Skip to main content

Advertisement

Log in

Hybrid Snake Optimizer Algorithm for Solving Economic Load Dispatch Problem with Valve Point Effect

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

Snake optimizer (SO) is an optimization algorithm drawn from the reproductive habits of serpents. It exhibits outstanding effectiveness in solving continuous optimization problems. However, SO may face some performance challenges related to its population diversity and early convergence behavior. In this paper, we address the challenges of SO by introducing the Hybrid snake optimizer algorithm (HSOA). HSOA is a novel approach to optimization that incorporates two new optimization techniques into the SO algorithm. First, it incorporates a new opposition-based learning technique called Oppositional-mutual learning into the initialization stage of the SO algorithm. Second, it integrates dynamic polynomial mutation, which is an intelligent mutation method, into the initialization and optimization stages of the SO algorithm. These integrated approaches aim to increase the population’s diversity of SO, while improving its searchability during its optimization stage. In power systems, the economic load dispatch (ELD) is an intricate optimization problem that becomes more challenging when the restrictions of the valve point effect (VPE) are incorporated into it. ELD with VPE is non-convex, lacking smoothness, and exhibiting nonlinearity that considers operational limitations expressed as both equality and inequality constraints to generate electricity. The suggested HSOA algorithm underwent evaluation and was compared with 47 renowned optimization algorithms across five real-world ELD problems with different specifications: generators with different unit capacities, transmission losses, prohibited operation zones, and Ramp Rate restrictions. The experimental results demonstrate that HSOA produces competitive solutions for the five real-world ELD problems. In detail, HSOA achieves the top rank in three cases of ELD problems with a 3-unit generator, and it secures the second and third positions in high-dimensional ELD problems with 40-unit and 80-unit generators, respectively. The statistical tests confirm the reliability and efficiency of HSOA. In addition, the effectiveness of HSOA was evaluated using the single-objective IEEE-CEC 2014 functions and compared to the results of eight popular metaheuristic algorithms. The results demonstrate that HSOA is a competitive optimization algorithm capable of solving the functions of IEEE-CEC 2014.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Algorithm 1
Algorithm 2
Algorithm 3
Algorithm 4
Algorithm 5
Algorithm 6
Fig. 2
Fig. 3
Algorithm 7
Fig. 4
Fig. 5
Fig.6
Fig.7
Fig.8

Similar content being viewed by others

References

  1. Okwu MO, Tartibu LK (2021) Particle swarm optimisation. Stud Comput Intell 927:5–13. https://doi.org/10.1007/978-3-030-61111-8_2

    Article  Google Scholar 

  2. Yang XS, Deb S (2009) "Cuckoo Search via Lévy flights," 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC), Coimbatore, India, pp 210-214.

  3. Bramer MA, Ellis R (2010) Programme chairs introduction. Res Dev Intell Syst XXVI Inc Appl Innov Intell Syst XVII. https://doi.org/10.1007/978-1-84882-983-1

    Article  Google Scholar 

  4. Rashedi E, Nezamabadi-pour H, Saryazdi S (2009) GSA: a gravitational search algorithm. Inf Sci (Ny) 179(13):2232–2248. https://doi.org/10.1016/j.ins.2009.03.004

    Article  Google Scholar 

  5. Mirjalili S (2019) Ant colony optimisation. Stud Comput Intell 780:33–42. https://doi.org/10.1007/978-3-319-93025-1_3

    Article  Google Scholar 

  6. Grefenstette JJ (1993) “Genetic algorithms and machine learning.” In: Proceedings of the Sixth Annual Conference on Computational Learning Theory, pp. 3–4, https://doi.org/10.1145/168304.168305.

  7. Karaboga D, Basturk B (2007) A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J Glob Optim 39(3):459–471. https://doi.org/10.1007/s10898-007-9149-x

    Article  MathSciNet  Google Scholar 

  8. I. Fister, I. Fister, X. -S. Yang, S. Fong and Y. Zhuang, (2014) "Bat algorithm: Recent advances," 2014 IEEE 15th International Symposium on Computational Intelligence and Informatics (CINTI), Budapest, Hungary, pp 163-167. https://doi.org/10.1109/CINTI.2014.7028669.

