Skip to main content
Log in

Path covers of bubble-sort star graphs

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

The distributed computing or parallel computing system uses an interconnection network as a topology structure to connect a large number of processors. The disjoint paths of interconnection networks are related to parallel computing and the fault tolerance. l-path cover of graph \(G=(V(G), E(G))\) consists of (internally) disjoint paths \(P_k\)s (\(1 \le k \le l\)), where \(\cup _{k=1}^lV(P_k)=V(G)\). The bubble-sort star graph is bipartite and has favorable reliability and fault tolerance which are critical for multiprocessor systems. We focus on the one-to-one 1-path cover, one-to-one \((2n-3)\)-path cover, and many-to-many 2-path cover of the bubble-sort star graph \(BS_n\). More specifically, let \(V(BS_n)=V_e \cup V_o\) with \(V_e \cap V_o=\emptyset\), for \(\{u, x\} \subset V_e\) and \(\{v, y\} \subset V_o\), we prove that (1) \(BS_n\) contains a 1-path cover, i.e., Hamiltonian path \(P_{uv}\), (2) \(BS_n\) contains one-to-one \((2n-3)\)-path cover \(P_k\)s (\(1 \le k \le 2n-3\)) between u and v, and (3) \(BS_n\) contains many-to-many 2-path cover \(P_{uv}\) and \(P_{xy}\), where \(n \ge 3\). Since \(BS_n\) is \((2n-3)\)-regular graph, the one-to-one \((2n-3)\)-path cover is the maximal one-to-one path cover.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Availability of data and materials

Not applicable.

References

  1. Arai J, Li Y (2014) Disjoint-path routing on hierarchical dual-nets. Int J Netw Comput 4(2):260–278

    Google Scholar 

  2. Fu JS, Chen GH, Duh DR (2002) Node-disjoint paths and related problems on hierarchical cubic networks. Networks 40(3):142–154. https://doi.org/10.1002/net.10040

    Article  MathSciNet  MATH  Google Scholar 

  3. Kaneko K, Sawada N (2007) An algorithm for node-to-node disjoint paths problem in burnt pancake graphs. IEICE Trans Inf Syst 90(1):306–313

    Article  Google Scholar 

  4. Li Y, Peng S, Chu W (2011) Disjoint-paths and fault-tolerant routing on recursive dual-net. Int J Found Comput Sci 22(5):1001–1018. https://doi.org/10.1142/S0129054111008532

    Article  MathSciNet  MATH  Google Scholar 

  5. Lin TC, Duh DR (2008) Constructing vertex disjoint paths in (\(n\), \(k\))-star graphs. Inf Sci 178(3):788–801. https://doi.org/10.1016/j.ins.2007.09.014

    Article  MathSciNet  MATH  Google Scholar 

  6. Shih YK, Kao SS (2011) One-to-one disjoint path covers on \(k\)-ary \(n\)-cubes. Theor Comput Sci 412(35):4513–4530. https://doi.org/10.1016/j.tcs.2011.04.035

    Article  MathSciNet  MATH  Google Scholar 

  7. Suzuki Y (2003) An algorithm for node-disjoint paths in pancake graphs. IEICE Trans Inf Syst 86(3):610–615

    Google Scholar 

  8. Wu RY, Chen GH, Kuo YL, Chang GJ (2007) Node-disjoint paths in hierarchical hypercube networks. Inf Sci 177:4200–4207. https://doi.org/10.1016/j.ins.2007.02.035

    Article  MathSciNet  MATH  Google Scholar 

  9. Bossard A, Kaneko K (2015) A node-to-set disjoint paths routing algorithm in torus-connected cycles. ISCA Int J Comput Their Appl 22(1):22–30

    Google Scholar 

  10. Bossard A, Kaneko K (2014) Time optimal node-to-set disjoint paths routing in hypercubes. J Inf Sci Eng 30(4):1087–1093

    MathSciNet  Google Scholar 

  11. Gu QP, Peng S (1997) Node-to-set disjoint paths problem in star graphs. Inf Process Lett 62(4):201–207. https://doi.org/10.1016/S0020-0190(97)00059-8

    Article  MathSciNet  MATH  Google Scholar 

  12. Kaneko K (2001) An algorithm for node-to-set disjoint paths problem in rotator graphs. IEICE Trans Inf Syst 84(9):1155–1163

    Google Scholar 

  13. Kaneko K (2003) An algorithm for node-to-set disjoint paths problem in burnt pancake graphs. IEICE Trans Inf Syst 86(12):2588–2594

    Google Scholar 

  14. Lai CN (2014) An efficient construction of one-to-many node-disjoint paths in folded hypercubes. J Parallel Distrib Comput 74(4):2310–2316. https://doi.org/10.1016/j.jpdc.2013.12.005

