Skip to main content
Log in

Parameters estimation method and ISAR imaging of multi-target with complex maneuvering

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

Inverse Synthetic Aperture Radar (ISAR) is widely used as an all-weather imaging radar system in military and civilian fields. However, for complex moving targets, the presence of their velocity, acceleration, and jerk leads to range migration and Doppler shift, which causes difficulties in imaging, especially in multi-target scenarios. In this paper, the adjacent cross-correlation function (ACCF) is used to reduce the migration order. Based on the idea of Lv transform and Hough transform (HT), an ISAR imaging algorithm for complex maneuvering multi-target is proposed. The algorithm proposed in this paper is simple and fast and can be accomplished by complex multiplication, fast Fourier transform (FFT) and inverse fast Fourier transform (IFFT) without the searching process. The simulation results show that the proposed algorithm can effectively compensate for the range migration (RM) and Doppler migration (DM) caused by the target motion parameters, and form a focused ISAR image. Compared with the existing methods, the algorithm has lower computational complexity and achieves ideal results in both anti-noise performance and imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

The datasets generated or analyzed during this current study are available from the corresponding author on reasonable request.

References

  1. Barbarossa S, Scaglione A, Giannakis GB (1998) Product high-order ambiguity function for multicomponent polynomial-phase signal modeling. IEEE Trans Signal Process 46(3):691–708

    Article  Google Scholar 

  2. Berizzi F, Mese ED, Diani M et al (2001) High-resolution ISAR imaging of maneuvering targets by means of the range instantaneous Doppler technique: modeling and performance analysis. IEEE Trans Image Process 10(12):1880–1890

    Article  MATH  Google Scholar 

  3. Cao P, Xing M, Sun G et al (2010) Minimum entropy via subspace for ISAR autofocus. IEEE Geosci Remote Sens Lett 7(1):205–209

    Article  Google Scholar 

  4. Chen JW, Jiang KP, Wang J (2009) ISAR imaging of multiple targets based on FrFT-CLEAN. In: International Conference on Microwave Technology and Computational Electromagnetics. IET (Beijing 2009)

  5. Chen VC, Lu ZZ (1997) Radar imaging of multiple moving targets. In: Radar Processing, Technology, and Applications II. SPIE 1997)

  6. Chen VC, Shie Q (1998) Joint time-frequency transform for radar range-Doppler imaging. IEEE Trans Aerosp Electron Syst 34(2):486–499

    Article  Google Scholar 

  7. Chen X, Huang Y, Liu N et al (2015) Radon-fractional ambiguity function-based detection method of low-observable maneuvering target. IEEE Trans Aerosp Electron Syst 51(2):815–833

    Article  Google Scholar 

  8. Chiang C, Chang Y, Chen BY et al. (2018) Simulation of isar motion compensation for moving targets based on particle swarm optimization. In: IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium. 2018

  9. Fan L, Yiming P, Shunji H (2006) Multi-target Imaging processing algorithms of ISAR based on time-frequency analysis. In: CIE International Conference on Radar. (Shanghai 2006)

  10. Hajduch G, Caillec JML, Garello R (2004) Airborne high-resolution ISAR imaging of ship targets at sea. IEEE Trans Aerosp Electron Syst 40(1):378–384

    Article  Google Scholar 

  11. Jeong S-J, Kang B-S, Kang M-S et al (2018) ISAR cross-range scaling using radon transform and its projection. IEEE Trans Aerosp Electron Syst 54(5):2590–2600

    Article  MathSciNet  Google Scholar 

  12. Jin K, Lai T, Zhu S et al (2020) Coherent detection and parameter estimation for radar high-speed maneuvering target based on FAF–LVD. Circuits Syst Signal Process 39(5):2600–2622

    Article  MATH  Google Scholar 

  13. Kang B-S, Bae J-H, Kang M-S et al (2016) ISAR cross-range scaling via joint estimation of rotation center and velocity. IEEE Trans Aerosp Electron Syst 52(4):2023–2029

