Skip to main content

Advertisement

Log in

Information acquisition optimizer: a new efficient algorithm for solving numerical and constrained engineering optimization problems

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

This paper addresses the increasing complexity of challenges in the field of continuous nonlinear optimization by proposing an innovative algorithm called information acquisition optimizer (IAO), which is inspired by human information acquisition behaviors and consists of three crucial strategies: information collection, information filtering and evaluation, and information analysis and organization to accommodate diverse optimization requirements. Firstly, comparative assessments of performance are conducted between the IAO and 15 widely recognized algorithms using the standard test function suites from CEC2014, CEC2017, CEC2020, and CEC2022. The results demonstrate that IAO is robustly competitive regarding convergence rate, solution accuracy, and stability. Additionally, the outcomes of the Wilcoxon signed rank test and Friedman mean ranking strongly validate the effectiveness and reliability of IAO. Moreover, the time comparison analysis experiments indicate its high efficiency. Finally, comparative tests on five real-world optimization difficulties affirm the remarkable applicability of IAO in handling complex issues with unknown search spaces. The code for the IAO algorithm is available at https://ww2.mathworks.cn/matlabcentral/fileexchange/169331-information-acquisition-optimizer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Algorithm 1
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author.

References

  1. Zhang W, Zhao J, Liu H, Tu L (2024) Cleaner fish optimization algorithm: a new bio-inspired meta-heuristic optimization algorithm. J Supercomput. https://doi.org/10.1007/s11227-024-06105-w

    Article  Google Scholar 

  2. Hart J, van Bloemen Waanders B (2023) Hyper-differential sensitivity analysis with respect to model discrepancy: optimal solution updating. Comput Meth Appl Mech Eng 412:116082

    Article  MathSciNet  Google Scholar 

  3. Parouha RP, Verma P (2021) State-of-the-art reviews of meta-heuristic algorithms with their novel proposal for unconstrained optimization and applications. Arch Comput Method Eng 28(5):4049–4115. https://doi.org/10.1007/s11831-021-09532-7

    Article  MathSciNet  Google Scholar 

  4. Zhang J, Wei L, Fan R, Sun H, Hu Z (2022) Solve large-scale many-objective optimization problems based on dual analysis of objective space and decision space. Swarm Evol Comput 70:101045. https://doi.org/10.1016/j.swevo.2022.101045

    Article  Google Scholar 

  5. Jha D, Sharma NK (2024) Numerical simulation and analysis of grey wolf optimization based maximum power point tracking under complex operational conditions. Acta Energetica 1:1–13

    Google Scholar 

  6. Zhang C, Liu M, Zhong P, Song Q, Liang Z, Zhang Z, Wang X (2023) An adaptive balance optimization algorithm and its engineering application. Adv Eng Inform 55:101908. https://doi.org/10.1016/j.aei.2023.101908

    Article  Google Scholar 

  7. Zeng L, Li Y, Zhang H, Li M, Wang S (2023) A mixed harris hawks optimization algorithm based on the pinhole imaging strategy for solving numerical optimization problems. J Supercomput 79(14):15270–15323. https://doi.org/10.1007/s11227-023-05260-w

    Article  Google Scholar 

  8. Yuen MC, Ng SC, Leung MF, Che H (2021). Metaheuristics for index-tracking with cardinality constraints. In 2021 11th International Conference on Information Science and Technology (ICIST). IEEE 646–651

  9. Yuen M, Ng S, Leung M, Che H (2022) A metaheuristic-based framework for index tracking with practical constraints. Complex Intell Syst 8(6):4571–4586. https://doi.org/10.1007/s40747-021-00605-5

    Article  Google Scholar 

  10. Su H, Zhao D, Yu F, Heidari AA, Xu Z, Alotaibi FS, Mafarja M, Chen H (2023) A horizontal and vertical crossover cuckoo search: optimizing performance for the engineering problems. J Comput Des Eng 10(1):36–64. https://doi.org/10.1093/jcde/qwac112

    Article  Google Scholar 

  11. Bäck THW, Kononova AV, van Stein B, Wang H, Antonov KA, Kalkreuth RT, de Nobel J, Vermetten D, de Winter R, Ye F (2023) Evolutionary algorithms for parameter optimization—thirty years later. Evol Comput 31(2):81–122. https://doi.org/10.1162/evco_a_00325

