Skip to main content

Advertisement

Log in

Optimization of mixture ratios of raw materials in thermoplastic hybrid composites based on particle swarm optimization algorithm

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

In recent years, the high cost of searching and processing raw materials and the fact that raw material resources have come to the point of depletion force industry and science to seek different solutions. In addition, due to the necessity of increasing the quality, the tendency to composite production has increased. However, it is necessary to make improvements in parameters such as quality, time, and cost in composite production. The use of artificial intelligence technology in the production of composites is becoming more and more common. On the other hand, studies on the determination of raw material mixture ratios are not common. Such studies are usually carried out with experimental productions, which increases the production cost and prolongs the production process. In this study, it was studied on the proportional optimization of the mixture components of thermoplastic hybrid composite materials by using the particle swarm optimization algorithm. First, a dataset was created with the real values obtained from the experimental productions, and the raw material mixture ratios to be included in the mixture were determined by making simulation studies on this dataset. With these obtained ratios, new productions were made, and tests were applied on these productions. Test results have shown that the resulting products are more successful by over 95%. Thus, it has been proven that especially the use of artificial intelligence technology in the field of composites in pre-production stages such as raw material and mixture processes can both reduce the cost and increase the quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Algorithm 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

No data was used for the research described in the article.

References

  1. Trost BM (2002) On inventing reactions for atom economy. Acc Chem Res 35(9):695–705. https://doi.org/10.1021/ar010068z

    Article  Google Scholar 

  2. Öztürk E, Dönmez Çavdar A, Çavdar T, Mengeloğlu F (2021) Optimization of hybrid thermoplastic composite production via artificial intelligence approach. In: Automotive composites conference and exhibition, Michigan, USA. https://speautomotive.com/wp-content/uploads/2021/10/Optimization-of-Hybrid-Thermoplastic-Composite-Production-Based-Artificial-Intelligence-converted.pdf

  3. Sabouhi R, Ghayour H, Abdellahi M, Bahmanpour M (2016) Measuring the mechanical properties of polymer–carbon nanotube composites by artificial intelligence. Int J Damage Mech 25(4):538–556. https://doi.org/10.1177/1056789515604375

    Article  Google Scholar 

  4. Jiang Z, Zhang Z, Friedrich K (2007) Prediction on wear properties of polymer composites with artificial neural networks. Compos Sci Technol 67(2):168–176. https://doi.org/10.1016/j.compscitech.2006.07.026

    Article  Google Scholar 

  5. Zhang Z, Friedrich K (2003) Artificial neural networks applied to polymer composites: a review. Compos Sci Technol 63(14):2029–2044. https://doi.org/10.1016/S0266-3538(03)00106-4

    Article  Google Scholar 

  6. Chen J, Tang Y, Ge R, An Q, Guo X (2013) Reliability design optimization of composite structures based on PSO together with FEA. Chin J Aeronaut 26(2):343–349. https://doi.org/10.1016/j.cja.2013.02.011

    Article  Google Scholar 

  7. Filiberto Y, Bello R, Caballero Y, Larrua R (2010) Using PSO and RST to predict the resistant capacity of connections in composite structures. In: Nature inspired cooperative strategies for optimization (NICSO 2010). Springer, Berlin, Heidelberg, pp 359–370. https://doi.org/10.1007/978-3-642-12538-6_30

  8. Vosoughi A, Forkhorji HD, Roohbakhsh H (2016) Maximum fundamental frequency of thick laminated composite plates by a hybrid optimization method. Compos B Eng 86:254–260. https://doi.org/10.1016/j.compositesb.2015.10.010

    Article  Google Scholar 

  9. de Oliveira MA, Araujo NVS, Inman DJ, Filho JV (2018) Kappa-PSO-FAN based method for damage identification on composite structural health monitoring. Expert Syst Appl 95:1–13. https://doi.org/10.1016/j.eswa.2017.11.022

    Article  Google Scholar 

  10. Tao W, Liu Z, Zhu P, Zhu C, Chen W (2017) Multi-scale design of three dimensional woven composite automobile fender using modified particle swarm optimization algorithm. Compos Struct 181:78–83. https://doi.org/10.1016/j.compstruct.2017.08.065

    Article  Google Scholar 

  11. Javidrad F, Nazari M, Javidrad H (2018) Optimum stacking sequence design of laminates using a hybrid PSO-SA method. Compos Struct 185:607–618. https://doi.org/10.1016/j.compstruct.2017.11.074