  9. Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61. https://doi.org/10.1016/j.advengsoft.2013.12.007

    Article  Google Scholar 

  10. Yang XS (2009) Harmony search as a metaheuristic algorithm. Stud Comput Intell 191:1–14. https://doi.org/10.1007/978-3-642-00185-7_1

    Article  Google Scholar 

  11. R. Storn (1996) "On the usage of differential evolution for function optimization," Proceedings of North American Fuzzy Information Processing, Berkeley, CA, USA, pp. 519-523. https://doi.org/10.1109/nafips.1996.534789

  12. Braik MS, Awadallah MA, Al-Betar MA, Hammouri AI, Zitar RA (2023) A non-convex economic load dispatch problem using chameleon swarm algorithm with roulette wheel and levy flight methods. Appl Intell. https://doi.org/10.1007/s10489-022-04363-w

    Article  Google Scholar 

  13. Al-Betar MA, Khader AT, Doush IA (2014) Memetic techniques for examination timetabling. Ann Oper Res 218(1):23–50. https://doi.org/10.1007/s10479-013-1500-7

    Article  MathSciNet  Google Scholar 

  14. Alkoffash MS, Awadallah MA, Alweshah M, Zitar RA, Assaleh K, Al-Betar MA (2021) A non-convex economic load dispatch using hybrid salp swarm algorithm. Arab J Sci Eng 46(9):8721–8740. https://doi.org/10.1007/s13369-021-05646-z

    Article  Google Scholar 

  15. Hashim FA, Hussien AG (2022) Snake Optimizer: A novel meta-heuristic optimization algorithm. Knowl-Based Syst 242:108320. https://doi.org/10.1016/j.knosys.2022.108320

    Article  Google Scholar 

  16. Xu Y et al (2021) An enhanced differential evolution algorithm with a new oppositional-mutual learning strategy. Neurocomputing 435:162–175. https://doi.org/10.1016/j.neucom.2021.01.003

    Article  Google Scholar 

  17. Hamdan M (2011) A dynamic polynomial mutation for evolutionary multi-objective optimization algorithms. Int J Artif Intell Tools 20(1):209–219. https://doi.org/10.1142/S0218213011000097

    Article  Google Scholar 

  18. Amjady N, Sharifzadeh H (2010) Solution of non-convex economic dispatch problem considering valve loading effect by a new modified differential evolution algorithm. Int J Electr Power Energy Syst 32(8):893–903. https://doi.org/10.1016/j.ijepes.2010.01.023

    Article  Google Scholar 

  19. Sinha N, Chakrabarti R, Chattopadhyay PK (2003) Brief Papers. IEEE Trans Evol Computat 7(1):83–94

    Article  Google Scholar 

  20. Walters DC, Sheble GB (1993) Genetic algorithm solution of economic dispatch with valve point loading. IEEE Trans Power Syst 8(3):1325–1332. https://doi.org/10.1109/59.260861

    Article  Google Scholar 

  21. Rawa M (2022) Towards avoiding cascading failures in transmission expansion planning of modern active power systems using hybrid snake-sine cosine optimization algorithm. Mathematics 10(8):1323. https://doi.org/10.3390/math10081323

    Article  Google Scholar 

  22. Selvakumar AI, Thanushkodi K (2009) Optimization using civilized swarm: Solution to economic dispatch with multiple minima. Electr Power Syst Res 79(1):8–16. https://doi.org/10.1016/j.epsr.2008.05.001

    Article  Google Scholar 

  23. Hemamalini S, Simon SP (2010) Artificial bee colony algorithm for economic load dispatch problem with non-smooth cost functions. Electr Power Compon Syst 38(7):786–803. https://doi.org/10.1080/15325000903489710