    Article  Google Scholar 

  14. Kang B-S, Kang M-S, Choi I-O et al (2017) Efficient autofocus chain for ISAR imaging of non-uniformly rotating target. IEEE Sens J 17(17):5466–5478

    Article  Google Scholar 

  15. Kang M-S, Bae J-H, Kang B-S et al (2016) ISAR cross-range scaling using iterative processing via principal component analysis and bisection algorithm. IEEE Trans Signal Process 64(15):3909–3918

    Article  MathSciNet  MATH  Google Scholar 

  16. Kang M-S, Bae J-H, Lee S-H et al (2016) Efficient ISAR autofocus via minimization of Tsallis entropy. IEEE Trans Aerosp Electron Syst 52(6):2950–2960

    Article  Google Scholar 

  17. Kang M-S, Lee S-J, Lee S-H et al (2017) ISAR imaging of high-speed maneuvering target using gapped stepped-frequency waveform and compressive sensing. IEEE Trans Image Process 26(10):5043–5056

    Article  MathSciNet  MATH  Google Scholar 

  18. Kang MS, Kim KT (2018) ISAR imaging and cross-range scaling of high-speed manoeuvring target with complex motion via compressive sensing. IET Radar Sonar Navig 12(3):301–311

    Article  Google Scholar 

  19. Lee S-H, Bae J-H, Kang M-S et al (2016) Efficient ISAR autofocus technique using eigenimages. IEEE J Select Topics Appl Earth Observ Remote Sens 10(2):605–616

    Article  Google Scholar 

  20. Li D, Zhan M, Zhang X et al (2017) ISAR imaging of nonuniformly rotating target based on the multicomponent CPS model under low SNR environment. IEEE Trans Aerosp Electron Syst 53(3):1119–1135

    Article  Google Scholar 

  21. Li D, Zhan M, Liu H et al (2017) A robust translational motion compensation method for ISAR imaging based on keystone transform and fractional fourier transform under low SNR environment. IEEE Trans Aerosp Electron Syst 53(5):2140–2156

    Article  Google Scholar 

  22. Li J, Renbaio W, Chen VC (2001) Robust autofocus algorithm for ISAR imaging of moving targets. IEEE Trans Aerosp Electron Syst 37(3):1056–1069

    Article  Google Scholar 

  23. Li X, Cui G, Yi W et al (2014) A fast maneuvering target motion parameters estimation algorithm based on ACCF. IEEE Signal Process Lett 22(3):270–274

    Article  Google Scholar 

  24. Li X, Cui G, Yi W et al (2017) Radar maneuvering target detection and motion parameter estimation based on TRT-SGRFT. Signal Process 133:107–116

    Article  Google Scholar 

  25. Li X, Sun Z, Yi W et al. (2017) Detection of maneuvering target with complex motions based on ACCF and FRFT. In: 2017 IEEE Radar Conference (RadarConf). IEEE 2017)

  26. Li Y, Su T, Zheng J et al (2015) ISAR imaging of targets with complex motions based on modified Lv’s distribution for cubic phase signal. IEEE J Select Topics Appl Earth Observ Remote Sens 8(10):4775–4784

    Article  Google Scholar 

  27. Li Z, Zhang X, Yang Q et al (2022) Hybrid SAR-ISAR image formation via joint FrFT-WVD processing for BFSAR ship target high-resolution imaging. IEEE Trans Geosci Remote Sens 60:1–13

    Google Scholar 

  28. Liu L, Zhou F, Tao M et al (2015) A novel method for multi-targets ISAR imaging based on particle swarm optimization and modified CLEAN technique. IEEE Sens J 16(1):97–108

    Article  Google Scholar 

  29. Lu ZZ, Baraniecki AZ, Chen VC (1997) Time-frequency separation of multiple moving radar targets. In: Wavelet Applications IV. SPIE 1997)

  30. Luo S, Bi G, Lv X et al (2013) Performance analysis on Lv distribution and its applications. Digital Signal Process 23(3):797–807

    Article  MathSciNet  Google Scholar 

  31. Lv X, Bi G, Wan C et al (2011) Lv’s distribution: principle, implementation, properties, and performance. IEEE Trans Signal Process 59(8):3576–3591