    Article  Google Scholar 

  12. Abdelhamid AA, El-Kenawy E-SM, Ibrahim A, Eid MM, Khafaga DS, Alhussan AA, Mirjalili S, Khodadadi N, Lim WH, Shams MY (2023) Innovative feature selection method based on hybrid sine cosine and dipper throated optimization algorithms. IEEE Access 11:79750–79776. https://doi.org/10.1109/ACCESS.2023.3298955

    Article  Google Scholar 

  13. Kaveripakam S, Chinthaginjala R, Naik C, Pau G, Ab Wahab MN, Akbar MF, Dhanamjayulu C (2023) Dingo optimization influenced arithmetic optimization—clustering and localization algorithm for underwater acoustic sensor networks. Alex Eng J 85:60–71

    Article  Google Scholar 

  14. Bennet GSD, Subramaniam Nachimuthu D (2024) Solar pv system with modified artificial rabbit optimization algorithm for mppt. Electr Eng. https://doi.org/10.1007/s00202-023-02231-5

    Article  Google Scholar 

  15. Vinod Chandra S, Anand HS (2022) Nature inspired meta heuristic algorithms for optimization problems. Computing 104(2):251–269. https://doi.org/10.1007/s00607-021-00955-5

    Article  MathSciNet  Google Scholar 

  16. Zhang Y, Chi A (2023) Group teaching optimization algorithm with information sharing for numerical optimization and engineering optimization. J Intell Manuf 34(4):1547–1571. https://doi.org/10.1007/s10845-021-01872-2

    Article  MathSciNet  Google Scholar 

  17. Bao C, Yang Q, Gao XD, Zhang J (2021) A comparative study on population-based evolutionary algorithms for multiple traveling salesmen problem with visiting constraints. In: 2021 IEEE Symposium Series on Computational Intelligence (SSCI). https://doi.org/10.1109/SSCI50451.2021.9660021

  18. Elloumi W, El Abed H, Abraham A, Alimi AM (2014) A comparative study of the improvement of performance using a pso modified by aco applied to tsp. Appl Soft Comput 25:234–241. https://doi.org/10.1016/j.asoc.2014.09.031

    Article  Google Scholar 

  19. Monga P, Sharma M, Sharma SK (2022) A comprehensive meta-analysis of emerging swarm intelligent computing techniques and their research trend. J King Saud Univ Comput Inf Sci 34(10):9622–9643. https://doi.org/10.1016/j.jksuci.2021.11.016

    Article  Google Scholar 

  20. Mirhassani SA, Abolghasemi N (2011) A particle swarm optimization algorithm for open vehicle routing problem. Expert Syst Appl 38(9):11547–11551. https://doi.org/10.1016/j.eswa.2011.03.032

    Article  Google Scholar 

  21. Chaharsooghi SK, Meimand Kermani AH (2008) An effective ant colony optimization algorithm (aco) for multi-objective resource allocation problem (morap). Appl Math Comput 200(1):167–177

    MathSciNet  Google Scholar 

  22. Lee KM, Yamakawa T, Lee KM (1998) A genetic algorithm for general machine scheduling problems. In: 1998 Second International Conference. Knowledge-Based Intelligent Electronic Systems. Proceedings KES'98 (Cat. No.98EX111), 60–66. https://doi.org/10.1109/KES.1998.725893

  23. Su H, Zhao D, Heidari AA, Liu L, Zhang X, Mafarja M, Chen H (2023) Rime: a physics-based optimization. Neurocomputing 532:183–214. https://doi.org/10.1016/j.neucom.2023.02.010

    Article  Google Scholar 

  24. Ahmadianfar I, Heidari AA, Gandomi AH, Chu X, Chen H (2021) Run beyond the metaphor: an efficient optimization algorithm based on runge kutta method. Expert Syst Appl 181:115079. https://doi.org/10.1016/j.eswa.2021.115079

    Article  Google Scholar 

  25. Ahmadianfar I, Heidari AA, Noshadian S, Chen H, Gandomi AH (2022) Info: an efficient optimization algorithm based on weighted mean of vectors. Expert Syst Appl 195:116516. https://doi.org/10.1016/j.eswa.2022.116516

    Article  Google Scholar 

  26. Yang Y, Chen H, Heidari AA, Gandomi AH (2021) Hunger games search: visions, conception, implementation, deep analysis, perspectives, and towards performance shifts. Expert Syst Appl 177:114864. https://doi.org/10.1016/j.eswa.2021.114864

