Skip to main content

Advertisement

Log in

A computational study of fractional variable-order nonlinear Newton–Leipnik chaotic system with radial basis function network

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

This research study involves modeling Newton–Leipnik attractors within the domain of fractional variable-order (FVO) dynamics using a nonlinear and adaptable radial basis function neural network (RBFNN). The numerical solution for the FVO Newton–Leipnik system is initially obtained using a numerical scheme based on the Caputo–Fabrizio derivative with variable order. This process is carried out across a range of different control parameters. A parametric model is also constructed using RBFNN, considering various system initial values. Multiple instances of chaos are calculated using a proposed computational model within the Newton–Leipnik system with varying fractional-order functions. This investigation aims to assess and comprehend the extent of sensitivity exhibited by chaotic behavior achieved through the computation of Lyapunov exponents. The performance of the proposed computational RBFNN model is validated using the RMSE statistic. The results closely align with those obtained through numerical algorithms based on the Caputo–Fabrizio derivative, demonstrating the high accuracy of the designed network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

Data Availability

There are no data associated with this research work.

References

  1. Tarasov VE (2020) Mathematical economics: application of fractional calculus. Mathematics 8(5):660

    Article  Google Scholar 

  2. Wang X, Wang Z, Lu J, Meng B (2021) Stability, bifurcation and chaos of a discrete-time pair approximation epidemic model on adaptive networks. Mathemat Comput Simulat 182:182–194

    Article  MathSciNet  Google Scholar 

  3. Rani DS, Singh DS, Mandal K (2020) Chaos within the Climate Variation: The Process of Energy Balance. Int J Adv Res Eng Technol 11(9):836–841

    Google Scholar 

  4. Luo C, Wang X (2013) Chaos generated from the fractional-order complex Chen system and its application to digital secure communication. Int J Modern Phys C 24(04):1350025

    Article  MathSciNet  Google Scholar 

  5. Jumarie G (2008) Stock exchange fractional dynamics defined as fractional exponential growth driven by (usual) Gaussian white noise. Application to fractional black-scholes equations. Insuranc Mathemat Econom 42:271–287

    Article  MathSciNet  Google Scholar 

  6. Jafari H, Ganji RM, Nkomo NS, Lv YP (2021) A numerical study of fractional order population dynamics model. Result Phys 27:104456

    Article  Google Scholar 

  7. Li C, Peng G (2004) Chaos in Chen’s system with a fractional order. Chaos Solit Fract 22(2):443–450

    Article  MathSciNet  Google Scholar 

  8. Shah K, Arfan M, Ullah A, Al-Mdallal Q, Ansari KJ, Abdeljawad T (2022) Computational study on the dynamics of fractional order differential equations with applications. Chaos Solit Fract 157:111955

    Article  MathSciNet  Google Scholar 

  9. Shah K, Sarwar M, Abdeljawad T (2024) A comprehensive mathematical analysis of fractal-fractional order nonlinear re-infection model. Alexandria Eng J 103:353–365

    Article  Google Scholar 

  10. Baleanu D, Jajarmi A, Sajjadi SS, Mozyrska D (2019) A new fractional model and optimal control of a tumor-immune surveillance with non-singular derivative operator. Chaos Interdiscipl J Nonlin Sci 28:083127

    Article  MathSciNet  Google Scholar 

  11. Baleanu D, Shekari P, Torkzadeh L, Ranjbar H, Jajarmi A, Nouri K (2023) Stability analysis and system properties of Nipah virus transmission: a fractional calculus case study. Chaos Solit Fract 166:112990

    Article  MathSciNet  Google Scholar 

  12. Defterli O, Baleanu D, Jajarmi A, Sajjadi SS, Alshaikh N, Asad JH (2022) Fractional treatment: an accelerated mass-spring system. Romanian Report Phys 74(4):122

    Google Scholar 

  13. Baleanu D, Arshad S, Jajarmi A, Shokat W, Ghassabzade FA, Wali M (2023) Dynamical behaviours and stability analysis of a generalized fractional model with a real case study. J Adv Res 48:157–173

    Article  Google Scholar 

  14. Qi H, Zhao W (2022) Stability and bifurcation analysis of a fractional-order food chain model with two time delays. J Mathemat 2022:5313931

    MathSciNet  Google Scholar 

  15. Ahmed N, Akgül A, Satti AM, Iqbal Z, Raza A, Rafiq M, Park C (2023) Analysis of the fractional polio model with the Mittag-Leffler kernels. Alexandria Eng J 64:657–967