    Article  Google Scholar 

  24. Pothiya S, Ngamroo I, Kongprawechnon W (2010) Ant colony optimisation for economic dispatch problem with non-smooth cost functions. Int J Electr Power Energy Syst 32(5):478–487. https://doi.org/10.1016/j.ijepes.2009.09.016

    Article  Google Scholar 

  25. Basu M, Chowdhury A (2013) Cuckoo search algorithm for economic dispatch. Energy 60:99–108. https://doi.org/10.1016/j.energy.2013.07.011

    Article  Google Scholar 

  26. Mandal B, Roy PK, Mandal S (2014) Economic load dispatch using krill herd algorithm. Int J Electr Power Energy Syst 57:1–10. https://doi.org/10.1016/j.ijepes.2013.11.016

    Article  Google Scholar 

  27. Kamboj VK, Bath SK, Dhillon JS (2016) Solution of non-convex economic load dispatch problem using grey wolf optimizer. Neural Comput Appl 27(5):1301–1316. https://doi.org/10.1007/s00521-015-1934-8

    Article  Google Scholar 

  28. Yu JJQ, Li VOK (2016) A social spider algorithm for solving the non-convex economic load dispatch problem. Neurocomputing 171:955–965. https://doi.org/10.1016/j.neucom.2015.07.037

    Article  Google Scholar 

  29. Abbas G et al (2017) Solution of an economic dispatch problem through particle swarm optimization : a detailed survey-part I. IEEE Access 3536:15105. https://doi.org/10.1109/ACCESS.2017.2723862

    Article  Google Scholar 

  30. Shilaja C, Ravi K (2017) Optimization of emission/economic dispatch using euclidean affine flower pollination algorithm (eFPA) and binary FPA (BFPA) in solar photo voltaic generation. Renew Energy 107:550–566. https://doi.org/10.1016/j.renene.2017.02.021

    Article  Google Scholar 

  31. Tripati P, Tomar U, Singh VK, Bhoi AK (2018) Solution of economic load dispatch problems through moth flame optimization algorithm. In: Bera R, Sarkar SK, Chakraborty S (eds) Advances in Communication, Devices and Networking. Springer, Singapore, pp 287–294. https://doi.org/10.1007/978-981-10-7901-6_31

    Chapter  Google Scholar 

  32. Mohammadi F, Abdi H (2018) A modified crow search algorithm (MCSA) for solving economic load dispatch problem. Appl Soft Comput J 71:51–65. https://doi.org/10.1016/j.asoc.2018.06.040

    Article  Google Scholar 

  33. Kumar M, Dhillon JS (2018) Hybrid artificial algae algorithm for economic load dispatch. Appl Soft Comput J 71:89–109. https://doi.org/10.1016/j.asoc.2018.06.035

    Article  Google Scholar 

  34. Zhu B, Xie L, Han D, Meng X, Teo R (2017) A survey on recent progress in control of swarm systems. Sci China Inf Sci 60(7):1–24. https://doi.org/10.1007/s11432-016-9088-2

    Article  MathSciNet  Google Scholar 

  35. Barisal AK (2013) Dynamic search space squeezing strategy based intelligent algorithm solutions to economic dispatch with multiple fuels. Int J Electr Power Energy Syst 45(1):50–59. https://doi.org/10.1016/j.ijepes.2012.08.049

    Article  Google Scholar 

  36. Hosseinnezhad V, Babaei E (2013) Economic load dispatch using θ-PSO. Int J Electr Power Energy Syst 49(1):160–169. https://doi.org/10.1016/j.ijepes.2013.01.002

    Article  Google Scholar 

  37. Zhisheng Z (2010) Quantum-behaved particle swarm optimization algorithm for economic load dispatch of power system. Expert Syst Appl 37(2):1800–1803. https://doi.org/10.1016/j.eswa.2009.07.042

