Skip to main content

Advertisement

Log in

A CPN-based model for assessing energy consumption of IoT networks

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

Wireless sensor networks (WSN) commonly have energy consumption as a remarkable issue. Due to the popularity of Internet of Things (IoT) systems, attention has been devoted to low-power wide-area networks (LPWAN), concerning the influence of transceivers on energy utilization. For instance, the energy for a communication transceiver to send one single bit can be 1500 to 2000 times higher than the energy required to execute a single instruction. Therefore, evaluating the energy consumption of network physical layer for IoT systems is prominent for system design. This work presents a Colored Petri nets (CPN)-based framework for evaluating the energy consumption of LPWAN-based IoT systems, focusing on CPU and communication transceivers. The proposed model has been validated using a hardware platform with ARM7DMI and LoRa, and results indicate an error less than 1.4% and 0.14% for the CPU and network, respectively, and show the feasibility of the proposed model to estimate the impact of packet losses and timeout on the system performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Availability of data and materials

Data used in this paper may be made available upon request.

References

  1. Mckinsey. Disruptive technologies report. https://www.mckinsey.com/

  2. Parvez I, Rahmati A, Guvenc I, Sarwat AI, Dai H (2018) A survey on low latency towards 5G: ran, core network and caching solutions. IEEE Commun Surv Tutor 20(4):3098–3130. https://doi.org/10.1109/COMST.2018.2841349

    Article  Google Scholar 

  3. Al-Sakran A, Qutqut MH, Almasalha F, Hassanein HS, Hijjawi M (2018) In: 2018 14th International Wireless Communications Mobile Computing Conference (IWCMC), pp 291–297

  4. Adegbija T, Rogacs A, Patel C, Gordon-Ross A (2018) Microprocessor optimizations for the internet of things: a survey. IEEE Trans Comput Aided Des Integr Circuits Syst 37(1):7–20. https://doi.org/10.1109/TCAD.2017.2717782

    Article  Google Scholar 

  5. Kaur J, Reddy S (2017) Operating systems for low-end smart devices: a survey and a proposed solution framework. Int J Inform Technol 10:49–58. https://doi.org/10.1007/s41870-017-0044-5

    Article  Google Scholar 

  6. Ray P (2018) A survey on internet of things architectures. J King Saud Univ Comput Inform Sci 30(3):291–319. https://doi.org/10.1016/j.jksuci.2016.10.003

    Article  Google Scholar 

  7. Anwar F, D’Souza S, Symington A, Dongare A, Rajkumar R, Rowe A, Srivastava M (2016) In: 2016 IEEE Real-Time Systems Symposium (RTSS), pp 191–202

  8. Adegbija T, Rogacs A, Patel C, Gordon-Ross A (2018) Microprocessor optimizations for the internet of things: a survey. IEEE Trans Comput Aided Des Integr Circuits Syst 37(1):7–20

    Article  Google Scholar 

  9. Valdes Pena MD, Rodriguez-Andina JJ, Manic M (2017) The internet of things: the role of reconfigurable platforms. IEEE Ind Electron Mag 11(3):6–19. https://doi.org/10.1109/MIE.2017.2724579

    Article  Google Scholar 

  10. Javed F, Afzal MK, Sharif M, Kim B (2018) Internet of things (IoT) operating systems support, networking technologies, applications, and challenges: a comparative review. IEEE Commun Surv Tutor 20(3):2062–2100. https://doi.org/10.1109/COMST.2018.2817685

    Article  Google Scholar 

  11. Jensen K, Kristensen LM (2009) Coloured petri nets: modelling and validation of concurrent systems, 1st edn. Springer-Verlag, Berlin, Heidelberg

    Book  MATH  Google Scholar 

  12. Marsan MA, Balbo G, Conte G, Donatelli S, Franceschinis G (1994) Modelling with generalized stochastic petri nets, 1st edn. Wiley, USA

    MATH  Google Scholar 

  13. Stewart WJ (2009) Probability, Markov chains, queues, and simulation: the mathematical basis of performance modeling. Princeton University Press, USA

    Book  MATH  Google Scholar 

  14. NXP. Lpc2103 user manual. https://www.nxp.com/docs/en/user-guide/UM10161.pdf

  15. Semtech. Sx1276-7-8-9 datasheet. https://www.semtech.com/products/wireless-rf/lora-transceivers

  16. Martinez B, Montón M, Vilajosana I, Prades JD (2015) The power of models: modeling power consumption for IoT devices. IEEE Sens J 15(10):5777–5789

    Article  Google Scholar 

  17. Sun M, Shi Z, Chen S, Zhou Z, Duan Y (2017) Energy-efficient composition of configurable internet of things services. IEEE Access 5:25609–25622

    Article  Google Scholar 

  18. Berrachedi A, Boukala-Ioualalen M (2016) In: 2016 30th International Conference on Advanced Information Networking and Applications Workshops (WAINA), pp 772–777

  19. Shareef A, Zhu Y (2012) Effective stochastic modeling of energy-constrained wireless sensor networks. J Comput Netw Commun. https://doi.org/10.1155/2012/870281

    Article  Google Scholar 

  20. Bor M, Roedig U, (2017) In: 2017 13th International Conference on Distributed Computing in Sensor Systems (DCOSS), pp 27–34. https://doi.org/10.1109/DCOSS.2017.10

  21. Rajab H, Cinkler T, Bouguera T (2021) IoT scheduling for higher throughput and lower transmission power. Wirel Netw. https://doi.org/10.1007/s11276-020-02307-1

    Article  Google Scholar 

  22. Rajab H, Cinkler T, Bouguera T (2021) Evaluation of energy consumption of lpwan technologies. https://doi.org/10.21203/rs.3.rs-343897/v1