    Google Scholar 

  16. Samko SG (1995) Fractional integration and differentiation of variable order. Anal Mathemat 21(3):213–236

    Article  MathSciNet  Google Scholar 

  17. Rech PC (2021) Dynamics of a four-bimensional system with cubic nonlinearities. Int J Bifurcat Chaos 31:2150012

    Article  Google Scholar 

  18. Solís-Pérez JE, Gómez-Aguilar JF, Atangana A (2018) Novel numerical method for solving variable-order fractional differential equations with power, exponential and Mittag-Leffler laws. Chaos Soliton Fract 114:175–185

    Article  MathSciNet  Google Scholar 

  19. Alkahtani BST, Koca I, Atangana A (2016) A novel approach of variable order derivative: theory and Methods. J Nonlin Sci Appl 9(6):4867–4876

    Article  MathSciNet  Google Scholar 

  20. Verma A, Sumelka W, Yadav PK (2023) The numerical solution of nonlinear fractional lienard and duffing equations using orthogonal perceptron. Symmetry 15(9):1753

    Article  Google Scholar 

  21. Atangana A, Botha JF (2013) A generalized groundwater flow equation using the concept of variable-order derivative. Boundary value prob 2013:1–11

    MathSciNet  Google Scholar 

  22. Ardjouni A, Djoudi A (2020) Existence and uniqueness of positive solutions for first-order nonlinear Liouville-Caputo fractional differential equations. São Paulo J Mathemat Sci 14(1):381–390

    Article  MathSciNet  Google Scholar 

  23. Dlamini A, Goufo EFD, Khumalo M (2021) On the Caputo-Fabrizio fractal fractional representation for the Lorenz chaotic system. AIMS Mathemat 6(11):12395–12421

    Article  MathSciNet  Google Scholar 

  24. Gupta A, Kumar S (2021) Design of Atangana-Baleanu-Caputo fractional-order digital filter. ISA trans 112:74–88

    Article  Google Scholar 

  25. Marlin BA (2002) Periodic orbits in the Newton-Leipnik system. Int J Bifurcat Chaos 12(03):511–523

    Article  MathSciNet  Google Scholar 

  26. Chen S, Zhang Q, Xie J, Wang C (2004) A stable-manifold-based method for chaos control and synchronization. Chaos Soliton Fract 20(5):947–954

    Article  MathSciNet  Google Scholar 

  27. Richter H (2002) Controlling chaotic systems with multiple strange attractors. Phys Lett A 300(2–3):182–188

    Article  MathSciNet  Google Scholar 

  28. Wang X, Tian L (2006) Bifurcation analysis and linear control of the Newton-Leipnik system. Chaos Soliton Fract 27(1):31–38

    Article  MathSciNet  Google Scholar 

  29. Sheu LJ, Chen HK, Chen JH, Tam LM, Chen WC, Lin KT, Kang Y (2008) Chaos in the Newton-Leipnik system with fractional order. Chao Soliton Fract 36(1):98–103

    Article  MathSciNet  Google Scholar 

  30. Saad KM, Srivastava R (2024) Non-standard finite difference and vieta-lucas orthogonal polynomials for the multi-space fractional-order coupled korteweg-de vries equation. Symmetry 16(2):242

    Article  Google Scholar 

  31. Al Fahel S, Baleanu D, Al-Mdallal QM, Saad KM (2023) Quadratic and cubic logistic models involving Caputo-Fabrizio operator. Europ Phys J Special Top 232(14):2351–2355

    Article  Google Scholar 

  32. Morales-Delgado VF, Gómez-Aguilar JF, Saad K, Escobar Jiménez RF (2019) Application of the Caputo-Fabrizio and Atangana-Baleanu fractional derivatives to mathematical model of cancer chemotherapy effect. Mathemat Method Appl Sci 42(4):1167–1193

    Article  MathSciNet  Google Scholar 

  33. Hioual A, Ouannas A, Grassi G, Oussaeif TE (2023) Nonlinear nabla variable-order fractional discrete systems: Asymptotic stability and application to neural networks. J Computat Appl Mathemat 423:114939

    Article  MathSciNet  Google Scholar 

  34. Kumar S, Chauhan RP, Momani S, Hadid S (2024) Numerical investigations on COVID-19 model through singular and non?singular fractional operators. Numerical Methods Partial Different Equat 40(1):e22707

    Article  MathSciNet  Google Scholar 

  35. Rehman KU, Shatanawi W (2024) Lie symmetry based neural networking analysis for Powell-Eyring fluid flow with heat and mass transfer effects. Int J Thermofl 22:100602

