor Comput Sci 809:189–203. https://doi.org/10.1016/j.tcs.2019.12.006

    Article  MathSciNet  MATH  Google Scholar 

  16. Lai P-L, Tan JJM, Chang C-P, Hsu L-H (2005) Conditional diagnosability measures for large multiprocessor systems. IEEE Trans Comput 54(2):165–175. https://doi.org/10.1109/tc.2005.19

    Article  Google Scholar 

  17. Liu A, Wang S, Yuan J, Ma X (2019) The \(h\)-extra connectivity of \(k\)-ary \(n\)-cubes. Theor Comput Sci 784:21–45. https://doi.org/10.1016/j.tcs.2019.03.030

    Article  MathSciNet  MATH  Google Scholar 

  18. Lin L, Xu L, Chen R, Hsieh S-Y, Wang D (2019) Relating extra connectivity and extra conditional diagnosability in regular networks. IEEE Trans Dependable Secur Comput 16(6):1086–1097. https://doi.org/10.1109/TDSC.2017.2726541

    Article  Google Scholar 

  19. Lin R, Zhang H (2015) The restricted edge-connectivity and restricted connectivity of augmented \(k\)-ary \(n\)-cubes. Int J Comput Math 93(8):1281–1298. https://doi.org/10.1080/00207160.2015.1067690

    Article  MathSciNet  MATH  Google Scholar 

  20. Ma M, Yu J (2021) Edge-disjoint paths in faulty augmented cubes. Discret Appl Math 294:108–114. https://doi.org/10.1016/j.dam.2021.01.030

    Article  MathSciNet  MATH  Google Scholar 

  21. Preparata FP, Metze G, Chien RT (1967) On the connection assignment problem of diagnosable systems. IEEE Trans Electron Comput EC–16(6):848–854. https://doi.org/10.1109/PGEC.1967.264748

    Article  MATH  Google Scholar 

  22. Sengupta A, Dahbura A (1992) On self-diagnosable multiprocessor systems: diagnosis by the comparison approach. IEEE Trans Comput 41:1386–1396. https://doi.org/10.1109/12.177309

    Article  MathSciNet  MATH  Google Scholar 

  23. Sun X, Dong Q, Zhou S, Lv M, Lian G, Liu J (2019) Fault tolerance analysis of hierarchical folded cube. Theor Comput Sci 790:117–130. https://doi.org/10.1016/j.tcs.2019.04.022

    Article  MathSciNet  MATH  Google Scholar 

  24. Wang S, Ma X (2018) The \(g\)-extra connectivity and diagnosability of crossed cubes. Appl Math Comput 336:60–66. https://doi.org/10.1155/2018/7867342

    Article  MathSciNet  MATH  Google Scholar 

  25. Wang S, Wang M (2019) The \(g\)-good-neighbor and \(g\)-extra diagnosability of networks. Theor Comput Sci 773:107–114. https://doi.org/10.1016/j.tcs.2018.09.002

    Article  MathSciNet  MATH  Google Scholar 

  26. Wang S, Zhao N (2020) The two-good-neighbor connectivity and diagnosability of the augmented three-ary \(n\)-cubes. Comput J 63(3):1–15. https://doi.org/10.1093/comjnl/bxy125

    Article  MathSciNet  Google Scholar 

  27. Xu J-M (2001) Topological structure and analysis of interconnection networks. Kluwer Academic Publishers, Dordrecht/Boston/London

    Book  MATH  Google Scholar 

  28. Xiang Y, Stewart IA (2011) Augmented \(k\)-ary \(n\)-cubes. Inf Sci 181(1):239–256. https://doi.org/10.1016/j.ins.2010.09.005

    Article  MathSciNet  MATH  Google Scholar 

  29. Xiang Y, Stewart IA (2011) Bipancyclicity in \(k\)-ary \(n\)-cubes with faulty edges under a conditional fault assumption. IEEE Trans Parallel Distrib Syst 22(9):1506–1513. https://doi.org/10.1109/TPDS.2011.22

    Article  Google Scholar 

  30. Xu L, Zhou S (2022) An \(O(log_{2}N)\) algorithm for reliability assessment of augmented cubes based on \(h\)-extra edge-connectivity. J Supercomput 78:6739–6751. https://doi.org/10.1007/s11227-021-04129-0

    Article  Google Scholar 

  31. Yuan J, Liu A, Ma X, Liu X, Qin X, Zhang J (2015) The \(g\)-good-neighbor conditional diagnosability of \(k\)-ary \(n\)-cubes under the PMC model and MM* model. IEEE Trans Parallel Distrib Syst 26(4):1165–1177. https://doi.org/10.1109/TPDS.2014.2318305

    Article  Google Scholar 

  32. Zhao N, Wang S (2016) The 1-good-neighbor diagnosability of augmented 3-ary \(n\)-cubes. Adv Appl Math 05(04):754–761. https://doi.org/10.12677/AAM.2016.54087

    Article  Google Scholar 

  33. Zhang S, Yang W (2016) The \(g\)-extra conditional diagnosability and \(t/k\)-diagosability of hypercubes. Int J Comput Math 93(3):482–497. https://doi.org/10.1080/00207160.2015.1020796

    Article  MathSciNet  MATH  Google Scholar 

  34. Zhang M, Zhang L, Feng X, Lai H-J (2018) An \(O(log_{2}(N))\) algorithm for reliability evaluation of \(h\)-extra edge-connectivity of folded hypercubes. IEEE Trans Reliab 67(1):297–307. https://doi.org/10.1109/TR.2017.2779130

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 62172291, 62272333, and U1905211) and the Postgraduate Research and Practice Innovation Program of Jiangsu Province (No. KYCX21_2961).

Author information

Authors and Affiliations

Authors

Contributions

XS wrote the main manuscript text. JF, ES, BC, and JY reviewed and revised the manuscript.

Corresponding author

Correspondence to Jianxi Fan.

Ethics declarations

Conflict of interest

I declare that the authors have no competing interests as defined by Springer, or other interests that might be perceived to influence the results and/or discussion reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, X., Fan, J., Sabir, E. et al. Reliability of augmented k-ary n-cubes under the extra connectivity condition. J Supercomput 79, 13641–13669 (2023). https://doi.org/10.1007/s11227-023-05141-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-023-05141-2

Keywords

Navigation