    Article  Google Scholar 

  12. Khatir S, Tiachacht S, Thanh C-L, Bui TQ, Wahab MA (2019) Damage assessment in composite laminates using ANN-PSO-IGA and cornwell indicator. Compos Struct 230:111509. https://doi.org/10.1016/j.compstruct.2019.111509

    Article  Google Scholar 

  13. Dadrasi A, Farzi GA, Shariati M, Fooladpanjeh S, Parvaneh V (2020) Experimental study and optimization of fracture properties of epoxy-based nano-composites: effect of using nano-silica by GEP, RSM, DTM and PSO. Eng Fract Mech 232:107047. https://doi.org/10.1016/j.engfracmech.2020.107047

    Article  Google Scholar 

  14. Keshtegar B, Nguyen-Thoi T, Truong TT, Zhu S-P (2021) Optimization of buckling load for laminated composite plates using adaptive kriging-improved PSO: a novel hybrid intelligent method. Defence Technology 17(1):85–99. https://doi.org/10.1016/j.dt.2020.02.020

    Article  Google Scholar 

  15. Omkar S, Khandelwal R, Ananth T, Naik GN, Gopalakrishnan S (2009) Quantum behaved particle swarm optimization (QPSO) for multi-objective design optimization of composite structures. Expert Syst Appl 36(8):11312–11322. https://doi.org/10.1016/j.eswa.2009.03.006

    Article  Google Scholar 

  16. Hanafi I, Cabrera FM, Dimane F, Manzanares JT (2016) Application of particle swarm optimization for optimizing the process parameters in turning of PEEK CF30 composites. Procedia Technol 22:195–202. https://doi.org/10.1016/j.protcy.2016.01.044

    Article  Google Scholar 

  17. Vosoughi A, Gerist S (2014) New hybrid FE-PSO-CGAs sensitivity base technique for damage detection of laminated composite beams. Compos Struct 118:68–73. https://doi.org/10.1016/j.compstruct.2014.07.012

    Article  Google Scholar 

  18. Chen Q, Wang G (2019) PSO-driven micromechanical identification of in-situ properties of fiber-reinforced composites. Compos Struct 220:608–621. https://doi.org/10.1016/j.compstruct.2019.04.005

    Article  Google Scholar 

  19. www.kompozit.org.tr, Kompozit Sanayicileri Derneği, 14 September 2019. [Online]. Available: http://www.kompozit.org.tr/tr/automotive-industry-turn-to-face-the-change/. [Accessed 22 Feb 2022].

  20. Ford (2015) engineering material specification: WRS-M4D941-B1, Revised by B. Haggart

  21. Ford (2017) Engineering material specification: WSS-M4D854-B1:B5 revised by A Weatherhead

  22. Mohammadzadeh H, Gharehchopogh FS (2021) A multi-agent system based for solving high-dimensional optimization problems: a case study on email spam detection. Int J Commun Syst 34(3):e4670. https://doi.org/10.1002/dac.4670

    Article  Google Scholar 

  23. Pervaiz S, Ul-Qayyum Z, Bangyal WH, Gao L, Ahmad J (2021) A systematic literature review on particle swarm optimization techniques for medical diseases detection. Comput Math Methods Med 2021:1–10. https://doi.org/10.1155/2021/5990999

    Article  Google Scholar 

  24. Zaman HRR, Gharehchopogh FS (2022) An improved particle swarm optimization with backtracking search optimization algorithm for solving continuous optimization problems. Eng Comput 38:2797–2831. https://doi.org/10.1007/s00366-021-01431-6

    Article  Google Scholar 

  25. Bangyal WH, Nisar K, Ibrahim AABAg, Haque MR, Rodrigues JJ, Rawat DB (2021) Comparative analysis of low discrepancy sequence-based initialization approaches using population-based algorithms for solving the global optimization problems. Appl Sci 11(16):7591. https://doi.org/10.3390/app11167591

    Article  Google Scholar 

  26. Gharehchopogh FS (2022) Quantum-inspired metaheuristic algorithms: comprehensive survey and classification. Artif Intell Rev. https://doi.org/10.1007/s10462-022-10280-8

    Article  Google Scholar 

  27. Li S, Chen H, Wang M, Heidari AA, Mirjalili S (2020) Slime mould algorithm: a new method for stochastic optimization. Futur Gener Comput Syst 111:300–323. https://doi.org/10.1016/j.future.2020.03.055