    Article  Google Scholar 

  27. Khodadadi N, Snasel V, Mirjalili S (2022) Dynamic arithmetic optimization algorithm for truss optimization under natural frequency constraints. IEEE Access 10:16188–16208

    Article  Google Scholar 

  28. Givi H, Hubalovska M (2023) Skill optimization algorithm: a new human-based metaheuristic technique. Comput Mater Continua. https://doi.org/10.32604/cmc.2023.030379

    Article  Google Scholar 

  29. Yuan Y, Shen Q, Wang S, Ren J, Yang D, Yang Q, Fan J, Mu X (2023) Coronavirus mask protection algorithm: a new bio-inspired optimization algorithm and its applications. J Bionic Eng 20:1–19

    Article  Google Scholar 

  30. Ghasemi M, Zare M, Zahedi A, Akbari M, Mirjalili S, Abualigah L (2023) Geyser inspired algorithm: a new geological-inspired meta-heuristic for real-parameter and constrained engineering optimization. J Bionic Eng 21:1–35

    Google Scholar 

  31. Rezvani K, Gaffari A, Dishabi MRE (2023) The bedbug meta-heuristic algorithm to solve optimization problems. J Bionic Eng 20(5):2465–2485. https://doi.org/10.1007/s42235-023-00356-8

    Article  Google Scholar 

  32. Sang-To T, Le-Minh H, Abdel Wahab M, Thanh C (2023) A new metaheuristic algorithm: shrimp and goby association search algorithm and its application for damage identification in large-scale and complex structures. Adv Eng Softw 176:103363

    Article  Google Scholar 

  33. Abdel-Basset M, El-Shahat D, Jameel M, Abouhawwash M (2023) Exponential distribution optimizer (edo): a novel math-inspired algorithm for global optimization and engineering problems. Artif Intell Rev 56(9):9329–9400. https://doi.org/10.1007/s10462-023-10403-9

    Article  Google Scholar 

  34. Dehghani M, Montazeri Z, Trojovská E, Trojovský P (2023) Coati optimization algorithm: a new bio-inspired metaheuristic algorithm for solving optimization problems. Knowl-Based Syst 259:110011. https://doi.org/10.1016/j.knosys.2022.110011

    Article  Google Scholar 

  35. Fu S, Huang H, Ma C, Wei J, Li Y, Fu Y (2023) Improved dwarf mongoose optimization algorithm using novel nonlinear control and exploration strategies. Expert Syst Appl 233:120904. https://doi.org/10.1016/j.eswa.2023.120904

    Article  Google Scholar 

  36. Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE Trans Evolut Comput 1(1):67–82. https://doi.org/10.1109/4235.585893

    Article  Google Scholar 

  37. Lee L, Ocepek MG, Makri S (2022) Information behavior patterns: a new theoretical perspective from an empirical study of naturalistic information acquisition. J Am Soc Inf Sci 73(4):594–608

    Google Scholar 

  38. U. Shardanand, P. Maes, (1995) Social information filtering: algorithms for automating word of mouth. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 210–217

  39. Symon G (2000) Information and communication technologies and the network organization: a critical analysis. J Occup Organ Psychol 73(4):389–414

    Article  Google Scholar 

  40. J.J. Liang, B.Y. Qu, P.N. Suganthan, (2013) Problem definitions and evaluation criteria for the cec 2014 special session and competition on single objective real-parameter numerical optimization. Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou China and Technical Report, Nanyang Technological University, Singapore 635(2)

  41. G. Wu, R. Mallipeddi, P.N. Suganthan, (2017) Problem definitions and evaluation criteria for the cec 2017 competition on constrained real-parameter optimization. National University of Defense Technology, Changsha, Hunan, PR China and Kyungpook National University, Daegu, South Korea and Nanyang Technological University, Singapore, Technical Report

  42. Liang J, Qu BY, Gong DW, Yue CT (2019) Problem definitions and evaluation criteria for the cec 2020 special session on multimodal multiobjective optimization. Zhengzhou University, Computational Intelligence Laboratory

    Google Scholar 

  43. Biedrzycki R, Arabas J, Warchulski E (2022) A version of nl-shade-rsp algorithm with midpoint for cec 2022 single objective bound constrained problems. 2022 IEEE Congress Evolut Comput (CEC). https://doi.org/10.1109/CEC55065.2022.9870220

    Article  Google Scholar 

  44. Ma Z, Wu G, Suganthan PN, Song A, Luo Q (2023) Performance assessment and exhaustive listing of 500+ nature-inspired metaheuristic algorithms. Swarm Evol Comput 77:101248. https://doi.org/10.1016/j.swevo.2023.101248

