Skip to main content

Advertisement

Log in

ANFIS simulation integrated in FM/FM/1/(CV + WV) queue with Bernoulli service interruption and metaheuristic optimization for mathematical model

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

The present investigation studies performance modeling and analysis of an M/M/1 queue with a hybrid vacation policy and Bernoulli service interruption. When the system becomes empty, the server has the choice to switch over to a complete vacation state or a working vacation state. During working vacations, the server also serves customers through a Bernoulli service process at a slower rate. After completing the service, the server either transitions to a normal busy state or remains in the working vacation state. To analyze the performance of the system, we have developed a Markovian queueing model by formulating the Chapman–Kolmogorov governing equations for the system states. Through an iterative and difference-differential equation approach, we derived the stationary probability distribution of the queue size, along with other key queueing metrics such as average queue length, average waiting time, and throughput. To deal with a more practical scenario of imprecise information about the system descriptors, the proposed crisp queueing is transformed into a fuzzy model by retaining the features. The soft computing approach based on adaptive neuro-fuzzy inference system (ANFIS), -cut, and parametric nonlinear programming (PNLP) is employed to obtain various fuzzified indices. Moreover, to determine the optimal service rate, the differential evolution (DE) and golden section search (GSS) methods are used. By taking illustration, the proposed optimization techniques are implemented to develop a cost-effective service system and to examine the sensitivity of the key descriptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data availability

No datasets were generated or analyzed during the current study.

References

  1. Servi LD, Finn SG (2002) M/M/1 queues with working vacations (M/M/1/WV). Perform Eval 50:41–52. https://doi.org/10.1016/S0166-5316(02)00057-3

    Article  Google Scholar 

  2. Baba Y (2005) Analysis of a GI/M/1 queue with multiple working vacations. Oper Res Lett 33:201–209. https://doi.org/10.1016/j.orl.2004.05.006

    Article  MathSciNet  Google Scholar 

  3. Yue D, Yue W, Xu G (2012) Analysis of customers’ impatience in an M/M/1 queue with working vacations. J Ind Manag Optim 8:895–908. https://doi.org/10.3934/jimo.2012.8.895

    Article  MathSciNet  Google Scholar 

  4. Zhang M, Liu Q (2015) An M/G/1 G-queue with server breakdown, working vacations and vacation interruption. Opsearch 52:256–270. https://doi.org/10.1007/s12597-014-0183-4

    Article  MathSciNet  Google Scholar 

  5. Bouchentouf AA, Yahiaoui L (2017) On feedback queueing system with reneging and retention of reneged customers, multiple working vacations and Bernoulli schedule vacation interruption. Arab J Math 6:1–11. https://doi.org/10.1007/s40065-016-0161-1

    Article  MathSciNet  Google Scholar 

  6. Li T, Zhang L, Gao S (2019) An M/G/1 retrial queue with balking customers and Bernoulli working vacation interruption. Qual Technol Quant Manag 16:511–530. https://doi.org/10.1080/16843703.2018.1480264

    Article  Google Scholar 

  7. Zirem D, Boualem M, Adel-Aissanou K, Aïssani D (2019) Analysis of a single server batch arrival unreliable queue with balking and general retrial time. Qual Technol Quant Manag 16:672–695. https://doi.org/10.1080/16843703.2018.1510359

    Article  Google Scholar 

  8. Cherfaoui M, Bouchentouf AA, Boualem M (2023) Modelling and simulation of Bernoulli feedback queue with general customers’ impatience under variant vacation policy. Int J Oper Res 46:451. https://doi.org/10.1504/IJOR.2023.129959

    Article  MathSciNet  Google Scholar 

  9. Bouchentouf AA, Cherfaoui M, Boualem M (2021) Analysis and performance evaluation of Markovian feedback multi-server queueing model with vacation and impatience. Am J Math Manag Sci 40:261–282. https://doi.org/10.1080/01966324.2020.1842271

