Skip to main content
Log in

Nizar optimization algorithm: a novel metaheuristic algorithm for global optimization and engineering applications

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

This paper presents a novel and powerful population-based metaheuristic algorithm called Nizar Optimization Algorithm (NOA). This algorithm is based on two techniques. The first technique is to use effective mappings, which are divided into two types: mixing and transformation mappings. The mixing mappings return a mixed vector by replacing or shuffling the elements of two selected vectors, and the transformation mappings return the translation, dilation, or transfer of a selected vector. The second technique is to determine the effective points by using the effective mappings and individuals of the population, and then, these points are used in the learning process of NOA. To validate and demonstrate the performance of the proposed algorithm and its ability to balance exploration and exploitation, NOA is tested on 60 unconstrained benchmark functions and four classic constrained real-world engineering problems. The experimental results are verified by a comparative study with over 20 well-known and recently developed optimization algorithms. These results show that the proposed algorithm outperforms all other algorithms in terms of solution accuracy, convergence curve speed, statistical measurements, and computational expenses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Availability of data and materials

Not applicable.

References

  1. Holland JH (1992) Genetic algorithms. Sci Am 267(1):66–73

    Article  Google Scholar 

  2. Fogel DB (1998) Artificial intelligence through simulated evolution, Wiley-IEEE Press, p 227-296. https://doi.org/10.1109/9780470544600.ch7

  3. Tinkle DW, Wilbur HM, Tilley SG (1970) Evolutionary strategies in lizard reproduction. Evolution 24(1):55–74. https://doi.org/10.2307/2406714

    Article  Google Scholar 

  4. Storn R, Price K (1997) Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim 11:341–359. https://doi.org/10.1023/A:1008202821328

    Article  MathSciNet  Google Scholar 

  5. Dhivyaprabha T, Subashini P, Krishnaveni M (2018) Synergistic fibroblast optimization: a novel nature−inspired computing algorithm. Front Inf Technol Electron Eng 19(7):815–833. https://doi.org/10.1631/FITEE.1601553

    Article  Google Scholar 

  6. Kennedy J, Eberhart R (1995) Particle swarm optimization. In: International conference on neural networks, IEEE, pp 1942–1948, https://doi.org/10.1109/ICNN.1995.488968

  7. Karaboga D, Basturk B (2007) A powerful and efficient algorithm for numerical function optimization: artificial bee colony (abc) algorithm. J Glob Optim 39(3):459–471. https://doi.org/10.1007/s10898-007-9149-x

    Article  MathSciNet  Google Scholar 

  8. Dorigo M, Maniezzo V, Colorni A (1996) Ant system: optimization by a colony of cooperating agents. IEEE Trans Syst Man Cybern B 26(1):29–41. https://doi.org/10.1109/3477.484436

    Article  Google Scholar 

  9. Neshat M, Sepidnam G, Sargolzaei M (2013) Swallow swarm optimization algorithm: a new method to optimization. Neural Comput Appl 23(2):429–454. https://doi.org/10.1007/s00521-012-0939-9

    Article  Google Scholar 

  10. Saremi S, Mirjalili S, Lewis A (2017) Grasshopper optimisation algorithm: theory and application. Adv Eng Softw 105:30–47. https://doi.org/10.1016/j.advengsoft.2017.01.004

    Article  Google Scholar 

  11. Braik MS (2021) Chameleon swarm algorithm: a bio-inspired optimizer for solving engineering design problems. Expert Syst Appl 174:114685. https://doi.org/10.1016/j.eswa.2021.114685

    Article  Google Scholar 

  12. Yapici H, Cetinkaya N (2019) A new meta-heuristic optimizer: Pathfinder algorithm. Appl Soft Comput 78:545–568. https://doi.org/10.1016/j.asoc.2019.03.012

    Article  Google Scholar 

  13. Duan H, Qiao P (2014) Pigeon-inspired optimization: a new swarm intelligence optimizer for air robot path planning. Int J Intell Comput Cybern 7(1):24–37. https://doi.org/10.1108/IJICC-02-2014-0005

    Article  MathSciNet  Google Scholar 

  14. Yang XS (2012) Flower pollination algorithm for global optimization. In: Durand-Lose J, Jonoska N (eds) Unconventional computing and natural computation. p 240–249, https://doi.org/10.1007/978-3-642-32894-7_27

  15. Gomes GF, da Cunha SS, Ancelotti AC (2019) A sunflower optimization (sfo) algorithm applied to damage identification on laminated composite plates. Eng Comput 35(2):619–626. https://doi.org/10.1007/s00366-018-0620-8