    Article  Google Scholar 

  45. Alorf A (2023) A survey of recently developed metaheuristics and their comparative analysis. Eng Appl Artif Intell 117:105622. https://doi.org/10.1016/j.engappai.2022.105622

    Article  Google Scholar 

  46. Kennedy J, Eberhart R, (1995) Particle swarm optimization, Proceedings of ICNN'95—International Conference on Neural Networks. pp. 1942–1948. https://doi.org/10.1109/ICNN.1995.488968

  47. Akay B, Karaboga D (2012) Artificial bee colony algorithm for large-scale problems and engineering design optimization. J Intell Manuf 23(4):1001–1014. https://doi.org/10.1007/s10845-010-0393-4

    Article  Google Scholar 

  48. Mirjalili S (2016) Sca: a sine cosine algorithm for solving optimization problems. Knowl-Based Syst 96:120–133. https://doi.org/10.1016/j.knosys.2015.12.022

    Article  Google Scholar 

  49. Hashim FA, Hussien AG (2022) Snake optimizer: a novel meta-heuristic optimization algorithm. Knowl-Based Syst 242:108320. https://doi.org/10.1016/j.knosys.2022.108320

    Article  Google Scholar 

  50. Braik MS (2021) Chameleon swarm algorithm: a bio-inspired optimizer for solving engineering design problems. Expert Syst Appl 174:114685. https://doi.org/10.1016/j.eswa.2021.114685

    Article  Google Scholar 

  51. Rashedi E, Nezamabadi-Pour H, Saryazdi S (2009) Gsa: a gravitational search algorithm. Inf Sci 179(13):2232–2248. https://doi.org/10.1016/j.ins.2009.03.004

    Article  Google Scholar 

  52. Mirjalili S, Lewis A (2016) The whale optimization algorithm. Adv Eng Softw 95:51–67. https://doi.org/10.1016/j.advengsoft.2016.01.008

    Article  Google Scholar 

  53. Abdollahzadeh B, Gharehchopogh FS, Mirjalili S (2021) African vultures optimization algorithm: a new nature-inspired metaheuristic algorithm for global optimization problems. Comput Ind Eng 158:107408. https://doi.org/10.1016/j.cie.2021.107408

    Article  Google Scholar 

  54. Abdollahzadeh B, Soleimanian Gharehchopogh F, Mirjalili S (2021) Artificial gorilla troops optimizer: a new nature-inspired metaheuristic algorithm for global optimization problems. Int J Intell Syst 36(10):5887–5958

    Article  Google Scholar 

  55. Xue J, Shen B (2023) Dung beetle optimizer: a new meta-heuristic algorithm for global optimization. J Supercomput 79(7):7305–7336. https://doi.org/10.1007/s11227-022-04959-6

    Article  Google Scholar 

  56. Nadimi-Shahraki MH, Zamani H (2022) Dmde: diversity-maintained multi-trial vector differential evolution algorithm for non-decomposition large-scale global optimization. Expert Syst Appl 198:116895. https://doi.org/10.1016/j.eswa.2022.116895

    Article  Google Scholar 

  57. Nadimi-Shahraki MH, Taghian S, Zamani H, Mirjalili S, Elaziz MA (2023) Mmke: multi-trial vector-based monkey king evolution algorithm and its applications for engineering optimization problems. PLoS ONE 18(1):e0280006

    Article  Google Scholar 

  58. Morales-Castañeda B, Zaldívar D, Cuevas E, Fausto F, Rodríguez A (2020) A better balance in metaheuristic algorithms: does it exist? Swarm Evol Comput 54:100671. https://doi.org/10.1016/j.swevo.2020.100671

    Article  Google Scholar 

  59. Mayer DG, Kinghorn BP, Archer AA (2005) Differential evolution—an easy and efficient evolutionary algorithm for model optimisation. Agric Syst 83(3):315–328. https://doi.org/10.1016/j.agsy.2004.05.002

    Article  Google Scholar 

  60. Jia H, Rao H, Wen C, Mirjalili S (2023) Crayfish optimization algorithm. Artif Intell Rev 56(2):1919–1979. https://doi.org/10.1007/s10462-023-10567-4