    Article  Google Scholar 

  28. Gharehchopogh FS, Ucan A, Ibrikci T, Arasteh B, Isik G (2023) Slime mould algorithm: a comprehensive survey of its variants and applications. Arch Comput Methods Eng 30(4):2683–2723. https://doi.org/10.1007/s11831-023-09883-3

    Article  Google Scholar 

  29. Gharehchopogh FS (2022) An improved tunicate swarm algorithm with best-random mutation strategy for global optimization problems. J Bionic Eng 19(4):1177–1202. https://doi.org/10.1007/s42235-022-00185-1

    Article  Google Scholar 

  30. Kaur S, Awasthi LK, Sangal A, Dhiman G (2020) Tunicate swarm algorithm: a new bio-inspired based metaheuristic paradigm for global optimization. Eng Appl Artif Intell 90:103541. https://doi.org/10.1016/j.engappai.2020.103541

    Article  Google Scholar 

  31. Kiran MS (2015) TSA: Tree-seed algorithm for continuous optimization. Expert Syst Appl 42(19):6686–6698. https://doi.org/10.1016/j.eswa.2015.04.055

    Article  Google Scholar 

  32. Gharehchopogh FS (2022) Advances in tree seed algorithm: a comprehensive survey. Arch Comput Methods Eng 29:3281–3304. https://doi.org/10.1007/s11831-021-09698-0

    Article  MathSciNet  Google Scholar 

  33. Naseri TS, Gharehchopogh FS (2022) A feature selection based on the farmland fertility algorithm for improved intrusion detection systems. J Netw Syst Manage 30(3):40. https://doi.org/10.1007/s10922-022-09653-9

    Article  Google Scholar 

  34. Shishavan ST, Gharehchopogh FS (2022) An improved cuckoo search optimization algorithm with genetic algorithm for community detection in complex networks. Multimed Tools Appl 81(18):25205–25231. https://doi.org/10.1007/s11042-022-12409-x

    Article  Google Scholar 

  35. Xue J, Shen B (2020) A novel swarm intelligence optimization approach: sparrow search algorithm. Syst Sci Control Eng 8(1):22–34. https://doi.org/10.1080/21642583.2019.1708830

    Article  Google Scholar 

  36. Gharehchopogh FS, Namazi M, Ebrahimi L, Abdollahzadeh B (2023) Advances in sparrow search algorithm: a comprehensive survey. Arch Comput Methods Eng 30(1):427–455. https://doi.org/10.1007/s11831-022-09804-w

    Article  Google Scholar 

  37. Yang X-S (2010) A new metaheuristic bat-inspired algorithm. In: González JR, Pelta DA, Cruz C, Terrazas G, Krasnogor N (eds) Nature inspired cooperative strategies for optimization (NICSO 2010). Springer Berlin Heidelberg, Berlin, Heidelberg, pp 65–74. https://doi.org/10.1007/978-3-642-12538-6_6

    Chapter  Google Scholar 

  38. Bangyal WH, Hameed A, Ahmad J, Nisar K, Haque MR, Ibrahim AAA, Rodrigues J, Khan MA, Rawat DB, Etengu R (2022) New modified controlled bat algorithm for numerical optimization problem. Comput Mater Continu 70(2):2241–2259. https://doi.org/10.32604/cmc.2022.017789

    Article  Google Scholar 

  39. Gharehchopogh FS (2022) An improved harris hawks optimization algorithm with multi-strategy for community detection in social network. J Bion Eng. https://doi.org/10.1007/s42235-022-00303-z5

    Article  Google Scholar 

  40. Demirci B (2012) Türkiye otomotiv plastikleri sektör izleme raporu

  41. Mengeloglu F, Basboga IH, Aslan T (2015) Selected properties of furniture plant waste filled thermoplastic composites. Pro Ligno 11(4):199–206

    Google Scholar 

  42. Luna IZ, Dam KC, Sarwaruddin Chowdhury AM, Abdul Gafur Md, Khan N, Khan RA (2015) Physical and thermal characterization of alkali treated rice husk reinforced polypropylene composites. Adv Mater Sci Eng 2015:1–7. https://doi.org/10.1155/2015/907327

    Article  Google Scholar 

  43. Muratov D, Kuznetsov D, Il’Inykh I, Mazov I, Stepashkin A, Tcherdyntsev V (2014) Thermal conductivity of polypropylene filled with inorganic particles. J Alloys Compd 586:S451–S454. https://doi.org/10.1016/j.jallcom.2012.11.142