    Article  Google Scholar 

  38. Alsumait JS, Sykulski JK, Al-Othman AK (2010) A hybrid GA-PS-SQP method to solve power system valve-point economic dispatch problems. Appl Energy 87(5):1773–1781. https://doi.org/10.1016/j.apenergy.2009.10.007

    Article  Google Scholar 

  39. Bhattacharya A, Chattopadhyay PK (2010) Hybrid differential evolution with biogeography-based optimization for solution of economic load dispatch. IEEE Trans Power Syst 25(4):1955–1964. https://doi.org/10.1109/TPWRS.2010.2043270

    Article  Google Scholar 

  40. Aydin D, Özyön S, Yaşar C, Liao T (2014) Artificial bee colony algorithm with dynamic population size to combined economic and emission dispatch problem. Int J Electr Power Energy Syst 54:144–153. https://doi.org/10.1016/j.ijepes.2013.06.020

    Article  Google Scholar 

  41. Jiang S, Ji Z, Shen Y (2014) A novel hybrid particle swarm optimization and gravitational search algorithm for solving economic emission load dispatch problems with various practical constraints. Int J Electr Power Energy Syst 55:628–644. https://doi.org/10.1016/j.ijepes.2013.10.006

    Article  Google Scholar 

  42. Chopra N, Kumar G, Mehta S (2016) Hybrid GWO-PSO algorithm for solving convex economic load dispatch problem. Int J Res Adv Technol 4(6):37–41

    Google Scholar 

  43. Al-Betar MA, Awadallah MA, Khader AT, Bolaji AL, Almomani A (2018) Economic load dispatch problems with valve-point loading using natural updated harmony search. Neural Comput Appl 29(10):767–781. https://doi.org/10.1007/s00521-016-2611-2

    Article  Google Scholar 

  44. Al-Betar MA, Awadallah MA, Abu Doush I, Alsukhni E, ALkhraisat H (2018) A Non-convex economic dispatch problem with valve loading effect using a new modified β-hill climbing local search algorithm. Arab J Sci Eng 43(12):7439–7456. https://doi.org/10.1007/s13369-018-3098-1

    Article  Google Scholar 

  45. Huang Z, Zhao J, Qi L, Gao Z, Duan H (2020) Comprehensive learning cuckoo search with chaos-lambda method for solving economic dispatch problems. Appl Intell 50(9):2779–2799. https://doi.org/10.1007/s10489-020-01654-y

    Article  Google Scholar 

  46. Haghrah A, Nekoui MA, Nazari-Heris M, Mohammadi-ivatloo B (2021) An improved real-coded genetic algorithm with random walk based mutation for solving combined heat and power economic dispatch. J Ambient Intell Humaniz Comput 12(8):8561–8584. https://doi.org/10.1007/s12652-020-02589-5

    Article  Google Scholar 

  47. Ellahi M, Abbas G, Satrya GB, Rehan Usman M, Jason Gu (2021) A modified hybrid particle swarm optimization with bat algorithm parameter inspired acceleration coefficients for solving eco-friendly and economic dispatch problems. IEEE Access 9:82169–82187. https://doi.org/10.1109/ACCESS.2021.3085819

    Article  Google Scholar 

  48. Al-Betar MA (2021) Island-based harmony search algorithm for non-convex economic load dispatch problems. J Electr Eng Technol 16(4):1985

    Article  Google Scholar 

  49. Al-Betar MA, Awadallah MA, Zitar RA, Assaleh K (2022) Economic load dispatch using memetic sine cosine algorithm. J Ambient Intell Humaniz Comput 14(9):11685–11713. https://doi.org/10.1007/s12652-022-03731-1

    Article  Google Scholar 

  50. Al-Betar MA et al (2023) A hybrid Harris Hawks optimizer for economic load dispatch problems. Alexandria Eng J 64:365–389. https://doi.org/10.1016/j.aej.2022.09.010

    Article  Google Scholar 

  51. H. R. Tizhoosh, (2005) "Opposition-Based Learning: A New Scheme for Machine Intelligence," In: International Conference on Computational Intelligence for Modelling, Control and Automation and International Conference on Intelligent Agents, Web Technologies and Internet Commerce (CIMCA-IAWTIC'06), Vienna, Austria, pp. 695-701 https://doi.org/10.1109/cimca.2005.1631345.