    Article  Google Scholar 

  16. Mehrabian AR, Lucas C (2006) A novel numerical optimization algorithm inspired from weed colonization. Ecol Inform 1(4):355–366. https://doi.org/10.1016/j.ecoinf.2006.07.003

    Article  Google Scholar 

  17. Qi X, Zhu Y, Chen H, et al (2013) An idea based on plant root growth for numerical optimization. In: Huang DS, Jo KH, Zhou YQ, et al (eds) Intelligent Computing Theories and Technology. Berlin, Heidelberg, p 571–578, https://doi.org/10.1007/978-3-642-39482-9_66

  18. Zhang H, Zhu Y, Chen H (2014) Root growth model: a novel approach to numerical function optimization and simulation of plant root system. Soft Comput 18(3):521–537. https://doi.org/10.1007/s00500-013-1073-z

    Article  Google Scholar 

  19. Labbi Y, Attous DB, Gabbar HA et al (2016) A new rooted tree optimization algorithm for economic dispatch with valve−point effect. Int J Electr Power Energy Syst 79:298–311. https://doi.org/10.1016/j.ijepes.2016.01.028

    Article  Google Scholar 

  20. Murase H (2000) Finite element inverse analysis using a photosynthetic algorithm. Comput Electr Agr 29(1–2):115–123. https://doi.org/10.1016/S0168-1699(00)00139-3

    Article  Google Scholar 

  21. Zhao S, Zhang T, Ma S et al (2022) Dandelion optimizer: a nature−inspired metaheuristic algorithm for engineering applications. Eng Appl Artif Intell 114:105075. https://doi.org/10.1016/j.engappai.2022.105075

    Article  Google Scholar 

  22. Merrikh-Bayat F (2015) The runner-root algorithm: a metaheuristic for solving unimodal and multimodal optimization problems inspired by runners and roots of plants in nature. Appl Soft Comput 33:292–303. https://doi.org/10.1016/j.asoc.2015.04.048

    Article  Google Scholar 

  23. Askari Q, Younas I, Saeed M (2020) Political optimizer: A novel socio-inspired meta-heuristic for global optimization. Knowl-Based Syst 195:105709. https://doi.org/10.1016/j.knosys.2020.105709

    Article  Google Scholar 

  24. Mohamed AW, Hadi AA, Mohamed AK (2020) Gaining-sharing knowledge based algorithm for solving optimization problems: a novel nature−inspired algorithm. Int J Mach Learn Cybern 11(7):1501–1529. https://doi.org/10.1007/s13042-019-01053-x

    Article  Google Scholar 

  25. Balochian S, Baloochian H (2019) Social mimic optimization algorithm and engineering applications. Expert Sys Appl 134:178–191. https://doi.org/10.1016/j.eswa.2019.05.035

    Article  Google Scholar 

  26. Ray T, Liew KM (2003) Society and civilization: an optimization algorithm based on the simulation of social behavior. IEEE Trans Evol Comput 7(4):386–396. https://doi.org/10.1109/TEVC.2003.814902

    Article  Google Scholar 

  27. Reynolds RG (1994) An introduction to cultural algorithms. In: Sebald AV, Fogel LJ (eds) Evolutionary programming. p 131–139, https://doi.org/10.1142/9789814534116

  28. Melvix JL (2014) Greedy politics optimization: Metaheuristic inspired by political strategies adopted during state assembly elections. In: International advance computing conference (IACC), IEEE, pp 1157–1162, https://doi.org/10.1109/IAdCC.2014.6779490

  29. Moosavian N, Roodsari BK et al (2013) Soccer league competition algorithm, a new method for solving systems of nonlinear equations. Int J Intell Sci 4(01):7–16. https://doi.org/10.4236/ijis.2014.41002

    Article  Google Scholar 

  30. Moghdani R, Salimifard K (2018) Volleyball premier league algorithm. Appl Soft Comput 64:161–185. https://doi.org/10.1016/j.asoc.2017.11.043

    Article  Google Scholar 

  31. Kashan AH (2009) League championship algorithm: a new algorithm for numerical function optimization. In: International conference of soft computing and pattern recognition, IEEE, pp 43–48, https://doi.org/10.1109/SoCPaR.2009.21

  32. Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61. https://doi.org/10.1016/j.advengsoft.2013.12.007