    Article  Google Scholar 

  44. Maynard SJ (1978) Optimization theory in evolution. Annu Rev Ecol Syst 9(1):31–56. https://doi.org/10.1146/annurev.es.09.110178.000335

    Article  Google Scholar 

  45. Lange K (2013) Optimization, vol 95. Springer Science & Business Media, Berlin

    Google Scholar 

  46. Wikipedia (2021) [Online]. Available: https://tr.wikipedia.org/wiki/Optimizasyon. [Accessed 22 Feb 2022]

  47. Eberhart R, Kennedy J (1995) Particle swarm optimization. Proc IEEE Int Conf Neural Netw 4:1942–1948. https://doi.org/10.1109/ICNN.1995.488968

    Article  Google Scholar 

  48. Wang D, Tan D, Liu L (2018) Particle swarm optimization algorithm: an overview. Soft Comput 22(2):387–408. https://doi.org/10.1007/s00500-016-2474-6

    Article  Google Scholar 

  49. Bai Q (2010) Analysis of particle swarm optimization algorithm. Comput Info Sci 3(1):180

    Google Scholar 

  50. Jiang Y, Hu T, Huang C, Wu X (2007) An improved particle swarm optimization algorithm. Appl Math Comput 193(1):231–239. https://doi.org/10.1016/j.amc.2007.03.047

    Article  Google Scholar 

  51. Karaboğa D (2014) Parçacık sürü optimizasyonu. In: Yapay zeka optimizasyon algoritmalari, vol. 245, Nobel Akademik Yayıncılık, pp 183

  52. Beyer WH (2019) Handbook of tables for probability and statistics. Crc Press, Boca Raton

    Book  Google Scholar 

  53. Glen S (2022) Elementary Statistics for the rest of us!. Z-table (Right of Curve or Left), [Online]. Available: https://www.statisticshowto.com/tables/z-table/. [Accessed 1 Jun 2022].

  54. Banuelos M (2022) wikihow.com.tr [Online]. Available: https://www.wikihow.com.tr/Güven-Aralığı-Nasıl-Hesaplanır#Referanslar. [Accessed 1 Jun 2022].

  55. Harel O, Dağılgan ÖF (2021) Hata Payı Nedir? Varyans, standart sapma ve güven araliği nasil hesaplanır?," evrimagaci.org, 9 March 2021. [Online]. Available: https://evrimagaci.org/hata-payi-nedir-varyans-standart-sapma-ve-guven-araligi-nasil-hesaplanir-10245. [Accessed 1 June 2022]

  56. Öztürk E, Dönmez Çavdar A, Çavdar T (2021) Yusufçuk algoritmasi ile termoplastik hibrit kompozitlerin üretiminde katki maddeleri oranlarinin optimizasyonu. In: 1st International Congress on Artificial Intelligence and Data Science (ICADA21), İzmir

  57. Mirjalili S (2016) Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Comput Appl 27:1053–1073

    Article  Google Scholar 

  58. Tuğrul Ç, Ercüment ÖTÜRK (2022) Termoplastik hibrit kompozitlerde hammadde karişim orani optimizasyonu için gri kurt algoritmasinin kullanilması. Karadeniz Fen Bilimleri Dergisi 12(2):749–762. https://doi.org/10.31466/kfbd.1140989

    Article  Google Scholar 

  59. Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Prof. Dr. Fatih Mengeloğlu and Büşra Avcı for their assistance during the experimental study and production phase.

Funding

The data used in this study were obtained within the scope of the project supported by TUBITAK (Scientific and Technological Research Council of Turkiye) [grant number 120O339].

Author information

Authors and Affiliations

Authors

Contributions

E.Ö.: Methodology, coding, investigation, writing—reviewing, validation, editing A.D.Ç.: Conceptualization, methodology, supervision reviewing and editing T.Ç.: Methodology, reviewing and editing, supervision.

Corresponding author

Correspondence to Ercüment Öztürk.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

This declaration is not applicable to our work. Because no animal or living creature was used in our study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Öztürk, E., Çavdar, A.D. & Çavdar, T. Optimization of mixture ratios of raw materials in thermoplastic hybrid composites based on particle swarm optimization algorithm. J Supercomput 81, 13 (2025). https://doi.org/10.1007/s11227-024-06555-2

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11227-024-06555-2

Keywords