Skip to main content

Advertisement

Log in

ACANet: attention-based context-aware network for infrared small target detection

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

Small infrared targets in complex backgrounds are easily obscured by a large amount of clutter, so highly discriminative features are needed to distinguish them from the cluttered background. Even if the expansion factor is increased, methods based on semantic segmentation are still difficult to aggregate local features of obscure and small objects. Even by increasing the dilation factor, methods based on semantic segmentation still have difficulty in aggregating local features of obscure and small objects. In order to effectively separate targets from their background environments and extract information of small targets with complex backgrounds, this paper proposes the attention-based context-aware network (ACANet) model. Context-aware feature aggregation model adopts dilated convolutions to extract high-level features, yet mitigates potential harm to small targets by clustering local features and reducing the dilation factor. Subsequently, abstract and detailed information are effectively fused through a cross-layer feature fusion model based on cross-layer attention and asymmetric feature fusion methods. In addition, the global pixel perception module is also used to assist in capturing target position information, which can alleviate the precise positioning challenge of the model due to the small size of the target. Experimental results show that compared with other state-of-the-art methods on existing public datasets, ACANet exhibits superior performance in metrics such as detection probability, false alarm rate, and mIoU.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Rawat SS, Verma SK, Kumar Y (2020) Review on recent development in infrared small target detection algorithms. Procedia Comput Sci 167:2496–2505

    Article  Google Scholar 

  2. Teutsch M, Krüger W (2010) Classification of small boats in infrared images for maritime surveillance. In: 2010 International WaterSide Security Conference, pp 1–7. IEEE

  3. Deng H, Sun X, Liu M, Ye C, Zhou X (2016) Small infrared target detection based on weighted local difference measure. IEEE Trans Geosci Remote Sens 54(7):4204–4214

    Article  Google Scholar 

  4. Huang S, Liu Y, He Y, Zhang T, Peng Z (2019) Structure-adaptive clutter suppression for infrared small target detection: chain-growth filtering. Remote Sens 12(1):47

    Article  Google Scholar 

  5. Sun Y, Yang J, An W (2020) Infrared dim and small target detection via multiple subspace learning and spatial-temporal patch-tensor model. IEEE Trans Geosci Remote Sens 59(5):3737–3752

    Article  Google Scholar 

  6. Guo L, Sun X, Zhang W, Li Z, Yu Q (2023) Small aerial target detection using trajectory hypothesis and verification. IEEE Trans Geosci Remote Sens 61:1–14

    Google Scholar 

  7. Sun X, Guo L, Zhang W, Wang Z, Yu Q (2021) Small aerial target detection for airborne infrared detection systems using lightgbm and trajectory constraints 14:9959–9973

  8. Tom VT, Peli T, Leung M, Bondaryk JE (1993) Morphology-based algorithm for point target detection in infrared backgrounds. In: Signal and data processing of small targets 1993, vol. 1954, pp 2–11. SPIE

  9. Deshpande SD, Er MH, Venkateswarlu R, Chan P (1999) Max-mean and max-median filters for detection of small targets. In: Signal and data processing of small targets 1999, vol. 3809, pp 74–83. SPIE

  10. Chen CP, Li H, Wei Y, Xia T, Tang YY (2013) A local contrast method for small infrared target detection. IEEE Trans Geosci Remote Sens 52(1):574–581

    Article  Google Scholar 

  11. Han J, Ma Y, Zhou B, Fan F, Liang K, Fang Y (2014) A robust infrared small target detection algorithm based on human visual system. IEEE Geosci Remote Sens Lett 11(12):2168–2172

    Article  Google Scholar 

  12. Han J, Moradi S, Faramarzi I, Liu C, Zhang H, Zhao Q (2019) A local contrast method for infrared small-target detection utilizing a tri-layer window. IEEE Geosci Remote Sens Lett 17(10):1822–1826

    Article  Google Scholar 

  13. Han J, Moradi S, Faramarzi I, Zhang H, Zhao Q, Zhang X, Li N (2020) Infrared small target detection based on the weighted strengthened local contrast measure. IEEE Geosci Remote Sens Lett 18(9):1670–1674

    Article  Google Scholar 

  14. Gao C, Meng D, Yang Y, Wang Y, Zhou X, Hauptmann AG (2013) Infrared patch-image model for small target detection in a single image. IEEE Trans Image Process 22(12):4996–5009

    Article  MathSciNet  Google Scholar 

  15. Lin Z, Ganesh A, Wright J, Wu L, Chen M, Ma Y (2009) Fast convex optimization algorithms for exact recovery of a corrupted low-rank matrix. Coordinated Science Laboratory Report no. UILU-ENG-09-2214, DC-246

  16. Wang X, Peng Z, Kong D, Zhang P, He Y (2017) Infrared dim target detection based on total variation regularization and principal component pursuit. Image Vis Comput 63:1–9

