Skip to main content
Log in

Machine learning-driven performance assessment of network-on-chip architectures

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

System-on-chip designs for high-performance computing systems widely use network-on-chip (NoC) technology. The critical metrics such as latency, throughput, and total energy directly impact the performance of NoCs. However, a cycle-accurate simulator takes considerable execution time for different values of packet injection rate. This paper proposes a machine learning approach with various regression models to predict the essential NoC performance metrics. The work explores regression models, including decision trees, K-nearest neighbors, random forest, polynomial regression, and support vector regression, alongside baseline linear regression for 2D and 3D NoC-based architectures. Experiment results demonstrate high accuracy, ranging from 96.72 to 99.96% for 2D and up to 99.99% for 3D NoC-based architectures. Root-mean-squared error values vary from 0.2792 to 0.03143 for 2D NoC and 0.1857 to 0.0063 for 3D NoC architecture. The proposed framework achieves impressive speedup, reaching up to 4678.8X and 46152.8X for system sizes 8\(\times \)8\(\times \)4 and 10\(\times \)10\(\times \)20, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Algorithm 1
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Xu C, Liu Y, Yang Y (2019) Srnoc: an ultra-fast configurable fpga-based noc simulator using switch-router architecture. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 39(10):2798–2811

    Article  Google Scholar 

  2. Ogras UY, Bogdan P, Marculescu R (2010) An analytical approach for network-on-chip performance analysis. IEEE Trans. Comput. Aided. Des. Integr. Circuits Syst. 29(12):2001–2013

    Article  Google Scholar 

  3. Lee HG, Chang N, Ogras UY, Marculescu R (2008) On-chip communication architecture exploration: a quantitative evaluation of point-to-point, bus, and network-on-chip approaches. ACM Trans. Des. Autom. Electron. Syst. (TODAES) 12(3):1–20

    Google Scholar 

  4. Dally WJ, Towles B (2001) Route packets, not wires: on-chip inteconnection networks. In: Proceedings of the 38th Annual Design Automation Conference, pp. 684–689

  5. Hemani A, Jantsch A, Kumar S, Postula A, Oberg J, Millberg M, Lindqvist D (2000) Network on chip: An architecture for billion transistor era. In: Proceeding of the IEEE NorChip Conference, vol. 31, p. 0

  6. Jantsch A, Tenhunen H et al (2003) Netw. Chip, vol 396. Kluwer, Boston

    Book  Google Scholar 

  7. Benini L, De Micheli G (2002) Networks on chips: a new soc paradigm. Computer 35(1):70–78

    Article  Google Scholar 

  8. Mazumdar S, Scionti A, Zuckerman S, Portero A (2023) Noc-based hardware software co-design framework for dataflow thread management. J. Supercomput. 79(16):1–38

    Article  Google Scholar 

  9. Silva J, Kreutz M, Pereira M, Costa-Abreu MD (2019) An investigation of latency prediction for noc-based communication architectures using machine learning techniques. J. Supercomput. 75:7573–7591

    Article  Google Scholar 

  10. Catania V, Mineo A, Monteleone S, Palesi M, Patti D (2016) Cycle-accurate network on chip simulation with noxim. ACM Trans. Model. Comput. Simul. (TOMACS) 27(1):1–25

    Article  Google Scholar 

  11. Access Lab, O-CCG Access noxim. http://access.ee.ntu.edu.tw/noxim/index.html

  12. Jiang N, Becker DU, Michelogiannakis G, Balfour J, Towles B, Shaw DE, Kim J, Dally WJ (2013) A detailed and flexible cycle-accurate network-on-chip simulator. In: 2013 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS), pp. 86–96. IEEE

  13. Jain L, Al-Hashimi B, Gaur M, Laxmi V, Narayanan A (2007) Nirgam: a simulator for noc interconnect routing and application modeling. In: Design, Automation and Test in Europe Conference, pp. 16–20. IEEE

  14. Prellezo J, Puente V, Gregorio J, Beivide R (1998) Sicosys: Un simulador de redes de interconexión para computadores paralelos. In: (in Spanish) Actas de las IX Jornadas de Paralelismo

  15. Pande PP, Grecu C, Jones M, Ivanov A, Saleh R (2005) Performance evaluation and design trade-offs for network-on-chip interconnect architectures. IEEE Trans. Comput. 54(8):1025–1040

    Article  Google Scholar 

  16. Kiasari AE, Jantsch A, Lu Z (2013) Mathematical formalisms for performance evaluation of networks-on-chip. ACM Comput. Surv. (CSUR) 45(3):1–41

    Article  Google Scholar 

  17. Bhowmik B, Hazarika P, Kale P, Jain S (2021) Ai technology for noc performance evaluation. IEEE Trans. Circuits Syst. II Express Briefs 68(12):3483–3487

    Google Scholar 

  18. Qian Z-L, Juan D-C, Bogdan P, Tsui C-Y, Marculescu D, Marculescu R (2015) A support vector regression (svr)-based latency model for network-on-chip (noc) architectures. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 35(3):471–484

    Article  Google Scholar 

  19. Kumar A, Talawar B (2018) Machine learning based framework to predict performance evaluation of on-chip networks. In: 2018 Eleventh International Conference on Contemporary Computing (IC3), pp. 1–6. IEEE

  20. Das S, Doppa JR, Pande PP, Chakrabarty K (2016) Energy-efficient and reliable 3d network-on-chip (noc): Architectures and optimization algorithms. In: 2016 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), pp. 1–6. IEEE