    Article  Google Scholar 

  36. Raza A, Baleanu D, Cheema TN, Fadhal E, Ibrahim RI, Abdelli N (2023). Artificial intelligence computing analysis of fractional order COVID-19 epidemic model. AIP Advances, 13(8)

  37. Bukhari AH, Sulaiman M, Raja MAZ, Islam S, Shoaib M, Kumam P (2020) Design of a hybrid NAR-RBFs neural network for nonlinear dusty plasma system. Alexandria Eng J 59(5):3325–3345

    Article  Google Scholar 

  38. Bukhari AH, Shoaib M, Kiani AK, Chaudhary NI, Raja MAZ, Shu CM (2023) Dynamical analysis of nonlinear fractional order Lorenz system with a novel design of intelligent solution predictive radial base networks. Mathemat Comput Simul 213:324–347

    Article  MathSciNet  Google Scholar 

  39. Yousefpour A, Jahanshahi H, Castillo O (2022) Application of variable-order fractional calculus in neural networks: where do we stand? Europ Phys J Special Top 231(10):1753–1756

    Article  Google Scholar 

  40. Shi R, Lu T, Wang C (2019) Dynamic analysis of a fractional-order model for hepatitis B virus with Holling II functional response. Complexity 2019:1097201

    Article  Google Scholar 

  41. Jahanshahi H, Zambrano-Serrano E, Bekiros S, Wei Z, Volos C, Castillo O, Aly AA (2022) On the dynamical investigation and synchronization of variable-order fractional neural networks: the Hopfield-like neural network model. Europ Phys J Special Top 231(10):1757–1769

    Article  Google Scholar 

  42. Parsa Moghaddam B, Yaghoobi S, Tenreiro Machado JA (2016) An extended predictor-corrector algorithm for variable-order fractional delay differential equations. J Computat Nonlin Dynam 1:1–11

    Google Scholar 

  43. Atangana A, Baleanu D (2016) New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model. Thermal Sci 20(2):763–769

    Article  Google Scholar 

  44. Liang L, Guo W, Zhang Y, Zhang W, Li L, Xing X (2020) Radial basis function neural network for prediction of medium-frequency sound absorption coefficient of composite structure open-cell aluminum foam. Appl Acoust 170:107505

    Article  Google Scholar 

  45. Naz S, Raja MAZ, Kausar A, Zameer A, Mehmood A, Shoaib M, (2022) Dynamics of nonlinear cantilever piezoelectric-mechanical system: an intelligent computational approach. Mathemat Comput Simul 196:88–113

    Article  MathSciNet  Google Scholar 

  46. Rashedi KA, Ismail MT, Hamadneh NN, Wadi SA, Jaber JJ, Tahir M (2021) Application of radial basis function neural network coupling particle swarm optimization algorithm to classification of Saudi Arabia stock returns. J Mathemat 2021:1–8

    MathSciNet  Google Scholar 

  47. Abu Arqub O, Rashaideh H (2018) The RKHS method for numerical treatment for integrodifferential algebraic systems of temporal two-point BVPs. Neural Comput Appl 30:2595–2606

    Article  Google Scholar 

  48. Khan A, Saeed A, Gul T, Mukhtar S, Ali I, Jawad M (2021) Radiative swirl motion of hydromagnetic Casson nanofluid flow over rotary cylinder using Joule dissipation impact. Phys Scripta 96(4):045206

    Article  Google Scholar 

  49. Abro KA, Atangana A (2020) A comparative analysis of electromechanical model of piezoelectric actuator through Caputo-Fabrizio and Atangana-Baleanu fractional derivatives. Mathemat Method Appl Sci 43(17):9681–9691

    Article  MathSciNet  Google Scholar 

  50. Liping C, Khan MA, Atangana A, Kumar S (2021) A new financial chaotic model in Atangana-Baleanu stochastic fractional differential equations. Alexandria Eng J 60(6):5193–5204

    Article  Google Scholar 

Download references

Acknowledgements

We are thankful to the reviewers and editor for their valuable suggestions to improve the quality of the manuscript. The authors would like to thank Prince Sultan University for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zia Bashir.

Ethics declarations

Conflict of interest

The authors declare that they have no Conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bashir, Z., Malik, M.G.A. & Hussain, S. A computational study of fractional variable-order nonlinear Newton–Leipnik chaotic system with radial basis function network. J Supercomput 81, 152 (2025). https://doi.org/10.1007/s11227-024-06492-0

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11227-024-06492-0

Keywords