    Article  Google Scholar 

  10. Bouchentouf AA, Boualem M, Cherfaoui M, Medjahri L (2021) Variant vacation queueing system with bernoulli feedback, balking and server’s states-dependent reneging. Yugosl J Oper Res 31:557–575. https://doi.org/10.2298/YJOR200418003B

    Article  MathSciNet  Google Scholar 

  11. Azhagappan A, Deepa T (2020) Variant impatient customers in an M/M/1 queue with balking re-service and Bernoulli multiple vacations. Int J Manag Sci Eng Manag 15:122–129. https://doi.org/10.1080/17509653.2019.1653236

    Article  Google Scholar 

  12. Zhang Y, Wang J (2021) Strategic joining and information disclosing in Markovian queues with an unreliable server and working vacations. Qual Technol Quant Manag 18:298–325. https://doi.org/10.1080/16843703.2020.1809062

    Article  Google Scholar 

  13. Wang S, Xu X (2021) Equilibrium strategies of the fluid queue with working vacation. Oper Res 21:1211–1228. https://doi.org/10.1007/s12351-019-00473-5

    Article  Google Scholar 

  14. Panda G, Goswami V (2022) Equilibrium joining strategies of positive customers in a markovian queue with negative arrivals and working vacations. Methodol Comput Appl Probab 24:1439–1466. https://doi.org/10.1007/s11009-021-09864-8

    Article  MathSciNet  Google Scholar 

  15. Bouchentouf AA, Boualem M, Yahiaoui L, Ahmad H (2022) A multi-station unreliable machine model with working vacation policy and customers’ impatience. Qual Technol Quant Manag 19:766–796. https://doi.org/10.1080/16843703.2022.2054088

    Article  Google Scholar 

  16. Lan S, Tang Y (2017) Performance and reliability analysis of a repairable discrete-time Geo/G/1 queue with Bernoulli feedback and randomized policy. Appl Stoch Model Bus Ind 33:522–543. https://doi.org/10.1002/asmb.2253

    Article  MathSciNet  Google Scholar 

  17. Choudhury G, Tadj L (2011) The optimal control of an overflow Mx/G/1 unreliable server queue with two phases of service and Bernoulli vacation schedule. Math Comput Model 54:673–688. https://doi.org/10.1016/j.mcm.2011.03.010

    Article  Google Scholar 

  18. Upadhyaya S (2014) Performance analysis of a batch arrival retrial queue with Bernoulli feedback. Int J Math Oper Res 6:680–703. https://doi.org/10.1504/IJMOR.2014.065423

    Article  MathSciNet  Google Scholar 

  19. Tian R, Zhang ZG, Su S (2022) On Markovian queues with single working vacation and bernoulli interruptions. Probab Eng Inf Sci 36:616–643. https://doi.org/10.1017/S0269964820000704

    Article  MathSciNet  Google Scholar 

  20. Pardo MJ, de la Fuente D (2007) Optimizing a priority-discipline queueing model using fuzzy set theory. Comput Math Appl 54:267–281. https://doi.org/10.1016/j.camwa.2007.01.019

    Article  MathSciNet  Google Scholar 

  21. Ke JC, Huang HI, Lin CH (2007) On retrial queueing model with fuzzy parameters. Phys A Stat Mech Appl 374:272–280. https://doi.org/10.1016/j.physa.2006.05.057

    Article  Google Scholar 

  22. Lin CH, Ke JC (2009) Optimal operating policy for a controllable queueing model with a fuzzy environment. J Zhejiang Univ Sci A 10:311–318. https://doi.org/10.1631/jzus.A0820139

    Article  Google Scholar 

  23. Chen SP (2005) Parametric nonlinear programming approach to fuzzy queues with bulk service. Eur J Oper Res 163:434–444. https://doi.org/10.1016/j.ejor.2003.10.041

    Article  MathSciNet  Google Scholar 

  24. Yang DY, Chang PK (2015) A parametric programming solution to the F-policy queue with fuzzy parameters. Int J Syst Sci 46:590–598. https://doi.org/10.1080/00207721.2013.792975