    Article  MATH  Google Scholar 

  15. Lai CN, Chen GH, Duh DR (2002) Constructing one-to-many disjoint paths in folded hypercubes. IEEE Trans Comput 51(1):33–45. https://doi.org/10.1109/12.980015

    Article  MathSciNet  MATH  Google Scholar 

  16. Lipták L, Cheng E, Kim JS, Kim SW (2012) One-to-many node disjoint paths of hyper-star networks. Discrete Appl Math 160(13–14):2006–2014. https://doi.org/10.1016/j.dam.2012.04.006

    Article  MathSciNet  MATH  Google Scholar 

  17. Xiang Y, Stewart IA (2010) One-to-many node-disjoint paths in \((n, k)\)-star graphs. Discrete Appl Math 158(1):62–70. https://doi.org/10.1016/j.dam.2009.08.013

    Article  MathSciNet  MATH  Google Scholar 

  18. Jo S, Park JH, Chwa KY (2013) Paired 2-disjoint path covers and strongly Hamiltonian laceability of bipartite hypercube-like graphs. Inf Sci 242:103–112. https://doi.org/10.1016/j.ins.2013.04.013

    Article  MathSciNet  MATH  Google Scholar 

  19. Kaneko K (2017) An algorithm for set-to-set disjoint paths problem in a Möbius cube. In: Proceedings International Conference on Parallel and Distributed Processing Technologies and Applications, pp 39–45

  20. Kaneko K, Nguyen SV, Binh HTT (2020) Pairwise disjoint paths routing in tori. IEEE Access 8:192206–192217. https://doi.org/10.1109/ACCESS.2020.3032684

    Article  Google Scholar 

  21. Kaneko K, Bossard A, Harris FC (2022) Set-to-set disjoint path routing in bijective connection graphs. IEEE Access 2169–3536:72731–72742. https://doi.org/10.1109/ACCESS.2022.3188783

    Article  Google Scholar 

  22. Bondy JA, Murty USR (2008) Graph theory, 2nd printing, Springer, Berlin

  23. Hsu LH, Lin CK (2008) Graph theory and interconnection networks. CRC Press, Boca Raton

    Book  MATH  Google Scholar 

  24. McHugh JAM (1990) Algorithmic graph theory. Prentice-Hall, Englewood Cliffs

    MATH  Google Scholar 

  25. Park JH, Kim HC, Lim HS (2006) Many-to-many disjoint path covers in hypercube-like interconnection networks with faulty elements. IEEE Trans Parallel Distrib Syst 17(3):227–240. https://doi.org/10.1109/TPDS.2006.37

    Article  Google Scholar 

  26. Asdre K, Nikolopoulos SD (2010) The 1-fixed-end point path cover problem is polynomial on interval graphs. Algorithmica 58(3):679–710. https://doi.org/10.1007/s00453-009-9292-5

    Article  MathSciNet  MATH  Google Scholar 

  27. Ntafos SC, Hakimi SL (1979) On path cover problems in digraphs and applications to program testing. IEEE Trans Softw Eng 5(5):520–529. https://doi.org/10.1109/TSE.1979.234213

    Article  MathSciNet  MATH  Google Scholar 

  28. Park JH, Kim HC, Lim HS (2009) Many-to-many disjoint path covers in the presence of faulty elements. IEEE Trans Comput 58(4):528–540. https://doi.org/10.1109/TC.2008.160

    Article  MathSciNet  MATH  Google Scholar 

  29. Fu JS (2006) Longest fault-free paths in hypercubes with vertex faults. Inf Sci 176(7):759–771. https://doi.org/10.1016/j.ins.2005.01.011

    Article  MathSciNet  MATH  Google Scholar 

  30. Kueng TL, Liang T, Hsu LH, Tan JJM (2009) Long paths in hypercubes with conditional node-faults. Inf Sci 179(5):667–681. https://doi.org/10.1016/j.ins.2008.10.015

    Article  MathSciNet  MATH  Google Scholar 

  31. Cheng D, Hao RX, Feng YQ (2014) Two node-disjoint paths in balanced hypercubes. Appl Math Comput 242:127–142. https://doi.org/10.1016/j.amc.2014.05.037

    Article  MathSciNet  MATH  Google Scholar 

  32. Chou ZT, Hsu CC, Sheu JP (1996) Bubblesort star graphs: a new interconnection network. In: Proceedings of the International Conference on Parallel and Distributed Systems, pp 41–48. https://doi.org/10.1109/ICPADS.1996.517543

  33. Shi HZ, Niu PF, Lu JB (2011) One conjecture of bubble-sort graphs. Inform Process Lett 111:926–929. https://doi.org/10.1016/j.ipl.2011.06.005