  52. Rahnamayan S, Tizhoosh HR, Salama MMA (2008) Opposition versus randomness in soft computing techniques. Appl Soft Comput J 8(2):906–918. https://doi.org/10.1016/j.asoc.2007.07.010

    Article  Google Scholar 

  53. Verma S, Saha S, Mukherjee V (2018) Optimal rescheduling of real power generation for congestion management using teaching-learning-based optimization algorithm. J Electr Syst Inf Technol 5(3):889–907. https://doi.org/10.1016/j.jesit.2016.12.008

    Article  Google Scholar 

  54. Shaw B, Mukherjee V, Ghoshal SP (2012) A novel opposition-based gravitational search algorithm for combined economic and emission dispatch problems of power systems. Int J Electr Power Energy Syst 35(1):21–33. https://doi.org/10.1016/j.ijepes.2011.08.012

    Article  Google Scholar 

  55. Roy PK, Mandal D (2014) Oppositional biogeography-based optimisation for optimal power flow. Int J Power Energy Convers 5(1):47–69. https://doi.org/10.1504/IJPEC.2014.059983

    Article  Google Scholar 

  56. Hamdan M (2010) On the disruption-level of polynomial mutation for evolutionary multi-objective optimisation algorithms. Comput Informatics 29(5):783–800

    Google Scholar 

  57. Abed-alguni BH (2019) Island-based cuckoo search with highly disruptive polynomial mutation. Int J Artif Intell 17(1):57–82

    Google Scholar 

  58. Alawad NA, Abed-alguni BH (2021) Discrete island-based cuckoo search with highly disruptive polynomial mutation and opposition-based learning strategy for scheduling of workflow applications in cloud environments. Arab J Sci Eng 46(4):3213–3233. https://doi.org/10.1007/s13369-020-05141-x

    Article  Google Scholar 

  59. Abed-alguni BH, Alawad NA (2021) Distributed grey wolf optimizer for scheduling of workflow applications in cloud environments. Appl Soft Comput 102:107113. https://doi.org/10.1016/j.asoc.2021.107113

    Article  Google Scholar 

  60. Abed-alguni BH, Barhoush M (2018) Distributed grey wolf optimizer for numerical optimization problems. Jordan J Comput Inf Technol. https://doi.org/10.5455/jjcit.71-1532897697

    Article  Google Scholar 

  61. Abed-Alguni BH, Paul DJ (2020) Hybridizing the cuckoo search algorithm with different mutation operators for numerical optimization problems. J Intell Syst 29(1):1043–1062. https://doi.org/10.1515/jisys-2018-0331

    Article  Google Scholar 

  62. Saka M, Eke I, Tezcan SS, Taplamacioglu MC (2017) Analysis of economic load dispatch with a lot of constraints using vortex search algorithm. Adv Sci Technol Eng Syst 2(6):151–156. https://doi.org/10.25046/aj020619

    Article  Google Scholar 

  63. Al-Betar MA, Awadallah MA, Krishan MM (2020) A non-convex economic load dispatch problem with valve loading effect using a hybrid grey wolf optimizer. Neural Comput Applic 32:12127–12154. https://doi.org/10.1007/s00521-019-04284-9

    Article  Google Scholar 

  64. Cai J, Li Q, Li L, Peng H, Yang Y (2012) A hybrid CPSO-SQP method for economic dispatch considering the valve-point effects. Energy Convers Manag 53(1):175–181. https://doi.org/10.1016/j.enconman.2011.08.023

