Skip to main content

Advertisement

Log in

Aspect-aware semantic feature enhanced networks for multimodal aspect-based sentiment analysis

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

Multimodal aspect-based sentiment analysis aims to predict the sentiment polarity of all aspect targets from text-image pairs. Most existing methods fail to extract fine-grained visual sentiment information, leading to alignment issues between the two modalities due to inconsistent granularity. In addition, the deep interaction between syntactic structure and semantic information is also ignored. In this paper, we propose an Aspect-aware Semantic Feature Enhancement Network (ASFEN) for multimodal aspect-based sentiment analysis to learn aspect-aware semantic and sentiment information in images and texts. Specifically, images are converted into textual information with fine-grained emotional cues. We construct dependency syntax trees and multi-layer syntax masks to fuse syntactic and semantic information through graph convolution. Extensive experiments on two multimodal Twitter datasets demonstrate the superiority of ASFEN over existing methods. The code is publicly available at https://github.com/lllppi/ASFEN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The open source address for the code and data is provided in the manuscript.

Notes

  1. https://stanfordnlp.github.io/CoreNLP/.

References

  1. Yang J, Xiao Y, Du X (2024) Multi-grained fusion network with self-distillation for aspect-based multimodal sentiment analysis. Knowl Based Syst 293:111724. https://doi.org/10.1016/j.knosys.2024.111724

    Article  Google Scholar 

  2. Zhou R, Guo W, Liu X, Yu S, Zhang Y, Yuan X (2023) Aom: Detecting aspect-oriented information for multimodal aspect-based sentiment analysis. arXiv preprint arXiv:2306.01004https://doi.org/10.48550/arXiv.2306.01004

  3. Yang L, Na J-C, Yu J (2022) Cross-modal multitask transformer for end-to-end multimodal aspect-based sentiment analysis. Inf Process Manag 59(5):103038. https://doi.org/10.1016/j.ipm.2022.103038

    Article  Google Scholar 

  4. Wang Q, Xu H, Wen Z, Liang B, Yang M, Qin B, Xu R (2023) Image-to-text conversion and aspect-oriented filtration for multimodal aspect-based sentiment analysis. IEEE Trans Affect Comput. https://doi.org/10.1109/TAFFC.2023.3333200

    Article  Google Scholar 

  5. Li Y, Ding H, Lin Y, Feng X, Chang L (2024) Multi-level textual-visual alignment and fusion network for multimodal aspect-based sentiment analysis. Artif Intell Rev 57(4):1–26. https://doi.org/10.1007/s10462-023-10685-z

    Article  Google Scholar 

  6. Khan Z, Fu Y (2021) Exploiting bert for multimodal target sentiment classification through input space translation. In: Proceedings of the 29th ACM International Conference on Multimedia, pp. 3034–3042 . https://doi.org/10.1145/3474085.3475692

  7. Xiao L, Zhou E, Wu X, Yang S, Ma T, He L (2022) Adaptive multi-feature extraction graph convolutional networks for multimodal target sentiment analysis. In: 2022 IEEE International Conference on Multimedia and Expo (ICME), pp. 1–6 . https://doi.org/10.1109/ICME52920.2022.9860020 . IEEE

  8. Chen Z, Qian T (2020) Relation-aware collaborative learning for unified aspect-based sentiment analysis. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3685–3694 . https://doi.org/10.18653/v1/2020.acl-main.340

  9. Pang S, Xue Y, Yan Z, Huang W, Feng J (2021) Dynamic and multi-channel graph convolutional networks for aspect-based sentiment analysis. In: Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021, pp. 2627–2636 . https://doi.org/10.18653/v1/2021.findings-acl.232

  10. Zhang W, Li X, Deng Y, Bing L, Lam W (2022) A survey on aspect-based sentiment analysis: tasks, methods, and challenges. IEEE Trans Knowl Data Eng. https://doi.org/10.1109/TKDE.2022.3230975

    Article  Google Scholar 

  11. Zhang Z, Zhou Z, Wang Y (2022) Ssegcn: Syntactic and semantic enhanced graph convolutional network for aspect-based sentiment analysis. In: Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp. 4916–4925 . https://doi.org/10.18653/v1/2022.naacl-main.362

  12. Wang Y, Huang M, Zhu X, Zhao L (2016) Attention-based lstm for aspect-level sentiment classification. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 606–615 . https://doi.org/10.18653/v1/D16-1058

  13. Zhao F, Wu Z, Dai X (2020) Attention transfer network for aspect-level sentiment classification. arXiv preprint arXiv:2010.12156https://doi.org/10.48550/arXiv.2010.12156

  14. Phan M.H, Ogunbona P.O. (2020) Modelling context and syntactical features for aspect-based sentiment analysis. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3211–3220 . https://doi.org/10.18653/v1/2020.acl-main.293