    Article  Google Scholar 

  33. Yang XS (2010) A new metaheuristic bat-inspired algorithm. In: González JR, Pelta DA, Cruz C, et al (eds) Nature inspired cooperative strategies for optimization (NICSO 2010). Springer, Berlin, Heidelberg, p 65–74, https://doi.org/10.1007/978-3-642-12538-6_6

  34. Hayyolalam V, Kazem AAP (2020) Black widow optimization algorithm: a novel meta-heuristic approach for solving engineering optimization problems. Eng Appl Artif Intell 87:103249. https://doi.org/10.1016/j.engappai.2019.103249

    Article  Google Scholar 

  35. Abualigah L, Yousri D, Abd Elaziz M et al (2021) Aquila optimizer: a novel meta-heuristic optimization algorithm. Comput Ind Eng 157:107250. https://doi.org/10.1016/j.cie.2021.107250

    Article  Google Scholar 

  36. Arora S, Singh S (2019) Butterfly optimization algorithm: a novel approach for global optimization. Soft Comput 23(3):715–734. https://doi.org/10.1007/s00500-018-3102-4

    Article  Google Scholar 

  37. Zervoudakis K, Tsafarakis S (2020) A mayfly optimization algorithm. Comput Ind Eng 145:106559. https://doi.org/10.1016/j.cie.2020.106559

    Article  Google Scholar 

  38. Li MD, Zhao H, Weng XW et al (2016) A novel nature−inspired algorithm for optimization: virus colony search. Adv Eng Softw 92:65–88. https://doi.org/10.1016/j.advengsoft.2015.11.004

    Article  Google Scholar 

  39. Passino KM (2002) Biomimicry of bacterial foraging for distributed optimization and control. IEEE Control Syst Mag 22(3):52–67. https://doi.org/10.1109/MCS.2002.1004010

    Article  Google Scholar 

  40. Braik M, Hammouri A, Atwan J et al (2022) White shark optimizer: a novel bio-inspired meta-heuristic algorithm for global optimization problems. Knowl-Based Syst 243:108457. https://doi.org/10.1016/j.knosys.2022.108457

    Article  Google Scholar 

  41. Akbari MA, Zare M, Azizipanah-Abarghooee R et al (2022) The cheetah optimizer: a nature−inspired metaheuristic algorithm for large−scale optimization problems. Sci Rep 12(1):1–20. https://doi.org/10.1038/s41598-022-14338-z

    Article  Google Scholar 

  42. Cheng MY, Prayogo D (2014) Symbiotic organisms search: a new metaheuristic optimization algorithm. Comput Struc 139:98–112. https://doi.org/10.1016/j.compstruc.2014.03.007

    Article  Google Scholar 

  43. Formato R (2007) Central force optimization: a new metaheuristic with applications in applied electromagnetics. In: Electromagnetics Research, Electromagnetics Research, pp 425–491, https://doi.org/10.2528/PIER07082403

  44. Salehan A, Deldari A (2022) Corona virus optimization (cvo): a novel optimization algorithm inspired from the corona virus pandemic. J Supercomput 78(4):5712–5743. https://doi.org/10.1007/s11227-021-04100-z

    Article  Google Scholar 

  45. Rashedi E, Nezamabadi-Pour H, Saryazdi S (2009) Gsa: a gravitational search algorithm. Info sci 179(13):2232–2248. https://doi.org/10.1016/j.ins.2009.03.004

    Article  Google Scholar 

  46. Faramarzi A, Heidarinejad M, Stephens B et al (2020) Equilibrium optimizer: a novel optimization algorithm. Knowl-Based Syst 191:105190. https://doi.org/10.1016/j.knosys.2019.105190

    Article  Google Scholar 

  47. Hashim FA, Hussain K, Houssein EH et al (2021) Archimedes optimization algorithm: a new metaheuristic algorithm for solving optimization problems. Appl Intell 51:1531–1551. https://doi.org/10.1007/s10489-020-01893-z

    Article  Google Scholar 

  48. Azizi M (2021) Atomic orbital search: a novel metaheuristic algorithm. Appl Math Model 93:657–683. https://doi.org/10.1016/j.apm.2020.12.021

    Article  MathSciNet  Google Scholar 

  49. Hashim FA, Houssein EH, Mabrouk MS et al (2019) Henry gas solubility optimization: a novel physics-based algorithm. Future Gener Comput Syst 101:646–667. https://doi.org/10.1016/j.future.2019.07.015