    Article  Google Scholar 

  17. Dai Y, Wu Y (2017) Reweighted infrared patch-tensor model with both nonlocal and local priors for single-frame small target detection. IEEE J Sel Top Appl Earth Obs Remote Sens 10(8):3752–3767

    Article  Google Scholar 

  18. Zhang L, Peng Z (2019) Infrared small target detection based on partial sum of the tensor nuclear norm. Remote Sens 11(4):382

    Article  Google Scholar 

  19. Kong X, Yang C, Cao S, Li C, Peng Z (2021) Infrared small target detection via nonconvex tensor fibered rank approximation. IEEE Trans Geosci Remote Sens 60:1–21

    Google Scholar 

  20. Wang H, Zhou L, Wang L (2019) Miss detection vs. false alarm: adversarial learning for small object segmentation in infrared images. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp 8509–8518

  21. Dai Y, Wu Y, Zhou F, Barnard K (2021) Asymmetric contextual modulation for infrared small target detection. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp 950–959

  22. Liu M, Du H-Y, Zhao Y-J, Dong L-Q, Hui M, Wang S (2017) Image small target detection based on deep learning with snr controlled sample generation. Curr Trends Comput Sci Mech Autom 1:211–220

    Google Scholar 

  23. Chen Y, Li L, Liu X, Su X (2022) A multi-task framework for infrared small target detection and segmentation. IEEE Trans Geosci Remote Sens 60:1–9

    Google Scholar 

  24. Zhang M, Zhang R, Yang Y, Bai H, Zhang J, Guo J (2022) Isnet: Shape matters for infrared small target detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 877–886

  25. Wu X, Hong D, Chanussot J (2023) Uiu-net: U-net in u-net for infrared small object detection. IEEE Trans Image Process 32:364–376

    Article  Google Scholar 

  26. Ying X, Liu L, Wang Y, Li R, Chen N, Lin Z, Sheng W, Zhou S (2023) Mapping degeneration meets label evolution: Learning infrared small target detection with single point supervision. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 15528–15538

  27. Li B, Xiao C, Wang L, Wang Y, Lin Z, Li M, An W, Guo Y (2022) Dense nested attention network for infrared small target detection. IEEE Trans Image Process 32:1745–1758

    Article  Google Scholar 

  28. Hu J, Shen L, Sun G (2018) Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp 7132–7141

  29. Hamaguchi R, Fujita A. Nemoto K, Imaizumi T, Hikosaka S (2018) Effective use of dilated convolutions for segmenting small object instances in remote sensing imagery. In: 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), pp 1442–1450 . IEEE

  30. Zhang T, Cao S, Pu T, Peng Z (2021) Agpcnet: Attention-guided pyramid context networks for infrared small target detection. arXiv preprint arXiv:2111.03580

  31. Hadhoud MM, Thomas DW (1988) The two-dimensional adaptive LMS (TDLMS) algorithm. IEEE Trans Circuits Syst 35(5):485–494

    Article  Google Scholar 

  32. Bai X, Zhou F (2010) Analysis of new top-hat transformation and the application for infrared dim small target detection. Pattern Recogn 43(6):2145–2156

    Article  Google Scholar 

  33. Qin Y, Bruzzone L, Gao C, Li B (2019) Infrared small target detection based on facet kernel and random walker. IEEE Trans Geosci Remote Sens 57(9):7104–7118

    Article  Google Scholar 

  34. Liu J, He Z, Chen Z, Shao L (2018) Tiny and dim infrared target detection based on weighted local contrast. IEEE Geosci Remote Sens Lett 15(11):1780–1784

    Article  Google Scholar 

  35. Zhu H, Liu S, Deng L, Li Y, Xiao F (2019) Infrared small target detection via low-rank tensor completion with top-hat regularization. IEEE Trans Geosci Remote Sens 58(2):1004–1016

    Article  Google Scholar 

  36. Dai Y, Wu Y, Song Y, Guo J (2017) Non-negative infrared patch-image model: Robust target-background separation via partial sum minimization of singular values. Infrared Phys Technol 81:182–194

    Article  Google Scholar 

  37. Deng Q, Lu H, Tao H, Hu M, Zhao F (2019) Multi-scale convolutional neural networks for space infrared point objects discrimination. IEEE Access 7:28113–28123

    Article  Google Scholar 

  38. Shi M, Wang H (2020) Infrared dim and small target detection based on denoising autoencoder network. Mob Netw Appl 25:1469–1483

    Article  Google Scholar 

  39. Dai Y, Wu Y, Zhou F, Barnard K (2021) Attentional local contrast networks for infrared small target detection. IEEE Trans Geosci Remote Sens 59(11):9813–9824