    Article  MathSciNet  Google Scholar 

  25. Zadeh LA (1978) Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets Syst 1:3–28

    Article  MathSciNet  Google Scholar 

  26. Li RJ, Lee ES (1989) Analysis of fuzzy queues. Comput Math Appl 17:1143–1147. https://doi.org/10.1016/0898-1221(89)90044-8

    Article  MathSciNet  Google Scholar 

  27. Bagherinejad J, Pishkenari SB (2016) Analysis of FM/FM/c queuing system: Using fuzzy approach and parametric nonlinear programming. Int J Ind Syst Eng 23:125–140. https://doi.org/10.1504/IJISE.2016.076395

    Article  Google Scholar 

  28. Dhibar S, Jain M (2024) Particle swarm optimization and FM/FM/1/WV retrial queues with catastrophes: application to cloud storage. J Supercomput 80:15429–15463. https://doi.org/10.1007/s11227-024-06068-y

    Article  Google Scholar 

  29. Jang J-SR (1993) ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans Syst Man Cybern 23:665–685. https://doi.org/10.1109/21.256541

    Article  Google Scholar 

  30. Jain M, Sanga SS, Meena RK (2017) Control F-policy for Markovian retrial queue with server breakdowns. In: 1st IEEE Int Conf Power Electron Intell Control Energy Syst ICPEICES 2016, pp 3–7. https://doi.org/10.1109/ICPEICES.2016.7853083

  31. Ahuja A, Jain A, Jain M (2022) Transient analysis and ANFIS computing of unreliable single server queueing model with multiple stage service and functioning vacation. Math Comput Simul 192:464–490. https://doi.org/10.1016/j.matcom.2021.09.011

    Article  MathSciNet  Google Scholar 

  32. Sadique Ali M, Ghatol AA (2004) A neuro fuzzy inference system for student modeling in web-based intelligent tutoring systems. In: Proc Int Conf Cogn Syst 14–19

  33. Jain M, Dhibar S (2023) ANFIS and metaheuristic optimization for strategic joining policy with re-attempt and vacation. Math Comput Simul 211:57–84. https://doi.org/10.1016/j.matcom.2023.03.024

    Article  MathSciNet  Google Scholar 

  34. Kiefer J (1953) Sequential minimax search for a maximum. Proc Am Math Soc 4:502. https://doi.org/10.2307/2032161

    Article  MathSciNet  Google Scholar 

  35. Bouchentouf AA, Cherfaoui M, Boualem M (2019) Performance and economic analysis of a single server feedback queueing model with vacation and impatient customers. Opsearch 56:300–323. https://doi.org/10.1007/s12597-019-00357-4

    Article  MathSciNet  Google Scholar 

  36. Jain M, Kumar P, Meena RK (2020) Fuzzy metrics and cost optimization of a fault-tolerant system with vacationing and unreliable server. J Ambient Intell Humaniz Comput 11:5755–5770. https://doi.org/10.1007/s12652-020-01951-x

    Article  Google Scholar 

  37. Jain M, Dhibar S, Sanga SS (2021) Markovian working vacation queue with imperfect service, balking and retrial. J Ambient Intell Humaniz Comput 13:1907–1923. https://doi.org/10.1007/s12652-021-02954-y

    Article  Google Scholar 

  38. Kumar A, Bouchentouf AA, Boualem M (2024) Cost optimisation analysis for a markovian feedback queueing system with discouragement, breakdown, and threshold-based recovery policy. In: Optimization Techniques for Decision-making and Information Security. Bentham Science Publishers, 1–17

  39. Vijaya Laxmi P, Goswami V, Jyothsna K (2013) Optimization of balking and reneging queue with vacation interruption under N-policy. J Optim 2013:1–9. https://doi.org/10.1155/2013/683708

    Article  Google Scholar 

  40. Wu CH, Lee WC, Ke JC, Liu TH (2014) Optimization analysis of an unreliable multi-server queue with a controllable repair policy. Comput Oper Res 49:83–96. https://doi.org/10.1016/j.cor.2014.03.018