  15. Dai J, Yan H, Sun T, Liu P, Qiu X (2021) Does syntax matter? a strong baseline for aspect-based sentiment analysis with roberta. arXiv preprint arXiv:2104.04986https://doi.org/10.48550/arXiv.2104.04986

  16. Sun K, Zhang, R, Mensah S, Mao Y, Liu X (2019) Aspect-level sentiment analysis via convolution over dependency tree. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 5679–5688 . https://doi.org/10.18653/v1/D19-1569

  17. Wang K, Shen W, Yang Y, Quan X, Wang R(2020) Relational graph attention network for aspect-based sentiment analysis. arXiv preprint arXiv:2004.12362https://doi.org/10.48550/arXiv.2004.12362

  18. Liang S, Wei W, Mao X.-L, Wang F, He Z (2022) Bisyn-gat+: Bi-syntax aware graph attention network for aspect-based sentiment analysis. arXiv preprint arXiv:2204.03117https://doi.org/10.18653/v1/2022.findings-acl.144

  19. Kumar A, Garg G (2019) Sentiment analysis of multimodal twitter data. Multimed Tools Appl 78:24103–24119. https://doi.org/10.1007/s11042-019-7390-1

    Article  Google Scholar 

  20. Kumar A, Srinivasan K, Cheng W-H, Zomaya AY (2020) Hybrid context enriched deep learning model for fine-grained sentiment analysis in textual and visual semiotic modality social data. Inf Process Manag 57(1):102141. https://doi.org/10.1016/j.ipm.2019.102141

    Article  Google Scholar 

  21. Kaur R, Kautish S (2022) Multimodal sentiment analysis: a survey and comparison. Res Anthol Implement Sentim Anal Across Multi Discip. https://doi.org/10.4018/978-1-6684-6303-1.ch098

    Article  Google Scholar 

  22. Gandhi A, Adhvaryu K, Poria S, Cambria E, Hussain A (2023) Multimodal sentiment analysis: a systematic review of history, datasets, multimodal fusion methods, applications, challenges and future directions. Inf Fus 91:424–444. https://doi.org/10.1016/j.inffus.2022.09.025

    Article  Google Scholar 

  23. Fu Z, Liu F, Xu Q, Qi J, Fu X, Zhou A., Li Z (2022) Nhfnet: A non-homogeneous fusion network for multimodal sentiment analysis. In: 2022 IEEE International Conference on Multimedia and Expo (ICME), pp. 1–6 . https://doi.org/10.1109/ICME52920.2022.9859836 . IEEE

  24. Firdaus M, Singh GV, Ekbal A, Bhattacharyya P (2023) Affect-gcn: a multimodal graph convolutional network for multi-emotion with intensity recognition and sentiment analysis in dialogues. Multi Tools Appl. https://doi.org/10.1007/s11042-023-14885-1

    Article  Google Scholar 

  25. Huang F, Zhang X, Zhao Z, Xu J, Li Z (2019) Image-text sentiment analysis via deep multimodal attentive fusion. Knowl Based Syst 167:26–37. https://doi.org/10.1016/j.knosys.2019.01.019

    Article  Google Scholar 

  26. Yang L, Yu J, Zhang C, Na J.-C (2021) Fine-grained sentiment analysis of political tweets with entity-aware multimodal network. In: Diversity, Divergence, Dialogue: 16th International Conference, iConference 2021, Beijing, China, March 17–31, 2021, Proceedings, Part I 16, pp. 411–420 . https://doi.org/10.1007/978-3-030-71292-1_31 . Springer

  27. Xu, N., Mao, W., Chen, G (2019) Multi-interactive memory network for aspect based multimodal sentiment analysis. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 371–378 . https://doi.org/10.1609/aaai.v33i01.3301371

  28. Zhang, D., Wei, S., Li, S., Wu, H., Zhu, Q., Zhou, G (2021) Multi-modal graph fusion for named entity recognition with targeted visual guidance. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 14347–14355 . https://doi.org/10.1609/aaai.v35i16.17687

  29. Xiao L, Wu X, Xu J, Li W, Jin C, He L (2024) Atlantis: aesthetic-oriented multiple granularities fusion network for joint multimodal aspect-based sentiment analysis. Inf Fus. https://doi.org/10.1016/j.inffus.2024.102304

    Article  Google Scholar 

  30. Yu, J., Jiang, J (2019) Adapting bert for target-oriented multimodal sentiment classification. . https://doi.org/10.24963/ijcai.2019/751 . IJCAI

  31. Wang, J., Liu, Z., Sheng, V., Song, Y., Qiu, C (2021) Saliencybert: Recurrent attention network for target-oriented multimodal sentiment classification. In: Pattern Recognition and Computer Vision: 4th Chinese Conference, PRCV 2021, Beijing, China, October 29–November 1, 2021, Proceedings, Part III 4, pp. 3–15 . https://doi.org/10.1007/978-3-030-88010-1_1 . Springer