    Article  Google Scholar 

  50. Abdechiri M, Meybodi MR, Bahrami H (2013) Gases brownian motion optimization: an algorithm for optimization (gbmo). Appl Soft Comput 13(5):2932–2946. https://doi.org/10.1016/j.asoc.2012.03.068

    Article  Google Scholar 

  51. Pereira JLJ, Francisco MB, Diniz CA et al (2021) Lichtenberg algorithm: a novel hybrid physics-based meta-heuristic for global optimization. Expert Syst Appl 170:114522. https://doi.org/10.1016/j.eswa.2020.114522

    Article  Google Scholar 

  52. Mirjalili S, Mirjalili SM, Hatamlou A (2016) Multi-verse optimizer: a nature−inspired algorithm for global optimization. Neural Comput Appl 27(2):495–513. https://doi.org/10.1007/s00521-015-1870-7

    Article  Google Scholar 

  53. Kaveh A, Dadras A (2017) A novel meta-heuristic optimization algorithm: thermal exchange optimization. Adv Eng Softw 110:69–84. https://doi.org/10.1016/j.advengsoft.2017.03.014

    Article  Google Scholar 

  54. Lam AY, Li VO, James J (2012) Real-coded chemical reaction optimization. IEEE Trans Evol Comput 16(3):339–353. https://doi.org/10.1109/TEVC.2011.2161091

    Article  Google Scholar 

  55. Irizarry R (2004) Lares: an artificial chemical process approach for optimization. Evol Comput 12(4):435–459. https://doi.org/10.1162/1063656043138897

    Article  MathSciNet  Google Scholar 

  56. Melin P, Astudillo L, Castillo O et al (2013) Optimal design of type−2 and type−1 fuzzy tracking controllers for autonomous mobile robots under perturbed torques using a new chemical optimization paradigm. Expert Syst Appl 40(8):3185–3195. https://doi.org/10.1016/j.eswa.2012.12.032

    Article  Google Scholar 

  57. Talatahari S, Azizi M, Gandomi AH (2021) Material generation algorithm: a novel metaheuristic algorithm for optimization of engineering problems. Processes 9(5):859. https://doi.org/10.3390/pr9050859

    Article  Google Scholar 

  58. Mirjalili S (2016) Sca: a sine cosine algorithm for solving optimization problems. Knowl-Based Syst 96:120–133. https://doi.org/10.1016/j.knosys.2015.12.022

    Article  Google Scholar 

  59. Layeb A (2022) Tangent search algorithm for solving optimization problems. Neural Comput Appl 34:8853–8884. https://doi.org/10.1007/s00521-022-06908-z

    Article  Google Scholar 

  60. Ahmadianfar I, Bozorg-Haddad O, Chu X (2020) Gradient-based optimizer: a new metaheuristic optimization algorithm. Inf Sci 540:131–159. https://doi.org/10.1016/j.ins.2020.06.037

    Article  MathSciNet  Google Scholar 

  61. Ahmadianfar I, Heidari AA, Gandomi AH et al (2021) Run beyond the metaphor: an efficient optimization algorithm based on runge kutta method. Expert Syst Appl 181:115079. https://doi.org/10.1016/j.eswa.2021.115079

    Article  Google Scholar 

  62. Abualigah L, Diabat A, Mirjalili S et al (2021) The arithmetic optimization algorithm. Comput Meth Appl Mech Eng 376:113609. https://doi.org/10.1016/j.cma.2020.113609

    Article  MathSciNet  Google Scholar 

  63. Eskandar H, Sadollah A, Bahreininejad A et al (2012) Water cycle algorithm-a novel metaheuristic optimization method for solving constrained engineering optimization problems. Comput Struc 110:151–166. https://doi.org/10.1016/j.compstruc.2012.07.010

    Article  Google Scholar 

  64. Hosseini HS (2007) Problem solving by intelligent water drops. In: congress on evolutionary computation, IEEE, pp 3226–3231, https://doi.org/10.1109/CEC.2007.4424885

  65. Hosseini E, Sadiq AS, Ghafoor KZ et al (2021) Volcano eruption algorithm for solving optimization problems. Neural Comput Appl 33(7):2321–2337. https://doi.org/10.1007/s00521-020-05124-x

    Article  Google Scholar 

  66. Rahkar Farshi T (2021) Battle royale optimization algorithm. Neural Comput Appl 33(4):1139–1157. https://doi.org/10.1007/s00521-020-05004-4

    Article  Google Scholar 

  67. Doumari SA, Givi H, Dehghani M et al (2021) A new two-stage algorithm for solving optimization problems. Entropy 23(4):491. https://doi.org/10.3390/e23040491