    Article  MathSciNet  Google Scholar 

  41. Yang DY, Wu CH (2015) Cost-minimization analysis of a working vacation queue with N-policy and server breakdowns. Comput Ind Eng 82:151–158

    Article  Google Scholar 

  42. Wang J, Wang F, Li WW (2017) Strategic behavior and admission control of cognitive radio systems with imperfect sensing. Comput Commun 113:53–61. https://doi.org/10.1016/j.comcom.2017.09.015

    Article  Google Scholar 

  43. Wang Z, Liu L, Shao Y, Zhao YQ (2021) Joining strategies under two kinds of games for a multiple vacations retrial queue with n-policy and breakdowns. AIMS Math 6:9075–9099. https://doi.org/10.3934/math.2021527

    Article  MathSciNet  Google Scholar 

  44. Meena RK, Jain M, Assad A et al (2022) Performance and cost comparative analysis for M/G/1 repairable machining system with N-policy vacation. Math Comput Simul 200:315–328. https://doi.org/10.1016/j.matcom.2022.04.012

    Article  MathSciNet  Google Scholar 

  45. Isijola-Adakeja OA, Ibe OC (2014) M/M/1 multiple vacation queueing systems with differentiated vacations and vacation interruptions. IEEE Access 2:1384–1395. https://doi.org/10.1109/ACCESS.2014.2372671

    Article  Google Scholar 

  46. Suranga Sampath MIG, Liu J (2020) Impact of customers’ impatience on an M/M/1 queueing system subject to differentiated vacations with a waiting server. Qual Technol Quant Manag 17:125–148. https://doi.org/10.1080/16843703.2018.1555877

    Article  Google Scholar 

  47. Aghsami A, Jolai F (2020) Equilibrium threshold strategies and social benefits in the fully observable Markovian queues with partial breakdowns and interruptible setup/closedown policy. Qual Technol Quant Manag 17:685–722. https://doi.org/10.1080/16843703.2020.1736365

    Article  Google Scholar 

  48. Liu S, Hu L, Liu Z, Wang Y (2021) Reliability of a retrial system with mixed standby components and Bernoulli vacation. Qual Technol Quant Manag 18:248–265. https://doi.org/10.1080/16843703.2020.1853320

    Article  Google Scholar 

  49. Goswami V, Panda G (2019) Mixed equilibrium and social joining strategies in Markovian queues with Bernoulli-schedule-controlled vacation and vacation interruption. Qual Technol Quant Manag 16:531–559. https://doi.org/10.1080/16843703.2018.1480266

    Article  Google Scholar 

  50. Dhibar S, Jain M (2023) Strategic behaviour for M/M/1 double orbit retrial queue with imperfect service and vacation. Int J Math Oper Res 25:369–385. https://doi.org/10.1504/IJMOR.2022.10048415

    Article  MathSciNet  Google Scholar 

  51. Chakraborty SK, Panda G (2016) Golden section search over hyper-rectangle: a Direct search method. Int J Math Oper Res 8:279–292. https://doi.org/10.1504/IJMOR.2016.075517

    Article  MathSciNet  Google Scholar 

  52. Ajithapriyadarsini S, Mary PM, Iruthayarajan MW (2019) Automatic generation control of a multi-area power system with renewable energy source under deregulated environment: adaptive fuzzy logic-based differential evolution (DE) algorithm. Soft Comput 23:12087–12101. https://doi.org/10.1007/s00500-019-03765-2

    Article  Google Scholar 

  53. Cui L, Li G, Zhu Z et al (2018) A novel differential evolution algorithm with a self-adaptation parameter control method by differential evolution. Soft Comput 22:6171–6190. https://doi.org/10.1007/s00500-017-2685-5

    Article  Google Scholar 

  54. Gross D, Shortle JF, Thompson JM, Harris CM (2008) Fundamentals of queueing theory. Wiley, New York

    Book  Google Scholar 

  55. Elaydi S (2005) An introduction to difference equations. Springer-Verlag, New York

    Google Scholar 

  56. Zimmermann H-J (2011) Fuzzy Set Theory and Its Applications. 4th ed., Springer Science & Business Media, New York

  57. Kreyszig E (1978) Introductory functional analysis with applications. Wiley, New York

    Google Scholar 

Download references

Acknowledgements

We would like to thank anonymous referees and the editor-in-chief for their valuable comments and feedback, which have greatly contributed to the improvement of this research work. The first author is grateful to the Ministry of Human Resource Development (Grant MHC01- 23-200-428) for supporting the present research work via senior research fellowship (SRF), Grant MHC01-23-200-428.