    Article  Google Scholar 

  61. Nima K, Snasel V, Mirjalili S (2022) Dynamic Arithmetic Optimization Algorithm for Truss Optimization Under Natural Frequency Constraints. IEEE Access. Instit Electr Electro Eng (IEEE) 10:16188–16208. https://doi.org/10.1109/access.2022.3146374

    Article  Google Scholar 

  62. Yao L, Yuan P, Tsai C, Zhang T, Lu Y, Ding S (2023) Eso: an enhanced snake optimizer for real-world engineering problems. Expert Syst Appl 230:120594. https://doi.org/10.1016/j.eswa.2023.120594

    Article  Google Scholar 

  63. Kumar A, Wu G, Ali MZ, Mallipeddi R, Suganthan PN, Das S (2020) A test-suite of non-convex constrained optimization problems from the real-world and some baseline results. Swarm Evol Comput 56:100693. https://doi.org/10.1016/j.swevo.2020.100693

    Article  Google Scholar 

  64. Li Y, Yu X, Liu J (2023) An opposition-based butterfly optimization algorithm with adaptive elite mutation in solving complex high-dimensional optimization problems. Math Comput Simul 204:498–528. https://doi.org/10.1016/j.matcom.2022.08.020

    Article  MathSciNet  Google Scholar 

  65. Kamil AT, Saleh HM, Abd-Alla IH (2021) A multi-swarm structure for particle swarm optimization: solving the welded beam design problem. J Phys Conf Ser 1804(1):12012. https://doi.org/10.1088/1742-6596/1804/1/012012

    Article  Google Scholar 

  66. Dhiman G, Garg M (2020) Mosse: a novel hybrid multi-objective meta-heuristic algorithm for engineering design problems. Soft Comput 24(24):18379–18398. https://doi.org/10.1007/s00500-020-05046-9

    Article  Google Scholar 

  67. Bayzidi H, Talatahari S, Saraee M, Lamarche C, Precup R (2021) Social network search for solving engineering optimization problems. Comput Intell Neurosci 2021:8548639. https://doi.org/10.1155/2021/8548639

    Article  Google Scholar 

  68. Singh N, Kaur J (2021) Hybridizing sine–cosine algorithm with harmony search strategy for optimization design problems. Soft Comput 25(16):11053–11075. https://doi.org/10.1007/s00500-021-05841-y

    Article  Google Scholar 

  69. Yildiz BS, Pholdee N, Bureerat S, Yildiz AR, Sait SM (2021) Robust design of a robot gripper mechanism using new hybrid grasshopper optimization algorithm. Expert Syst 38(3):e12666

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (52275480), National Key Research and Development Plan Project (2020YFB171330), Guizhou Provincial Science and Technology Department (QKHZYD[2023]002), and Guiyang Science and Technology Platform Construction Project under Grant (ZKHT[2023]7-2).

Author information

Authors and Affiliations

Authors

Contributions

X.W., X.J., and Y.Z. contributed to conceptualization; X.W. and X.J. were involved in methodology and formal analysis; X.W. provided software and contributed to validation, investigation, writing—original draft preparation, and writing—review and editing; S.L. was involved in resources, project administration, and funding acquisition; and S.L., X.J., and Y.Z. contributed to supervision. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Shaobo Li.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

See Tables

Table 10 Experimental results of 12 algorithms on the CEC 2014 (10D)

10,

Table 11 Experimental results of 12 algorithms on the CEC 2017 (10D)

11,

Table 12 Experimental results of 12 algorithms on the CEC 2020 (10D)

12,

Table 13 Experimental results of 12 algorithms on the CEC 2022 (10D)

13,

Table 14 Experimental results of 12 algorithms on the CEC 2014 (50D)

14,

Table 15 Experimental results of 12 algorithms on the CEC 2017 (100D)

15,

Table 16 Experimental results of 12 algorithms on the CEC 2020 (20D)

16 and

Table 17 Experimental results of 12 algorithms on the CEC 2022 (20D)

17.

Appendix 2

See Tables

Table 18 Welded beam design problem

18,

Table 19 Multiple disk clutch brake design problem

19,

Table 20 Weight minimization of a speed reducer problem

20,

Table 21 Planetary gear train design optimization problem

21 and

Table 22 Robot gripper problem

22.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, X., Li, S., Jiang, X. et al. Information acquisition optimizer: a new efficient algorithm for solving numerical and constrained engineering optimization problems. J Supercomput 80, 25736–25791 (2024). https://doi.org/10.1007/s11227-024-06384-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-024-06384-3

Keywords