Skip to main content
Log in

Inference of evidence reasoning rule with Gaussian distribution reliability and its application in safety assessment

  • Research
  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

In practical systems, observation attributes are often susceptible to noise perturbations. Evidential reasoning (ER) rule, by incorporating evidence reliability, is capable of discounting uncertainties such as perturbations to construct a joint reasoning model for obtaining reasonable evaluation results. However, in previous studies, evidence reliability has typically been treated as a quantitative value, which to some extent limits its effectiveness in handling uncertainties. In this paper, we propose for the first time the description of evidence reliability as a random variable following a Gaussian distribution and establish criteria for setting the Gaussian probability parameters (mean and variance), thereby constructing a new ER with Gaussian probability reliability (gpr), called ER-gpr. Firstly, we combine various reliability determination methods with game theory to calculate adaptive reliability, which serves as the principle for setting the mean. Secondly, two criteria are proposed to set the variance via this principle, with rigorous mathematical proofs provided. Thirdly, a multi-step Whale Optimization Algorithm (WOAMS) is proposed for optimizing the evidence parameters. Fourthly, a sensitivity analysis is conducted on the probability parameters. Finally, the practical utility of the ER-gpr model in safety assessment is demonstrated through a case study of the JRC-7M aerospace relay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data availability

No datasets were generated or analyzed during the current study.

References

  1. Wang J, Zhou ZJ, Hu CH et al (2022) A fusion approach based on evidential reasoning rule considering the reliability of digital quantities. Inf Sci 612(202):107–131. https://doi.org/10.1016/j.ins.2022.08.071

    Article  Google Scholar 

  2. Zhang L, Du Y (2023) Cascading failure model and resilience enhancement scheme of space information networks. Reliab Eng Syst Saf 237:109379. https://doi.org/10.1016/j.ress.2023.109379

    Article  Google Scholar 

  3. Li GL, Zhou ZJ, Hu CH et al (2019) An optimal safety assessment model for complex systems considering correlation and redundancy. Int J Approx Reason 104:38–56. https://doi.org/10.1016/j.ijar.2018.10.004

    Article  MathSciNet  Google Scholar 

  4. Chang LL, Fu C, Zhu W et al (2021) Belief rule mining using the evidential reasoning rule for medical diagnosis. Int J Approx Reason 130:273–291. https://doi.org/10.1016/j.ijar.2020.12.009

    Article  MathSciNet  Google Scholar 

  5. Cheng XY, Han P, He W et al (2023) A new interval constructed belief rule base with rule reliability. J Supercomput 79:15835–15867. https://doi.org/10.1007/s11227-023-05284-2

    Article  Google Scholar 

  6. Shawky M, Alsobky A, Sobky AA et al (2023) Traffic safety assessment for roundabout interSections using drone photography and conflict technique. Ain Shams Eng J 14(6):102115. https://doi.org/10.1016/j.asej.2023.102115

    Article  Google Scholar 

  7. Tang SW, Zhou ZJ, Hu CH et al (2022) A new evidential reasoning rule-based safety assessment method with sensor reliability for complex systems. IEEE Trans Cybern 52(5):4027–4038. https://doi.org/10.1109/TCYB.2020.3015664

    Article  Google Scholar 

  8. Ilbahar E, Karaşan A, Cebi S et al (2018) A novel approach to risk assessment for occupational health and safety using Pythagorean fuzzy AHP & fuzzy inference system. Saf Sci 103:124–213. https://doi.org/10.1016/j.ssci.2017.10.025

    Article  Google Scholar 

  9. Tso SK, Gu XP, Zeng QY et al (1998) Deriving a transient stability index by neural networks for power-system security assessment. Eng Appl Artif Intell 11(6):771–779. https://doi.org/10.1016/S0952-1976(98)00040-2

    Article  Google Scholar 

  10. Chang LL, Zhang LM, Xu XJ (2021) Correlation-oriented complex system structural risk assessment using Copula and belief rule base. Inf Sci 564:220–236. https://doi.org/10.1016/j.ins.2021.02.076