    Article  MathSciNet  Google Scholar 

  68. Geem ZW, Kim JH, Loganathan GV (2001) A new heuristic optimization algorithm: harmony search. Simulation 76(2):60–68. https://doi.org/10.1177/003754970107600201

    Article  Google Scholar 

  69. Tan Y, Zhu Y (2010) Fireworks algorithm for optimization. In: Tan Y, Shi Y, Tan KC (eds) Advances in Swarm Intelligence. Berlin, Heidelberg, p 355–364, https://doi.org/10.1007/978-3-642-13495-1_44

  70. Houssein EH, Saad MR, Hashim FA et al (2020) Lévy flight distribution: A new metaheuristic algorithm for solving engineering optimization problems. Eng Appl Artif Intell 94:103731. https://doi.org/10.1016/j.engappai.2020.103731

    Article  Google Scholar 

  71. Azizi M, Talatahari S, Gandomi AH (2022) Fire hawk optimizer: a novel metaheuristic algorithm. Artif Intell Rev pp 1–77. https://doi.org/10.1007/s10462-022-10173-w

  72. Rao RV, Savsani VJ, Vakharia D (2011) Teaching-learning-based optimization: a novel method for constrained mechanical design optimization problems. Comput Aid Des 43(3):303–315. https://doi.org/10.1016/j.cad.2010.12.015

    Article  Google Scholar 

  73. Rao R (2016) Jaya: A simple and new optimization algorithm for solving constrained and unconstrained optimization problems. Int J Ind Eng Comput 7(1):19–34. https://doi.org/10.5267/j.ijiec.2015.8.004

    Article  Google Scholar 

  74. Heidari AA, Mirjalili S, Faris H et al (2019) Harris hawks optimization: algorithm and applications. Fut Gener Comput Syst 97:849–872. https://doi.org/10.1016/j.future.2019.02.028

    Article  Google Scholar 

  75. Nandi A, Kamboj VK (2021) A meliorated harris hawks optimizer for combinatorial unit commitment problem with photovoltaic applications. J Elec Syst Info Tech 8(5):1–73. https://doi.org/10.1186/s43067-020-00026-3

    Article  Google Scholar 

  76. Qais MH, Hasanien HM, Alghuwainem S (2020) Parameters extraction of three−diode photovoltaic model using computation and harris hawks optimization. Energy 195:117040. https://doi.org/10.1016/j.energy.2020.117040

    Article  Google Scholar 

  77. Sammen SS, Ghorbani MA, Malik A et al (2020) Enhanced artificial neural network with harris hawks optimization for predicting scour depth downstream of ski-jump spillway. Appl Sci 10(15):5160. https://doi.org/10.3390/app10155160

    Article  Google Scholar 

  78. Toğan V (2012) Design of planar steel frames using teaching-learning based optimization. Eng Struc 34:225–232. https://doi.org/10.1016/j.engstruct.2011.08.035

    Article  Google Scholar 

  79. Bouchekara H, Abido M, Boucherma M (2014) Optimal power flow using teaching-learning-based optimization technique. Electr Power Syst Res 114:49–59. https://doi.org/10.1016/j.epsr.2014.03.032

    Article  Google Scholar 

  80. Khatir S, Boutchicha D, Le Thanh C et al (2020) Improved ann technique combined with jaya algorithm for crack identification in plates using xiga and experimental analysis. Theor Appl Fract Mech 107:102554. https://doi.org/10.1016/j.tafmec.2020.102554

    Article  Google Scholar 

  81. Ramesh S, Vydeki D (2020) Recognition and classification of paddy leaf diseases using optimized deep neural network with jaya algorithm. Inf Process Agric 7(2):249–260. https://doi.org/10.1016/j.inpa.2019.09.002

    Article  Google Scholar 

  82. Alorf A (2023) A survey of recently developed metaheuristics and their comparative analysis. Eng Appl Artif Intell 117:105622. https://doi.org/10.1016/j.engappai.2022.105622

    Article  Google Scholar 

  83. Jamil M, Yang XS (2013) A literature survey of benchmark functions for global optimization problems. Int J Math Model Numer Optim 4(2):150–194. https://doi.org/10.1504/IJMMNO.2013.055204

    Article  Google Scholar 

  84. Ali MM, Khompatraporn C, Zabinsky ZB (2005) A numerical evaluation of several stochastic algorithms on selected continuous global optimization test problems. J Glob Optim 31(4):635–672. https://doi.org/10.1007/s10898-004-9972-2