    Article  MathSciNet  MATH  Google Scholar 

  32. Musman S, Kerr D, Bachmann C (1996) Automatic recognition of ISAR ship images. IEEE Trans Aerosp Electron Syst 32(4):1392–1404

    Article  Google Scholar 

  33. Park SH, Park KK, Jung JH et al (2008) ISAR imaging of multiple targets using edge detection and hough transform. J Electromag Waves Appl 22(2–3):365–373

    Article  Google Scholar 

  34. Ruan H, Wu Y, Jia X et al (2014) Novel ISAR imaging algorithm for maneuvering targets based on a modified keystone transform. IEEE Geosci Remote Sens Lett 11(1):128–132

    Article  Google Scholar 

  35. Thomas G, Flores BC, Martinez A (1997) ISAR imaging of moving targets via the Gabor wavelet transform. In: Radar Processing, Technology, and Applications II. SPIE 1997)

  36. Wang Y (2012) Inverse synthetic aperture radar imaging of manoeuvring target based on range-instantaneous-Doppler and range-instantaneous-chirp-rate algorithms. IET Radar Sonar Navig 6(9):921–928

    Article  Google Scholar 

  37. Wang Y, Jiang Y (2009) ISAR imaging of a ship target using product high-order matched-phase transform. IEEE Geosci Remote Sens Lett 6(4):658–661

    Article  Google Scholar 

  38. Wang Y, Kang J, Jiang Y (2014) ISAR imaging of maneuvering target based on the local polynomial Wigner distribution and integrated high-order ambiguity function for cubic phase signal model. IEEE J Select Topics Appl Earth Observ Remote Sens 7(7):2971–2991

    Article  Google Scholar 

  39. Wu L, Wei X, Yang D et al (2012) ISAR imaging of targets with complex motion based on discrete chirp Fourier transform for cubic chirps. IEEE Trans Geosci Remote Sens 50(10):4201–4212

    Article  Google Scholar 

  40. Xiao D, Su F, Wu J (2012) A method of ISAR imaging for multiple targets. In: 2012 IEEE 11th International Conference on Signal Processing. IEEE 2012

  41. Xu J, Xia XG, Peng SB et al (2012) Radar maneuvering target motion estimation based on generalized radon-fourier transform. IEEE Trans Signal Process 60(12):6190–6201

    Article  MathSciNet  MATH  Google Scholar 

  42. Zhao J, Zhang M, Wang X et al (2017) Parameters estimation and ISAR imaging of multiple maneuvering targets based on an order reduction method for cubic chirps. J Electromagn Waves Appl 31(16):1658–1675

    Article  Google Scholar 

  43. Zheng J, Liu H, Liu QH (2017) Parameterized centroid frequency-chirp rate distribution for LFM signal analysis and mechanisms of constant delay introduction. IEEE Trans Signal Process 65(24):6435–6447

    Article  MathSciNet  MATH  Google Scholar 

  44. Zheng J, Su T, Zhu W et al (2014) ISAR imaging of targets with complex motions based on the keystone time-chirp rate distribution. IEEE Geosci Remote Sens Lett 11(7):1275–1279

    Article  Google Scholar 

  45. Zheng J, Su T, Zhang L et al (2014) ISAR imaging of targets with complex motion based on the chirp rate–quadratic chirp rate distribution. IEEE Trans Geosci Remote Sens 52(11):7276–7289

    Article  Google Scholar 

Download references

Funding

This work is sponsored by the National Natural Science Foundation of China (61876143).

Author information

Authors and Affiliations

Authors

Contributions

YC wrote the main manuscript text and prepared the experimental data and results. WHF was responsible for Funding Acquisition, Supervision and Writing-Review.

Corresponding author

Correspondence to Weihong Fu.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, W., Chen, Y. Parameters estimation method and ISAR imaging of multi-target with complex maneuvering. J Supercomput 79, 13839–13863 (2023). https://doi.org/10.1007/s11227-023-05188-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-023-05188-1

Keywords

Navigation