Funding

Ministry of Education, India, Grant MHC01-23-200-428

Author information

Authors and Affiliations

Authors

Contributions

Sibasish Dhibar contributed to model design, concept, computational results, analysis verification, and manuscript write-up. Dr. Madhu Jain contributed to model design, analysis verification, and manuscript write-up.

Corresponding author

Correspondence to Sibasish Dhibar.

Ethics declarations

Conflict of interest

Both the authors declare that they have no known conflicts of interest.

Ethical approval

This research paper does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

The stationary state equations can be constructed by using the input–output rates of different states shown in the transition diagram in Fig. 3 as follows:

$$ \lambda_{0} P_{0,2} = \mu \sigma P_{1,0} + \nu P_{0,1} $$
(A.1)
$$ \left( {\lambda_{0} + \gamma } \right)P_{n,2} = \lambda_{0} P_{n - 1,2} ,\;n \ge 1 $$
(A.2)
$$ \left( {\lambda q + \mu } \right)P_{1,0} = \gamma pP_{1,2} + \mu P_{2,0} + \nu P_{1,1} + \overline{\beta } \eta P_{2,1} $$
(A.3)
$$ \left( {\lambda q + \mu } \right)P_{n,0} = \gamma pP_{n,2} + \mu P_{n + 1,0} + \nu P_{n,1} + \overline{\beta } \eta P_{n + 1,1} + \lambda qP_{n - 1,0} ,\;n \ge 2 $$
(A.4)
$$ \left( {\lambda q + \nu } \right)P_{0,1} = \left( {\eta + \theta } \right)P_{1,1} + \mu \overline{\sigma }P_{1,0} $$
(A.5)
$$ \left( {\lambda q + \nu + \eta + \theta } \right)P_{n,1} = \gamma \overline{p}P_{n,2} + \left( {\beta \eta + \theta } \right)P_{n + 1,1} + \lambda qP_{n - 1,1} ,\;n \ge 1 $$
(A.6)

Using iterative approach, Eq. (A.2) yields

$$ P_{n,2} = \psi^{n} P_{0,2} $$
(A.7)

where \(\psi = \lambda_{0} \left( {\lambda_{0} + \gamma } \right)^{ - 1} .\)

Substituting results given in Eq. (A.7), Eq. (A.6) can be rewritten as

$$ \left( {\beta \eta + \theta } \right)P_{n + 1,1} - \left( {\lambda q + \nu + \eta + \theta } \right)P_{n,1} + \lambda qP_{n - 1,1} = - \gamma \overline{p}\psi^{n} P_{0,2} ,\;n \ge 1 $$
(A.8)

which is the nonhomogeneous second-order difference equations with constant coefficient Elaydi [55]. To obtain the stationary probability distribution \(\left\{ {P_{n,1} ,\;n \ge 0} \right\}\), Eq. (A.8) can be written as

$$ ax_{n + 1,1} - bx_{n,1} + \lambda qx_{n - 1,1} = - \gamma \overline{p}\psi^{n} P_{0,2} $$
(A.9)

where \(a = \beta \eta + \theta ,\;b = \lambda q + \nu + \eta + \theta .\)

The equation (A.9) has general solution of the form

$$ x_{n,1}^{{{\text{gen}}}} = x_{n,1}^{\hom } + x_{n,1}^{{{\text{Spec}}}} $$
(A.10)

where \(x_{n,1}^{\hom }\) is the solution corresponding to homogenous equation of (A.9) and \(x_{n,1}^{{{\text{Spec}}}}\) is the special solution corresponding to nonhomogeneous part of Eq. (A.9).