    Article  MathSciNet  Google Scholar 

  85. Al-Roomi AR (2015) Unconstrained single−objective benchmark functions repository. https://www.al-roomi.org/benchmarks/unconstrained

  86. Mohammadi-Balani A, Nayeri MD, Azar A et al (2021) Golden eagle optimizer: a nature−inspired metaheuristic algorithm. Comput Ind Eng 152:107050. https://doi.org/10.1016/j.cie.2020.107050

    Article  Google Scholar 

  87. Faramarzi A, Heidarinejad M, Mirjalili S et al (2020) Marine predators algorithm: a nature−inspired metaheuristic. Expert Syst Appl 152:113377. https://doi.org/10.1016/j.eswa.2020.113377

    Article  Google Scholar 

  88. Zhao W, Wang L, Zhang Z (2019) Atom search optimization and its application to solve a hydrogeologic parameter estimation problem. Knowl-Based Syst 163:283–304. https://doi.org/10.1016/j.knosys.2018.08.030

    Article  Google Scholar 

  89. Deb K, Deb D et al (2014) Analysing mutation schemes for real-parameter genetic algorithms. Int J Artif Intell Soft Comput 4(1):1–28. https://doi.org/10.1504/IJAISC.2014.059280

    Article  Google Scholar 

  90. Deb K, Agrawal RB (1995) Simulated binary crossover for continuous search space. Compl syst 9(2):115–148. https://www.complex-systems.com/abstracts/v09_i02_a02

  91. David J S (2011) Handbook of parametric and nonparametric statistical procedures, 5th edn. Chapman and hall/CRC, New York, https://doi.org/10.1201/9780429186196

  92. Coello CAC (2002) Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: a survey of the state of the art. Comput Meth Appl Mech Eng 191(11–12):1245–1287. https://doi.org/10.1016/S0045-7825(01)00323-1

    Article  MathSciNet  Google Scholar 

  93. Ragsdell K, Phillips D (1976) Optimal design of a class of welded structures using geometric programming. J Eng Ind 98(3):1021–1025. https://doi.org/10.1115/1.3438995

    Article  Google Scholar 

  94. Golinski J (1970) Optimal synthesis problems solved by means of nonlinear programming and random methods. J Mech 5(3):287–309. https://doi.org/10.1016/0022-2569(70)90064-9

    Article  Google Scholar 

  95. Sandgren E (1990) Nonlinear integer and discrete programming in mechanical design optimization. J Mech Des 112(2):223–229. https://doi.org/10.1115/1.2912596

    Article  Google Scholar 

  96. Arora J (1989) Introduction to Optimum Design. McGraw-Hill, New York

    Google Scholar 

  97. Zhao S, Zhang T, Ma S et al (2022) Sea-horse optimizer: a novel nature−inspired meta-heuristic for global optimization problems. Appl Intell 114:1–28. https://doi.org/10.1007/s10489-022-03994-3

    Article  Google Scholar 

  98. Milenković BN, Krstić MT (2021) Marine predators’ algorithm: application in applied mechanics. Tehnika 76(5):613–620. https://doi.org/10.5937/tehnika2105613M

    Article  Google Scholar 

  99. Zhao W, Zhang Z, Wang L (2020) Manta ray foraging optimization: an effective bio-inspired optimizer for engineering applications. Eng Appl Artif Intell 87:103300. https://doi.org/10.1016/j.engappai.2019.103300

    Article  Google Scholar 

  100. Zhang J, Xiao M, Gao L et al (2018) Queuing search algorithm: a novel metaheuristic algorithm for solving engineering optimization problems. Appl Math Model 63:464–490. https://doi.org/10.1016/j.apm.2018.06.036

    Article  MathSciNet  Google Scholar 

  101. Savsani P, Savsani V (2016) Passing vehicle search (pvs): a novel metaheuristic algorithm. Appl Math Model 40(5–6):3951–3978. https://doi.org/10.1016/j.apm.2015.10.040

    Article  Google Scholar 

  102. Sadollah A, Bahreininejad A, Eskandar H et al (2013) Mine blast algorithm: a new population based algorithm for solving constrained engineering optimization problems. Appl Soft Comput 13(5):2592–2612. https://doi.org/10.1016/j.asoc.2012.11.026

    Article  Google Scholar 

Download references

Funding

No funding was received to assist with the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to this work and all authors read and approved the final manuscript.