    Article  MathSciNet  MATH  Google Scholar 

  34. Akers SB, Krishnamurthy B (1989) A group-theoretic model for symmetric interconnection networks. IEEE Trans Comput 38:555–566. https://doi.org/10.1109/12.21148

    Article  MathSciNet  MATH  Google Scholar 

  35. Cai H, Liu H, Lu M (2015) Fault-tolerant maximal local-connectivity on bubble-sort star graphs. Discrete Appl Math 181:33–40. https://doi.org/10.1016/j.dam.2014.10.006

    Article  MathSciNet  MATH  Google Scholar 

  36. Wang S, Wang Z, Wang M (2017) The 2-good-neighbor connectivity and 2-good-neighbor diagnosability of bubble-sort star graph networks. Discrete Appl Math 217:691–706. https://doi.org/10.1016/j.dam.2016.09.047

    Article  MathSciNet  MATH  Google Scholar 

  37. Guo J, Lu M (2016) Conditional diagnosability of bubble-sort star graphs. Discrete Appl Math 201:141–149. https://doi.org/10.1016/j.dam.2015.07.026

    Article  MathSciNet  MATH  Google Scholar 

  38. Wang S, Wang Z, Wang M (2016) The 2-extra connectivity and 2-extra diagnosability of bubble-sort star graph networks. Comput J 59(12):1839–1856. https://doi.org/10.1093/comjnl/bxw037

    Article  MathSciNet  Google Scholar 

  39. Zhu Q, Zhang J, Li LL (2018) The \(h\)-extra connectivity and \(h\)-extra conditional diagnosability of Bubble-sort star graphs. Discrete Appl Math 251:322–333. https://doi.org/10.1016/j.dam.2018.03.077

    Article  MathSciNet  MATH  Google Scholar 

  40. Gu MM, Hao RX, Tang SM, Chang JM (2020) Analysis on component connectivity of bubble-sort star graphs and burnt pancake graphs. Discrete Appl Math 279:80–91. https://doi.org/10.1016/j.dam.2019.10.018

    Article  MathSciNet  MATH  Google Scholar 

  41. Guo J, Lu M (2016) The extra connectivity of bubble-sort star graphs. Theor Comput Sci 645:91–99. https://doi.org/10.1016/j.tcs.2016.06.043

    Article  MathSciNet  MATH  Google Scholar 

  42. Zhang G, Wang D (2019) Structure connectivity and substructure connectivity of bubble-sort star graph networks. Appl Math Comput 363:124632. https://doi.org/10.1016/j.amc.2019.124632

    Article  MathSciNet  MATH  Google Scholar 

  43. Guo J, Lu M (2021) Edge-fault-tolerant strong Menger edge connectivity of bubble-sort star graphs. Discrete Appl Math 297:109–119. https://doi.org/10.1016/j.dam.2021.03.006

    Article  MathSciNet  MATH  Google Scholar 

  44. Zhao SL, Hao RX (2019) The generalized connectivity of bubble-sort star graphs. Int J Found Comput Sci 30(5):793–809. https://doi.org/10.1142/S0129054119500229

    Article  MathSciNet  MATH  Google Scholar 

  45. Thomassen C, Woess W (1993) Vertex-transitive graphs and accessibility. J Comb Theory B 58:248–268. https://doi.org/10.1006/jctb.1993.1042

    Article  MathSciNet  MATH  Google Scholar 

  46. Hujdurović A, Kutnar K, Marušič D (2015) Vertex-transitive generalized Cayley graphs which are not Cayley graphs. Eur J Combin 46:45–50. https://doi.org/10.1016/j.ejc.2014.11.007

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The author thanks the anonymous referees for their detailed and valuable suggestions which greatly improved the submitted manuscript. This paper was supported by China Scholarship Council [CSC NO. 202006785015], and was completed during the period of the author visiting Nanyang Technological University with financial support under this grant. This paper was also supported by Guangdong Basic and Applied Basic Research Foundation [grant number 2023A1515011049].

Funding

This paper was supported by China Scholarship Council [CSC NO. 202006785015] and Guangdong Basic and Applied Basic Research Foundation [grant number2023A1515011049].

Author information

Authors and Affiliations

Authors

Contributions

Dongqin Cheng wrote, read, revised, and approved the manuscript.

Corresponding author

Correspondence to Dongqin Cheng.

Ethics declarations

Ethical approval

Not applicable.

Conflict of interest

The author declares that there is no conflict of interests regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, D. Path covers of bubble-sort star graphs. J Supercomput 79, 14848–14868 (2023). https://doi.org/10.1007/s11227-023-05256-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-023-05256-6

Keywords

Mathematics Subject Classification

Navigation