    Article  MathSciNet  Google Scholar 

  11. Gao F, Bi CC, Bi WH et al (2023) A new belief rule base inference methodology with interval information based on the interval evidential reasoning algorithm. Appl Intell 53:12504–12520. https://doi.org/10.1007/s10489-022-04182-z

    Article  Google Scholar 

  12. Yu Q, Song JY, Yu XH et al (2022) To solve the problems of combat mission predictions based on multi-instance genetic fuzzy systems. J Supercomput 78:14626–14647. https://doi.org/10.1007/s11227-022-04388-5

    Article  Google Scholar 

  13. Chen Y, Chen YW, Xu XB et al (2015) A data-driven approximate causal inference model using the evidential reasoning rule. Knowl-Based Syst 88:264–272. https://doi.org/10.1016/j.knosys.2015.07.026

    Article  Google Scholar 

  14. Tang SW, Zhou ZJ, Hu GY et al (2013) Evidential reasoning rule with likelihood analysis and perturbation analysis. IEEE Trans Syst Man Cybern Syst 53(2):1209–1221. https://doi.org/10.1109/TSMC.2022.3194197

    Article  Google Scholar 

  15. Elidolu G, Sezer SI, Akyuz E et al (2023) Operational risk assessment of ballasting and de-ballasting on-board tanker ship under FMECA extended Evidential Reasoning (ER) and Rule-based Bayesian Network (RBN) approach. Reliab Eng Syst Saf 231:108975. https://doi.org/10.1016/j.ress.2022.108975

    Article  Google Scholar 

  16. Wang J, Zhou ZJ, Hu CH et al (2021) Performance evaluation of aerospace relay based on evidential reasoning rule with distributed referential points. Measurement 182:109667. https://doi.org/10.1016/j.measurement.2021.109667

    Article  Google Scholar 

  17. Yang JB, Xu DL (2013) Evidential reasoning rule for evidence combination. Artif Intell 205:1–29. https://doi.org/10.1016/j.artint.2013.09.003

    Article  MathSciNet  Google Scholar 

  18. Xu XB, Guo HH, Zhang ZH et al (2024) A cloud model-based interval-valued evidence fusion method and its application in fault diagnosis. Inf Sci 658:119995. https://doi.org/10.1016/j.ins.2023.119995

    Article  Google Scholar 

  19. Xu DL, Yang JB, Wang YM (2006) The evidential reasoning approach for multi-attribute decision analysis under interval uncertainty. Eur J Oper Res 174(3):1914–1943. https://doi.org/10.1016/j.ejor.2005.02.064

    Article  Google Scholar 

  20. Wang J, Zhou ZJ, Ming ZC et al (2023) Inference, optimization, and analysis of an evidential reasoning rule-based modeling approach. IEEE Trans Aerosp Electron Syst 59(4):3907–3923. https://doi.org/10.1109/TAES.2022.3232597

    Article  Google Scholar 

  21. Gao F, Bi WH (2023) A fast belief rule base generation and reduction method for classification problems. Int J Approx Reason 160:108964. https://doi.org/10.1016/j.ijar.2023.108964

    Article  MathSciNet  Google Scholar 

  22. He RF, Zhang LM, Tiong RLK (2023) Flood risk assessment and mitigation for metro stations: an evidential-reasoning-based optimality approach considering uncertainty of subjective parameters. Reliab Eng Syst Saf 238:109453. https://doi.org/10.1016/j.ress.2023.109453

    Article  Google Scholar 

  23. Lin Y, Wang C, Ma CG et al (2016) A new combination method for multisensor conflict information. J Supercomput 72(6):2874–2890. https://doi.org/10.1007/s11227-016-1681-3

    Article  Google Scholar 

  24. Tang SW, Zhou ZJ, Hu CH et al (2021) Perturbation analysis of evidential reasoning rule. IEEE Trans Syst Man Cybern Syst 51(8):4895–4910. https://doi.org/10.1109/TSMC.2019.2944640