Corresponding author

Correspondence to Saif Eddine Khouni.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Not applicable

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A Appendix

A Appendix

1.1 A.1 Mathematical expression of benchmark functions

Tables 13 and 14.

Table 13 Mathematical expression of unimodal benchmark functions
Table 14 Mathematical expression of multimodal benchmark functions

1.2 A.2 Mathematical model WBD

Minimize \(f(x)=\,1.10471x_{1}^{2}x_{2}+0.04811x_{3}x_{4}(14+x_{2})\).

Subject to:

$$\begin{aligned} g_{1}(x)\,=\,& {} \tau (x)-\tau _{\max }\underline{<}0. \\ g_{2}(x)\,=\, & {} \sigma (x)-\sigma _{\max }\underline{<}0. \\ g_{3}(x)\,=\, & {} x_{1}-x_{4}\underline{<}0. \\ g_{4}(x)\,=\, & {} 0.10471x_{1}^{2}+0.04811x_{3}x_{4}(14+x_{2})-5\underline{<}0. \\ g_{5}(x)\,=\, & {} 0.125-x_{1}\underline{<}0. \\ g_{6}(x)\,=\, & {} \delta (x)-\delta _{\max }\underline{<}0. \\ g_{7}(x)\,=\, & {} P-P_{c}(x)\underline{<}0. \\ \end{aligned}$$

Where:

$$\begin{gathered} \tau (x) = \sqrt {(\tau ^{{\prime 2}} + 2\tau ^{\prime } \tau ^{{\prime \prime }} \frac{{x_{2} }}{{2R}} + (\tau ^{{\prime \prime }} )^{2} } ,\quad \tau ^{\prime } = \frac{P}{{\sqrt 2 x_{1} x_{2} }},\quad \tau ^{{\prime \prime }} = \frac{{MR}}{J} \hfill \\ J = 2\left( {\sqrt 2 x_{1} x_{2} \left( {\frac{{x_{2}^{2} }}{{12}} + \left( {\frac{{x_{1} + x_{3} }}{2}} \right)^{2} } \right)} \right),\quad R = \sqrt {\left( {\frac{{x_{2} }}{2}} \right)^{2} + \left( {\frac{{x_{1} + x_{3} }}{2}} \right)^{2} } ,\quad M = P\left( {L + \frac{{x_{2} }}{2}} \right), \hfill \\ P_{c} (x) = \frac{{4.013E\sqrt {\frac{{x_{3}^{2} x_{4}^{6} }}{{36}}} }}{{L^{2} }}\left( {1 - \frac{{x_{3} }}{{2L}}\sqrt {\frac{E}{{4G}}} } \right),\quad P = 6000lb,\;L = 14{\text{in}},\quad E = 30 \times 10^{6} {\text{psi}}, \hfill \\ G = 12 \times 10^{6} {\text{psi}},\delta _{{\max }} = 0.25{\text{in}},\quad \tau _{{\max }} = 13,600{\text{psi}},\quad \sigma _{{\max }} = 3 \times 10^{4} {\text{psi}}. \hfill \\ \end{gathered}$$

And

$$\begin{aligned}{} & {} 0.1\underline{<}x_{i}\underline{<}2,{ }i=1,4. \\{} & {} 0.1\underline{<}x_{i}\underline{<}10,{ }i=2,3. \end{aligned}$$

1.3 A.3 Mathematical model SRD

Minimize \(f(x)=0.7854x_{1}x_{2}^{2}(3.3333x_{3}^{2}+14.9334x_{3}-43.0934)-1.508x_{1}(x_{6}^{2}+x_{7}^{2})+7.4777(x_{6}^{3}+x_{7}^{3})+0.7854(x_{4}x_{6}^{2}+x_{5}x_{7}^{2}).\)

Subject to:

$$\begin{aligned} g_{1}(x)\,= \, & {} \frac{27}{x_{1}x_{2^{\chi }3}^{2}}-1\leqslant 0. \\ g_{2}(x)\,= \,& {} \frac{397.5}{x_{1}x_{2}^{2}x_{3}}-1\leqslant 0. \\ g_{3}(x)=\, & {} \frac{1.93x_{4}^{3}}{x_{2}x_{6}^{4}x_{3}}-1\le 0. \\ g_{4}(x)\,= \, & {} \frac{1.93x_{5}^{3}}{x_{2}x_{7}^{4}x_{3}}-1\le 0. \\ g_{5}(x)\,= \, & {} \frac{\sqrt{\left( \left( \frac{745x_{4}}{x_{2}x_{3}}\right) ^{2}+16.9\times 10^{6}\right) }}{110x_{6}^{3}}-1\le 0. \\ g_{6}(x)\,= \, & {} \frac{\sqrt{\left( \left( \frac{745x_{5}}{x_{2}x_{3}}\right) ^{2}+157.5\times 10^{6}\right) }}{85x_{7}^{3}}-1\le 0. \\ g_{7}(x)= & {} \frac{x_{2}x_{3}}{40}-1\le 0. \\ g_{8}(x)\,= \, & {} \frac{5x_{2}}{x_{1}}-1\le 0. \\ g_{9}(x)\,= \, & {} \frac{x_{1}}{12x_{2}}-1\le 0. \\ g_{10}(x)\,= \, & {} -\frac{1.5x_{6}+1.9}{x_{4}}-1\leqslant 0. \\ g_{11}(x)\,= \, & {} \frac{1.1x_{7}+1.9}{x_{5}}-1\leqslant 0. \end{aligned}$$

Where:

$$\begin{aligned}{} & {} 2.6\le x_{1}\le 3.6, \quad 0.7\le x_{2}\le 0.8, \quad 17\le x_{3}\le 28, \quad 7.3\le x_{4}\le 8.3, \\{} & {} 7.3\le x_{5}\le 8.3, \quad 2.9\le x_{6}\le 3.9, \quad 5.0\le x_{7}\le 5.5. \end{aligned}$$

1.4 A.4 Mathematical model PVD

Minimize \(f(x)=0.6224x_{1}x_{3}x_{4}+1.7781x_{2}x_{3}^{2}+3.1661x_{1}^{2}x_{4}+19.84x_{1}^{2}x_{3}\).

Subject to:

$$\begin{aligned} g_{1}(x)= & {} -x_{1}+0.0193x_{3}\underline{<}0. \\ g_{2}(x)= & {} -x_{2}+0.00954x_{3}\underline{<}0. \\ g_{3}(x)= & {} -\pi x_{3}^{2}x_{4}-\frac{4}{3}\pi x_{3}^{3}+1296,000\underline{<}0. \\ g_{4}(x)= \,& {} x_{4}-240\underline{<}0. \end{aligned}$$

Where:

$$\begin{aligned}{} & {} 0\underline{<}x_{i}\underline{<}100,{ }i=1,2. \\{} & {} 10\underline{<}x_{i}\underline{<}200,{ }i=3,4. \end{aligned}$$

1.5 A.5 Mathematical model TCSD

Minimize \(f(x)=(x_{3}+2)x_{2}x_{1}^{2}.\)

Subject to:

$$\begin{aligned} g_{1}(x)\,=\, & {} 1-\frac{x_{2}^{3}x_{3}}{71,785x_{1}^{4}}\underline{<}0. \\ g_{2}(x)\,=\, & {} 4x_{2}^{2}-\frac{x_{1^{\chi }2}}{12.566(x_{2}x_{1}^{3}-x_{1}^{4})}+ \frac{1}{5108x_{1}^{2}}-1\underline{<}0. \\ g_{3}(x)\,=\, & {} 1-\frac{140.45x_{1}}{x_{2}^{2}x_{3}}\underline{<}0. \\ g_{4}(x)\,=\, & {} x_{2}+\frac{x_{1}}{1.5}-1\underline{<}0. \end{aligned}$$

Where:

$$\begin{aligned}{} & {} 0.05\underline{<}x_{1}\underline{<}2. \\{} & {} 0.25\underline{<}x_{2}\underline{<}1.30. \\{} & {} 2.00\underline{<}x_{3}\underline{<}15.00. \end{aligned}$$

1.6 A.6 Optimal solutions of benchmark engineering problems

Table 15 Comparison of the optimal solutions obtained by NOA and the compared algorithms on WBD problem
Table 16 Comparison of the optimal solutions obtained by NOA and the compared algorithms on SRD problem
Table 17 Comparison of the optimal solutions obtained by NOA and the compared algorithms on PVD problem
Table 18 Comparison of the optimal solutions obtained by NOA and the compared algorithms on TCSD problem

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khouni, S.E., Menacer, T. Nizar optimization algorithm: a novel metaheuristic algorithm for global optimization and engineering applications. J Supercomput 80, 3229–3281 (2024). https://doi.org/10.1007/s11227-023-05579-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-023-05579-4

Keywords

Navigation