  21. Das S, Doppa JR, Kim DH, Pande PP, Chakrabarty K (2015) Optimizing 3d noc design for energy efficiency: A machine learning approach. In: 2015 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), pp. 705–712. IEEE

  22. Kumar A, Talawar B (2019) A support vector regression-based approach to predict the performance of 2d & 3d on-chip communication architectures. In: 2019 International Conference on Smart Systems and Inventive Technology (ICSSIT), pp. 35–39. IEEE

  23. Asad A, Ozturk O, Fathy M, Jahed-Motlagh MR (2017) Optimization-based power and thermal management for dark silicon aware 3d chip multiprocessors using heterogeneous cache hierarchy. Microprocess Microsyst. 51:76–98

    Article  Google Scholar 

  24. Garg S, Turakhia Y, Marculescu D (2017) Heterogeneous dark silicon chip multi-processors: Design and run-time management. The Dark Side of Silicon: Energy Efficient Computing in the Dark Silicon Era, 95–122

  25. Qian Z, Juan D-C, Bogdan P, Tsui C-Y, Marculescu D, Marculescu R (2013) Svr-noc: A performance analysis tool for network-on-chips using learning-based support vector regression model. In: 2013 Design, Automation & Test in Europe Conference & Exhibition (DATE), pp. 354–357. IEEE

  26. Kumar A, Talawar B (2020) Upm-noc: learning based framework to predict performance parameters of mesh architecture in on-chip networks. Springer, Singapore, pp 723–733

    Google Scholar 

  27. Li Y, Zhou P (2023) Fast and accurate noc latency estimation for application-specific traffics via machine learning. Express Briefs, IEEE Transactions on Circuits and Systems II

  28. Li F, Wang Y, Liu C, Li H, Li X (2022) Noception: a fast ppa prediction framework for network-on-chips using graph neural network. In: 2022 Design, Automation & Test in Europe Conference & Exhibition (DATE), pp. 1035–1040. IEEE

  29. Tyagi S, Maheshwari P, Agarwal A, Avasthi V (2017) Exploring 3d network-on-chip architectures and challenges. In: 2017 International Conference on Computer and Applications (ICCA), pp. 97–101. IEEE

  30. Somasundaram K, Plosila J, Viswanathan N (2014) Deadlock free routing algorithm for minimizing congestion in a Hamiltonian connected recursive 3d-nocs. Microelectron. J. 45(8):989–1000

    Article  Google Scholar 

  31. Ben Ahmed A, Ben Abdallah A (2013) Architecture and design of high-throughput, low-latency, and fault-tolerant routing algorithm for 3d-network-on-chip (3d-noc). J. Supercomput. 66:1507–1532

    Article  Google Scholar 

  32. Kumar S, Jantsch A, Soininen J-P, Forsell M, Millberg M, Oberg J, Tiensyrja K, Hemani A (2002) A network on chip architecture and design methodology. In: Proceedings IEEE Computer Society Annual Symposium on VLSI. New Paradigms for VLSI Systems Design. ISVLSI 2002, pp. 117–124. IEEE

  33. Ghosh A, Roy AP, Patra R, Mondal HK (2021) Designing efficient noc-based neural network architectures for identification of epileptic seizure. SN Comput. Sci. 2:1–12

    Article  Google Scholar 

  34. Joseph VR (2022) Optimal ratio for data splitting. Stat. Anal. Data Min. ASA Data Sci. J. 15(4):531–538

    Article  MathSciNet  Google Scholar 

  35. Berrar D, et al (2019) Cross-Validation

  36. Wang D, Xu J (2019) On sparse linear regression in the local differential privacy model. In: International Conference on Machine Learning, pp. 6628–6637. PMLR

  37. Ho TK (1995) Random decision forests. In: Proceedings of 3rd International Conference on Document Analysis and Recognition, vol. 1, pp. 278–282. IEEE

  38. Ho TK (1998) The random subspace method for constructing decision forests. IEEE Trans. Pattern Anal. Mach Intell. 20(8):832–844

    Article  Google Scholar 

  39. Géron A (2022) Hands-on Machine Learning with Scikit-Learn, Keras, and TensorFlow. O’Reilly Media Inc, CA

    Google Scholar 

  40. Vapnik V (1999) The Nature of Statistical Learning Theory. Springer, USA

    Google Scholar 

  41. Smola AJ, Schölkopf B (2004) A tutorial on support vector regression. Stat. Comput. 14:199–222

    Article  MathSciNet  Google Scholar 

  42. Sahin E, Lattimer BY, Duarte JP (2023) Assessing spill fire characteristics through machine learning analysis. Ann. Nucl. Energy 192:109961

    Article  Google Scholar 

  43. Ganguly A, Chang K, Deb S, Pande PP, Belzer B, Teuscher C (2010) Scalable hybrid wireless network-on-chip architectures for multicore systems. IEEE Trans. Comput. 60(10):1485–1502

    Article  MathSciNet  Google Scholar 

  44. Jotwani R, Sundaram S, Kosonocky S, Schaefer A, Andrade V, Constant G, Novak A, Naffziger S (2010) An x86-64 core implemented in 32nm soi cmos. In: 2010 IEEE International Solid-State Circuits Conference-(ISSCC), pp. 106–107. IEEE

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramapati Patra.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patra, R., Maji, P., Srivastava, D.S. et al. Machine learning-driven performance assessment of network-on-chip architectures. J Supercomput 80, 24483–24519 (2024). https://doi.org/10.1007/s11227-024-06340-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-024-06340-1

Keywords