    Article  Google Scholar 

  65. Tsai MT, Gow HJ, Lin WM (2011) A novel stochastic search method for the solution of economic dispatch problems with non-convex fuel cost functions. Int J Electr Power Energy Syst 33(4):1070–1076. https://doi.org/10.1016/j.ijepes.2011.01.026

    Article  Google Scholar 

  66. H. R. Tizhoosh, "Opposition-Based Learning: A New Scheme for Machine Intelligence," International Conference on Computational Intelligence for Modelling, Control and Automation and International Conference on Intelligent Agents, Web Technologies and Internet Commerce (CIMCA-IAWTIC'06), Vienna, Austria, 2005, pp. 695-701, https://doi.org/10.1109/CIMCA.2005.1631345

  67. Rao RV, Savsani VJ, Vakharia DP (2011) Teaching-learning-based optimization: a novel method for constrained mechanical design optimization problems. CAD Comput Aided Des 43(3):303–315. https://doi.org/10.1016/j.cad.2010.12.015

    Article  Google Scholar 

  68. Deb K, Agrawal RB (1994) Simulated binary crossover for continuous search space. Complex Syst 9:1–34

    MathSciNet  Google Scholar 

  69. Deb K, Tiwari S (2008) Omni-optimizer: a generic evolutionary algorithm for single and multi-objective optimization. Eur J Oper Res 185(3):1062–1087. https://doi.org/10.1016/j.ejor.2006.06.042

    Article  MathSciNet  Google Scholar 

  70. Kang F, Li J, Ma Z, Li H (2011) Artificial bee colony algorithm with local search for numerical optimization. J Softw 6(3):490–497. https://doi.org/10.4304/jsw.6.3.490-497

    Article  Google Scholar 

  71. Singh D, Dhillon JS (2019) Ameliorated grey wolf optimization for economic load dispatch problem. Energy 169:398–419. https://doi.org/10.1016/j.energy.2018.11.034

    Article  Google Scholar 

  72. Subbaraj P, Rengaraj R, Salivahanan S (2011) Enhancement of self-adaptive real-coded genetic algorithm using taguchi method for economic dispatch problem. Appl Soft Comput J 11(1):83–92. https://doi.org/10.1016/j.asoc.2009.10.019

    Article  Google Scholar 

  73. Bhattacharya A, Chattopadhyay PK (2010) Biogeography-based optimization for different economic load dispatch problems. IEEE Trans Power Syst 25(2):1064–1077. https://doi.org/10.1109/TPWRS.2009.2034525

    Article  Google Scholar 

  74. Subathra MSP, Easter Selvan S, Albert Victoire TA, Hepzibah Christinal A, Amato U (2015) A hybrid with cross-entropy method and sequential quadratic programming to solve economic load dispatch problem. IEEE Syst J 9(3):1031–1044. https://doi.org/10.1109/JSYST.2013.2297471

    Article  Google Scholar 

  75. Wang L, Li LP (2013) An effective differential harmony search algorithm for the solving non-convex economic load dispatch problems. Int J Electr Power Energy Syst 44(1):832–843. https://doi.org/10.1016/j.ijepes.2012.08.021

    Article  Google Scholar 

  76. Cai J, Li Q, Li L, Peng H, Yang Y (2012) A fuzzy adaptive chaotic ant swarm optimization for economic dispatch. Int J Electr Power Energy Syst 34(1):154–160. https://doi.org/10.1016/j.ijepes.2011.09.020

    Article  Google Scholar 

  77. Jayabarathi T, Raghunathan T, Adarsh BR, Suganthan PN (2016) Economic dispatch using hybrid grey wolf optimizer. Energy 111:630–641. https://doi.org/10.1016/j.energy.2016.05.105

    Article  Google Scholar 

  78. Niu Q, Zhang H, Wang X, Li K, Irwin GW (2014) A hybrid harmony search with arithmetic crossover operation for economic dispatch. Int J Electr Power Energy Syst 62:237–257. https://doi.org/10.1016/j.ijepes.2014.04.031