The characteristic equation according to Eq. (A.9) is

$$ f(x): = ax^{2} - bx + \lambda q = 0 $$
(A.11)

which has two roots

$$ \delta_{1} = \frac{{a - \sqrt {b^{2} - 4a\lambda q} }}{2a},\;\delta_{2} = \frac{{b + \sqrt {b^{2} - 4a\lambda q} }}{2a} $$
(A.12)

Therefore, the solution of homogenous Equation (A.9) is

$$ x_{n,1}^{\hom } = C_{1} \delta_{1}^{n} + C_{2} \delta_{2}^{n} $$
(A.13)

Since the nonhomogeneous part of Eq. (A.9) is geometric with parameter \(\lambda_{0} \left( {\lambda_{0} + \gamma } \right)^{ - 1}\), we can consider a specific solution as \(K\psi P_{0,2}\).

Now Eq. (A.9) yields

$$ K = - \frac{{\gamma \overline{p}\psi }}{{a\psi^{2} - b\psi + \lambda q}} $$
(A.14)

The general solution of the corresponding probability distribution \(\left\{ {P_{n,1} ,\;n \ge 0} \right\}\) is

$$ P_{n,1} = C_{1} \delta_{1}^{n} + C_{2} \delta_{2}^{n} + K\psi^{n} P_{0,2} $$
(A.15)

Observe that \(f(0) > 0\), \(f(1) > 0\) and \(\mathop {\lim }\limits_{x \to + \infty } f(x) = + \infty\). By Bolzano’s Theorem Kreyszig [57], we have \(\delta_{1} \in \left( {0,1} \right)\) and \(\delta_{2} \in \left( {1, + \infty } \right)\). From the normalization condition \( \sum\nolimits_{{n = 0}}^{\infty } {P_{{n,1}} < \infty } \), notice that the coefficient \(\delta_{2}\) of \(C_{2}\) in Eq. (A.15) should be 0.

Hence, Eq. (A.15) can be rewritten as

$$ P_{n,1} = C_{1} \left( {\frac{{b - \sqrt {b^{2} - 4a\lambda q} }}{2a}} \right)^{n} - \frac{{\gamma \overline{p}\psi }}{{a\psi^{2} - b\psi + \lambda q}}\psi^{n} P_{0,2} $$
(A.16)

Using Eq. (A.16), Eqs. (A.1) and (A.5) yields

$$ P_{1,0} = AC_{1} $$
(A.17)
$$ P_{0,2} = \frac{{\mu \overline{\sigma }A + \left( {\eta + \theta } \right)\delta_{1} - \left( {\lambda q + \nu } \right)}}{{K\left( {\left( {\lambda q + \nu } \right) - \left( {\eta + \theta } \right)\psi } \right)}}C_{1} $$
(A.18)

where \(A = \frac{{\left( {\left( {\eta + \theta } \right)\delta_{1} - \left( {\lambda q + \nu } \right)} \right)\left( {\lambda_{0} - \nu K} \right) - \nu K\left( {\left( {\lambda q + \nu } \right) - \eta \psi } \right)}}{{\mu \sigma K\left( {\left( {\lambda q + \nu } \right) - \left( {\eta + \theta } \right)\psi } \right) - \mu \overline{\sigma }\left( {\lambda_{0} - \nu K} \right)}}\).