  23. Gupta S, Snigdh I (2022) Clustering in lora networks, an energy-conserving perspective. Wirel Pers Commun 122:1–14. https://doi.org/10.1007/s11277-021-08894-2

    Article  Google Scholar 

  24. Farooq MO (2020) Clustering-based layering approach for uplink multi-hop communication in lora networks. IEEE Netw Lett 2(3):132–135. https://doi.org/10.1109/LNET.2020.3003161

    Article  Google Scholar 

  25. Delgado C, Sanz JM, Blondia C, Famaey J (2021) Batteryless lorawan communications using energy harvesting: modeling and characterization. IEEE Internet Things J 8(4):2694–2711. https://doi.org/10.1109/JIOT.2020.3019140

    Article  Google Scholar 

  26. Berrachedi A, Boukala-Ioualalen M (2016) In: 2016 30th International Conference on Advanced Information Networking and Applications Workshops (WAINA), pp 772–777. https://doi.org/10.1109/WAINA.2016.86

  27. Lages D, Borba E, Araujo J, Tavares E, Sousa E (2021) In: 2021 IEEE International Systems Conference (SysCon), pp 1–8. https://doi.org/10.1109/SysCon48628.2021.9447103

  28. Krug S, O’Nils M (2019) Modeling and comparison of delay and energy cost of IoT data transfers. IEEE Access 7:58654–58675. https://doi.org/10.1109/ACCESS.2019.2913703

    Article  Google Scholar 

  29. Martinez B, Montón M, Vilajosana I, Prades JD (2015) The power of models: modeling power consumption for IoT devices. IEEE Sens J 15(10):5777–5789. https://doi.org/10.1109/JSEN.2015.2445094

    Article  Google Scholar 

  30. Ju Q, Zhang Y (2018) Predictive power management for internet of battery-less things. IEEE Trans Power Electron 33(1):299–312. https://doi.org/10.1109/TPEL.2017.2664098

    Article  Google Scholar 

  31. Guizani M, Rayes A, Khan B, Al-Fuqaha A (2010) Network modeling and simulation: a practical perspective. Wiley, USA

  32. Gosavi A (2014) Simulation-based optimization: parametric optimization techniques and reinforcement learning. In: Operations Research/Computer Science Interfaces Series, Springer, US, USA

  33. Damaso A, Freitas D, Rosa N, Silva B, Maciel P (2013) Evaluating the power consumption of wireless sensor network applications using models. Sensors (Basel, Switzerland) 13:3473–3500. https://doi.org/10.3390/s130303473

    Article  Google Scholar 

  34. Zairi S, Mezni A, Zouari B (2015) In: Aguayo-Torres MC, Gómez G, Poncela J (eds) 13th International Conference on Wired/Wireless Internet Communication (WWIC), Wired/Wireless Internet Communications, Springer International Publishing, Malaga, Spain, pp 381–395. https://doi.org/10.1007/978-3-319-22572-2_28. https://hal.inria.fr/hal-01728799.

  35. Coronado E, Valero V, Orozco-Barbosa L, Cambronero M, Pelayo FL (2021) Modeling and simulation of the IEEE 802.11e wireless protocol with hidden nodes using colored petri nets. Softw. Syst. Model. 20(2):505–538

    Article  Google Scholar 

  36. Petajajarvi J, Pettissalo M, Mikhaylov K, Roivainen A, Hänninen T (2015) In: 2015 14th International Conference on ITS Telecommunications (ITST). https://doi.org/10.1109/ITST.2015.7377400

  37. Semtech. Sx1272/3/6/7/8: Lora modem designer’s guide. https://www.semtech.com/

  38. Murata T (1989) Petri nets: properties, analysis and applications. Proc IEEE 77(4):541–580. https://doi.org/10.1109/5.24143

    Article  Google Scholar 

  39. Hahm O, Baccelli E, Petersen H, Tsiftes N (2016) Operating systems for low-end devices in the internet of things: a survey. IEEE Internet Things J 3(5):720–734. https://doi.org/10.1109/JIOT.2015.2505901

    Article  Google Scholar 

  40. Anwar F, D’Souza S, Symington A, Dongare A, Rajkumar R, Rowe A, Srivastava M (2016) In: 2016 IEEE Real-Time Systems Symposium (RTSS), pp 191–202. https://doi.org/10.1109/RTSS.2016.027

  41. Javed F, Afzal MK, Sharif M, Kim B (2018) Internet of things (iot) operating systems support, networking technologies, applications, and challenges: a comparative review. IEEE Commun Surv Tutor 20(3):2062–2100

    Article  Google Scholar 

  42. Ratzer AV, Wells L, Lassen HM, Laursen M, Qvortrup JF, Stissing MS, Westergaard M, Christensen S, Jensen K (2003) In: Proceedings of the 24th International Conference on Applications and Theory of Petri Nets, Springer-Verlag, Berlin, Heidelberg, ICATPN’03, pp 450–462

  43. Heltec. Heltec lora 32 (v2). https://heltec.org/proudct_center/lora/lora-node/

  44. Keysight. 34465a digital multimeter, 6 \(1/2\) digit, truevolt dmm. https://www.keysight.com/

  45. Davison A, Hinkley D (1997) Bootstrap methods and their application. J Am Statist Assoc. https://doi.org/10.2307/1271471

    Article  MATH  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

This paper is equally contributed by each author.

Corresponding author

Correspondence to Diogo Lages.

Ethics declarations

Conflict of interest

The authors declare there is no conflict of interest.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lages, D., Borba, E., Tavares, E. et al. A CPN-based model for assessing energy consumption of IoT networks. J Supercomput 79, 12978–13000 (2023). https://doi.org/10.1007/s11227-023-05185-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-023-05185-4

Keywords

Navigation