    Article  Google Scholar 

  79. Kumar R, Sharma D, Sadu A (2011) A hybrid multi-agent based particle swarm optimization algorithm for economic power dispatch. Int J Electr Power Energy Syst 33(1):115–123. https://doi.org/10.1016/j.ijepes.2010.06.021

    Article  Google Scholar 

  80. Waqas AB, Saifullah Y, Ashraf MM (2021) A Hybrid quantum inspired particle swarm optimization and least square framework for real-time harmonic estimation. J Mod Power Syst Clean Energy 9(6):1548–1556. https://doi.org/10.35833/MPCE.2019.000098

    Article  Google Scholar 

  81. Dos L, Coelho S, Mariani VC (2009) An improved harmony search algorithm for power economic load dispatch. Energy Convers Manag 50(10):2522–2526. https://doi.org/10.1016/j.enconman.2009.05.034

    Article  Google Scholar 

  82. Kumar A, Singhi R, Das S, Malakar T, Prakash O, Das P (2020) "Economic Load Dispatch Using Salp Swarm Algorithm," In: 2020 IEEE 9th Power India International Conference (PIICON), Sonepat, India, pp 1-6, https://doi.org/10.1109/PIICON49524.2020.9112882.

  83. Li X, Zhang H, Lu Z (2019) A differential evolution algorithm based on multi-population for economic dispatch problems with valve-point effects. IEEE Access 7:95585–95609. https://doi.org/10.1109/ACCESS.2019.2927574

    Article  Google Scholar 

  84. Mohammadi-Ivatloo B, Rabiee A, Soroudi A, Ehsan M (2012) Iteration PSO with time varying acceleration coefficients for solving non-convex economic dispatch problems. Int J Electr Power Energy Syst 42(1):508–516. https://doi.org/10.1016/j.ijepes.2012.04.060

    Article  Google Scholar 

  85. Lin WM, Gow HJ, Tsai MT (2011) Combining of direct search and signal-to-noise ratio for economic dispatch optimization. Energy Convers Manag 52(1):487–493. https://doi.org/10.1016/j.enconman.2010.07.022

    Article  Google Scholar 

  86. Awadallah MA, Al-Betar MA, Bolaji AL, Alsukhni EM, Al-Zoubi H (2019) Natural selection methods for artificial bee colony with new versions of onlooker bee. Soft Comput 23(15):6455–6494. https://doi.org/10.1007/s00500-018-3299-2

    Article  Google Scholar 

  87. Kumar S, Naresh R (2009) Nonconvex economic load dispatch using an efficient real-coded genetic algorithm. Appl Soft Comput J 9(1):321–329. https://doi.org/10.1016/j.asoc.2008.04.009

    Article  Google Scholar 

  88. Srinivasa Reddy A, Vaisakh K (2013) Shuffled differential evolution for economic dispatch with valve point loading effects. Int J Electr Power Energy Syst 46(1):342–352. https://doi.org/10.1016/j.ijepes.2012.10.012

    Article  Google Scholar 

  89. Coelho LDS, Mariani VC (2010) An efficient cultural self-organizing migrating strategy for economic dispatch optimization with valve-point effect. Energy Convers Manag 51(12):2580–2587. https://doi.org/10.1016/j.enconman.2010.05.022

    Article  Google Scholar 

  90. Al-Betar MA, Awadallah MA, Khader AT, Bolaji ALA (2016) Tournament-based harmony search algorithm for non-convex economic load dispatch problem. Appl Soft Comput J 47:449–459. https://doi.org/10.1016/j.asoc.2016.05.034

    Article  Google Scholar 

  91. Pothiya S, Ngamroo I, Kongprawechnon W (2008) Application of multiple tabu search algorithm to solve dynamic economic dispatch considering generator constraints. Energy Convers Manag 49(4):506–516. https://doi.org/10.1016/j.enconman.2007.08.012