Hence, using Eqs. (A.7), (A.16) and (A.17), (A.18), we have

$$ P_{n,2} = \psi^{n} MC_{1} $$
(A.19)
$$ P_{n,1} = C_{1} \left( {\delta_{1}^{n} + KM\psi^{n} } \right) $$
(A.20)

where \(M = \frac{{\mu \overline{\sigma }A + \left( {\eta + \theta } \right)\delta_{1} - \left( {\lambda q + \nu } \right)}}{{K\left( {\left( {\lambda q + \nu } \right) - \left( {\eta + \theta } \right)\psi } \right)}}.\)

Substituting Eqs. (A.19), (A.20) into Eq. (A.4) and then rearranging, we have

$$ \begin{gathered} P_{n + 1,0} - P_{n,0} + \frac{{M(K + \gamma p)\psi^{n + 1} C_{1} }}{\mu \psi - \lambda q} + \frac{{C_{1} \nu \delta_{1}^{n + 1} }}{{\mu \delta_{1} - \lambda q}} \hfill \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; = \frac{\lambda q}{\mu }\left( {P_{n,0} - P_{n - 1,0} + \frac{{M(K + \gamma p)\psi^{n} C_{1} }}{\mu \psi - \lambda q} + \frac{{C_{1} \nu \delta_{1}^{n} }}{{\mu \delta_{1} - \lambda q}}} \right),\;n \ge 2 \hfill \\ \end{gathered} $$
(A.21)

After simplification, Eq. (A.21) implies that

$$ \begin{aligned} P_{n + 1,0} - P_{n,0} = \left( {\frac{\lambda q}{\mu }} \right)^{n - 1} \left( {P_{2,0} - P_{1,0} + \frac{{M(K + \gamma p)\psi^{2} C_{1} }}{\mu \psi - \lambda q} + \frac{{C_{1} \nu \delta_{1}^{2} }}{{\mu \delta_{1} - \lambda q}}} \right) \\ & \quad - \frac{{M(K + \gamma p)\psi^{n + 1} C_{1} }}{\mu \psi - \lambda q} - \frac{{C_{1} \nu \delta_{1}^{n + 1} }}{{\mu \delta_{1} - \lambda q}},\;n \ge 1 \\ \end{aligned} $$
(A.22)

where \(P_{2,0}\) can be found using Eqs. (A.3), (A.19) and (A.20). After an algebraic manipulation of Eq. (A.22), we get

$$ \begin{aligned} P_{n,0} = \frac{{M(K + \gamma p)\psi^{n + 1} C_{1} }}{{\left( {\mu \psi - \lambda q} \right)\left( {1 - \psi } \right)}} + \frac{{\nu \delta_{1}^{n + 1} C_{1} }}{{\left( {\mu \delta_{1} - \lambda q} \right)\left( {1 - \delta_{1} } \right)}} - \left( {\frac{\lambda q}{\mu }} \right)^{n} \\ & \quad \times \frac{{\mu C_{1} }}{\mu - \lambda q}\left[ {A\left( {\frac{\mu - \lambda q}{{\lambda q}} + \frac{\lambda q}{{\mu^{2} }}} \right) + \frac{M(K + \gamma p)\psi }{{\mu \psi - \lambda q}} + \frac{{\nu \delta_{1} }}{{\mu \delta_{1} - \lambda q}}} \right] \\ \end{aligned} $$
(A.23)

where, \( A = \frac{{\left( {\left( {\eta + \theta } \right)\delta _{1} - \left( {\lambda q + \nu } \right)} \right)\left( {\lambda q - \nu K} \right) - \nu K\left( {\left( {\lambda q + \nu } \right) - \left( {\eta + \theta } \right)\psi } \right)}}{{\mu \sigma K\left( {\left( {\lambda q + \nu } \right) - \left( {\eta + \theta } \right)\psi } \right) - \mu \bar{\sigma }\left( {\lambda q - \nu K} \right)}} \)

The constant parameters \(C_{1}\) can be found from the normalization condition

$$ \sum\limits_{n = 1}^{\infty } {P_{n,0} + } \sum\limits_{n = 0}^{\infty } {P_{n,1} + } \sum\limits_{n = 0}^{\infty } {P_{n,2} } = 1 $$
(A.24)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhibar, S., Jain, M. ANFIS simulation integrated in FM/FM/1/(CV + WV) queue with Bernoulli service interruption and metaheuristic optimization for mathematical model. J Supercomput 81, 201 (2025). https://doi.org/10.1007/s11227-024-06481-3

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11227-024-06481-3

Keywords