    Article  Google Scholar 

  40. Wang A, Li W, Wu X, Huang Z, Tao R (2022) Mpanet: Multi-patch attention for infrared small target object detection. In: IGARSS 2022-2022 IEEE International Geoscience and Remote Sensing Symposium, pp. 3095–3098 . IEEE

  41. Woo S, Park J, Lee J-Y, Kweon IS (2018) Cbam: convolutional block attention module. In: Proceedings of the European Conference on Computer Vision (ECCV), pp 3–19

  42. Li X, Wang W, Hu X, Yang J (2019) Selective kernel networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 510–519

  43. Park J, Woo S, Lee J-Y, Kweon IS (2018) Bam: bottleneck attention module. arXiv preprint arXiv:1807.06514

  44. Wang Q, Wu B, Zhu P, Li P, Zuo W, Hu Q (2020) Eca-net: efficient channel attention for deep convolutional neural networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 11534–11542

  45. Zhang H, Zu K, Lu J, Zou Y, Meng D (2021) Epsanet: an efficient pyramid split attention block on convolutional neural network. arXiv preprint arXiv:2105.14447

  46. Zhang Q-L, Yang Y-B (2021) Sa-net: Shuffle attention for deep convolutional neural networks. In: ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 2235–2239 . IEEE

  47. Wang F, Jiang M, Qian C, Yang S, Li C, Zhang H, Wang X, Tang X (2017) Residual attention network for image classification. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp 6450–6458

  48. Li H, Chen G, Li G, Yu Y (2019) Motion guided attention for video salient object detection. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp 7273–7282

  49. Ronneberger O, Fischer P, Brox T (2015) U-net: Convolutional networks for biomedical image segmentation. In: Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III 18, pp 234–241. Springer

  50. Lin T-Y, Dollár P, Girshick R, He K, Hariharan B, Belongie S (2017) Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp 2117–2125

  51. Ding P, Zhang J, Zhou H, Zou X, Wang M (2020) Pyramid context learning for object detection. J Supercomput 76:9374–9387

    Article  Google Scholar 

  52. Chaudhary V, Buttar PK, Sachan MK (2022) Satellite imagery analysis for road segmentation using u-net architecture. J Supercomput 78(10):12710–12725

    Article  Google Scholar 

  53. Kavianpour P, Kavianpour M, Jahani E, Ramezani A (2023) A CNN-BiLSTM model with attention mechanism for earthquake prediction. J Supercomput, pp 1–33

  54. Gong Y, Yu X, Ding Y, Peng X, Zhao J, Han Z (2021) Effective fusion factor in FPN for tiny object detection. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp 1160–1168

  55. Tong X, Sun B, Wei J, Zuo Z, Su S (2021) Eaau-net: enhanced asymmetric attention u-net for infrared small target detection. Remote Sens 13(16):3200

    Article  Google Scholar 

  56. Zuo Z, Tong X, Wei J, Su S, Wu P, Guo R, Sun B (2022) Affpn: attention fusion feature pyramid network for small infrared target detection. Remote Sens 14(14):3412

    Article  Google Scholar 

  57. Yu F, Koltun V (2015) Multi-scale context aggregation by dilated convolutions. arXiv preprint arXiv:1511.07122

  58. Hu P, Ramanan D (2017) Finding tiny faces. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp 951–959

  59. Rahman MA, Wang Y (2016) Optimizing intersection-over-union in deep neural networks for image segmentation. In: International Symposium on Visual Computing, pp 234–244 . Springer

  60. Liu S, Qiao P, Dou Y (2022) Multi-outputs is all you need for deblur. arXiv preprint arXiv:2208.13029

  61. Wei Y, You X, Li H (2016) Multiscale patch-based contrast measure for small infrared target detection. Pattern Recogn 58:216–226

    Article  Google Scholar 

  62. Zhang L, Peng L, Zhang T, Cao S, Peng Z (2018) Infrared small target detection via non-convex rank approximation minimization joint l 2, 1 norm. Remote Sens 10(11):1821

    Article  Google Scholar 

  63. Ma X, Li Y (2023) Edge-aided multiscale context network for infrared small target detection. IEEE Geosci Remote Sens Lett 20:1–5

    Google Scholar 

  64. Qi M, Jia G (2023) Infrared small target detection algorithm based on improved deeplabv3+. In: 2023 8th International Conference on Intelligent Computing and Signal Processing (ICSP), pp 1437–1442

Download references

Acknowledgements

This work has been partially supported by Sichuan science and technology program (Grant No: 2023YFG0300, 2023YFQ0044).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuanmin Zhang or Zhisheng Gao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ling, S., Chen, L., Wu, Y. et al. ACANet: attention-based context-aware network for infrared small target detection. J Supercomput 80, 17068–17096 (2024). https://doi.org/10.1007/s11227-024-06067-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-024-06067-z

Keywords