  32. Ling, Y., Yu, J., Xia, R (2022) Vision-language pre-training for multimodal aspect-based sentiment analysis. arXiv preprint arXiv:2204.07955https://doi.org/10.48550/arXiv.2204.07955

  33. Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S (2020) End-to-end object detection with transformers. In: European Conference on Computer Vision, pp. 213–229 . https://doi.org/10.1007/978-3-030-58452-8_13 . Springer

  34. Serengil, S.I., Ozpinar, A (2020) Lightface: A hybrid deep face recognition framework. In: 2020 Innovations in Intelligent Systems and Applications Conference (ASYU), pp. 1–5 . https://doi.org/10.1109/ASYU50717.2020.9259802 . IEEE

  35. Serengil, S.I., Ozpinar, A (2021) Hyperextended lightface: A facial attribute analysis framework. In: 2021 International Conference on Engineering and Emerging Technologies (ICEET), pp. 1–4 . https://doi.org/10.1109/ICEET53442.2021.9659697 . IEEE

  36. Borth, D., Ji, R., Chen, T., Breuel, T., Chang, S.-F (2013) Large-scale visual sentiment ontology and detectors using adjective noun pairs. In: Proceedings of the 21st ACM International Conference on Multimedia, pp. 223–232 . https://doi.org/10.1145/2502081.2502282

  37. Borth, D., Chen, T., Ji, R., Chang, S.-F (2013) Sentibank: large-scale ontology and classifiers for detecting sentiment and emotions in visual content. In: Proceedings of the 21st ACM International Conference on Multimedia, pp. 459–460 . https://doi.org/10.1145/2502081.2502268

  38. Nguyen, D.Q., Vu, T., Nguyen, A.T (2020) Bertweet: A pre-trained language model for english tweets. arXiv preprint arXiv:2005.10200https://doi.org/10.48550/arXiv.2005.10200

  39. Fan, F., Feng, Y., Zhao, D (2018) Multi-grained attention network for aspect-level sentiment classification. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pp. 3433–3442 . https://doi.org/10.18653/v1/D18-1380

  40. Devlin, J., Chang, M.-W., Lee, K., Toutanova, K (2018) Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805https://doi.org/10.48550/arXiv.1810.04805

  41. Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M., Zettlemoyer, L., Stoyanov, V (2019) Roberta: A robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692https://doi.org/10.48550/arXiv.1907.11692

  42. Yu, J., Wang, J., Xia, R., Li, J (2022) Targeted multimodal sentiment classification based on coarse-to-fine grained image-target matching. In: Proc. of the Thirty-First Int. Joint Conf. on Artificial Intelligence, IJCAI 2022, pp. 4482–4488 . https://doi.org/10.24963/ijcai.2022/622

  43. Zhao, F., Wu, Z., Long, S., Dai, X., Huang, S., Chen, J (2022) Learning from adjective-noun pairs: A knowledge-enhanced framework for target-oriented multimodal sentiment classification. In: Proceedings of the 29th International Conference on Computational Linguistics, pp. 6784–6794

  44. Yu J, Chen K, Xia R (2022) Hierarchical interactive multimodal transformer for aspect-based multimodal sentiment analysis. IEEE Trans Affect Comput. https://doi.org/10.1109/TAFFC.2022.3171091

    Article  Google Scholar 

  45. Xiao L, Wu X, Yang S, Xu J, Zhou J, He L (2023) Cross-modal fine-grained alignment and fusion network for multimodal aspect-based sentiment analysis. Inf Process Manag 60(6):103508. https://doi.org/10.1016/j.ipm.2023.103508

    Article  Google Scholar 

  46. Yang J, Xu M, Xiao Y, Du X (2024) Amifn: aspect-guided multi-view interactions and fusion network for multimodal aspect-based sentiment analysis. Neurocomputing 573:127222. https://doi.org/10.1016/j.neucom.2023.127222

    Article  Google Scholar 

Download references

Acknowledgements

We sincerely thank the editors and reviewers for their hard work. We would also sincerely thank National Natural Science Foundation of China Research Project (No. 62076103), Guangdong basic and applied basic research project (No. 2021A1515011171), and Guangzhou basic research plan, basic and applied basic research project (No. 202102080282) for their support of this paper.

Author information

Authors and Affiliations

Authors

Contributions

BZ, LX and RZL wrote the main manuscript text. YY, RYL and HD reviewed the paper, participated in the seminar, and made suggestions for revisions. All authors reviewed the manuscript.

Corresponding author

Correspondence to Biqing Zeng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, B., Xie, L., Li, R. et al. Aspect-aware semantic feature enhanced networks for multimodal aspect-based sentiment analysis. J Supercomput 81, 64 (2025). https://doi.org/10.1007/s11227-024-06472-4

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11227-024-06472-4

Keywords