    Article  Google Scholar 

  92. Abed-alguni BH, Alawad NA, Barhoush M, Hammad R (2021) Exploratory cuckoo search for solving single-objective optimization problems. Soft Comput 25(15):10167–10180. https://doi.org/10.1007/s00500-021-05939-3

    Article  Google Scholar 

  93. Verma S, Mukherjee V (2018) Investigation of static transmission expansion planning using the symbiotic organisms search algorithm. Eng Optim 50(9):1544–1560. https://doi.org/10.1080/0305215X.2017.1408085

    Article  Google Scholar 

  94. Abed-alguni BH, Paul D, Hammad R (2022) Improved Salp swarm algorithm for solving single-objective continuous optimization problems. Appl Intell 52(15):17217–17236. https://doi.org/10.1007/s10489-022-03269-x

    Article  Google Scholar 

  95. Tanabe R, Fukunaga AS (2014) "Improving the search performance of SHADE using linear population size reduction," In: 2014 IEEE Congress on Evolutionary Computation (CEC), Beijing, China, pp 1658-1665. https://doi.org/10.1109/CEC.2014.6900380

  96. Dhabal S, Chakrabarti R, Mishra NS, Venkateswaran P (2021) An improved image denoising technique using differential evolution-based salp swarm algorithm. Soft Comput 25(3):1941–1961. https://doi.org/10.1007/s00500-020-05267-y

    Article  Google Scholar 

  97. Sun G, Xu G, Jiang N (2020) A simple differential evolution with time-varying strategy for continuous optimization. Soft Comput 24(4):2727–2747. https://doi.org/10.1007/s00500-019-04159-0

    Article  Google Scholar 

  98. Iacca G, dos Santos Junior VC, Veloso de Melo V (2021) An improved jaya optimization algorithm with lévy flight. Expert Syst Appl 165:113902. https://doi.org/10.1016/j.eswa.2020.113902

    Article  Google Scholar 

  99. Erlich I, Rueda JL, Wildenhues S, Shewarega F (2014) "Evaluating the mean-variance mapping optimization on the IEEE-CEC 2014 test suite," In: 2014 IEEE Congress on Evolutionary Computation (CEC), Beijing, China, pp 1625-1632, https://doi.org/10.1109/CEC.2014.6900516.

  100. Pierezan J, Dos Santos Coelho L (2018) "Coyote Optimization Algorithm: A New Metaheuristic for Global Optimization Problems," In: 2018 IEEE Congress on Evolutionary Computation (CEC), Rio de Janeiro, Brazil, pp 1–8, https://doi.org/10.1109/CEC.2018.8477769.

  101. Abed-alguni BH, Alawad NA, Al-Betar MA, Paul D (2023) Opposition-based sine cosine optimizer utilizing refraction learning and variable neighborhood search for feature selection. Appl Intell 53(11):13224–13260. https://doi.org/10.1007/s10489-022-04201-z

    Article  Google Scholar 

  102. Abed-alguni BH, Al-Jarah SH (2024) IBJA: An improved binary DJaya algorithm for feature selection. J Comput Sci 75:102201. https://doi.org/10.1016/j.jocs.2023.102201

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The first author, Noor Aldeen Alawad, primarily contributed to the manuscript by writing the original draft, handling methodology, conducting validation and verification, and performing statistical analysis. The second author, Bilal H. Abed-alguni, was involved in writing the original draft, actively reviewed and edited the manuscript, and participated in validation and verification processes. The third author, Misaa El-ibini, played a crucial role in experimentation and contributed significantly to the validation and verification of the research findings.

Corresponding author

Correspondence to Noor Aldeen Alawad.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alawad, N.A., Abed-alguni, B.H. & El-ibini, M. Hybrid Snake Optimizer Algorithm for Solving Economic Load Dispatch Problem with Valve Point Effect. J Supercomput 80, 19274–19323 (2024). https://doi.org/10.1007/s11227-024-06207-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-024-06207-5

Keywords