    Article  Google Scholar 

  25. Cao Y, Zhou ZJ, Hu CH et al (2021) A new approximate belief rule base expert system for complex system modeling. Decis Support Syst 150:113558. https://doi.org/10.1016/j.dss.2021.113558

    Article  Google Scholar 

  26. Feng ZC, Zhou ZJ, Hu CH et al (2019) A new belief rule base model with attribute reliability. IEEE Trans Fuzzy Syst 27(5):903–916. https://doi.org/10.1109/TFUZZ.2018.2878196

    Article  Google Scholar 

  27. Wang J, Zhou ZJ, Hu CH et al (2022) A new evidential reasoning rule with continuous probability distribution of reliability. IEEE Trans Cybern 52(8):8088–8100. https://doi.org/10.1109/TCYB.2021.3051676

    Article  Google Scholar 

  28. Denœux T (2023) Parametric families of continuous belief functions based on generalized Gaussian random fuzzy numbers. Fuzzy Sets Syst 471:108679. https://doi.org/10.1016/j.fss.2023.108679

    Article  MathSciNet  Google Scholar 

  29. Wang J, Zhou ZJ, Hu CH et al (2022) An evidential reasoning rule considering parameter uncertainty. IEEE Trans Aerosp Electron Syst 58(2):1391–1404. https://doi.org/10.1109/TAES.2021.3115076

    Article  Google Scholar 

  30. Zhang YY, Huang HB, Du Y et al (2024) On the continuous probability distribution attribute weight of belief rule base model. J Supercomput 8:23225–23270. https://doi.org/10.1007/s11227-024-06363-8

    Article  Google Scholar 

  31. Cao Y, Zhou ZJ, Tang SW et al (2023) On the robustness of belief-rule-based expert systems. IEEE Trans Syst Man Cybern Syst 53(10):6043–6055. https://doi.org/10.1109/TSMC.2023.3279286

    Article  Google Scholar 

  32. Zhang P, Zhou ZJ, Feng ZC et al (2023) Inference and analysis on the evidential reasoning rule with time-lagged dependencies. Eng Appl Artif Intell 126:106978. https://doi.org/10.1016/j.engappai.2023.106978

    Article  Google Scholar 

  33. Feng ZC, Yang RH, Zhou ZJ et al (2023) Trustworthy fault diagnosis method based on belief rule base with multi-source uncertain information for vehicle. IEEE Transa Ind Electron. https://ieeexplore.ieee.org/document/10130761

  34. Hu JQ, Zhang LB, Liang W (2012) An adaptive online safety assessment method for mechanical system with pre-warning function. Saf Sci 50(3):385–399. https://doi.org/10.1016/j.ssci.2011.09.018

    Article  Google Scholar 

  35. Cao Y, Zhou ZJ, Hu CH et al (2021) On the interpretability of belief rule based expert systems. IEEE Trans Fuzzy Syst 29(11):3489–3503. https://doi.org/10.1109/TFUZZ.2020.3024024

    Article  Google Scholar 

  36. Wang YM, Yang JB, Xu DL et al (2009) Consumer preference prediction by using a hybrid evidential reasoning and belief rule-based methodology. Expert Syst Appl 36(4):8421–8430. https://doi.org/10.1016/j.eswa.2008.10.052

    Article  Google Scholar 

  37. Han P, He W, Cao Y et al (2023) Lithium-ion battery health assessment method based on belief rule base with interpretability. Appl Soft Comput 138:110160. https://doi.org/10.1016/j.asoc.2023.110160

    Article  Google Scholar 

  38. Jiang J, Chang LL, Zhang LM et al (2021) Retraceable and online multi-objective active optimal control using belief rule base. Knowl-Based Syst 233:107553. https://doi.org/10.1016/j.knosys.2021.107553

    Article  Google Scholar 

  39. Hou K, Sun JP, Guo MC et al (2023) TentISSA-BPNN: a novel evaluation model for cloud service providers for petroleum enterprises. J Supercomput. https://doi.org/10.1007/s11227-023-05803-1

    Article  Google Scholar 

  40. Senagi K, Jouandeau N (2022) Parallel construction of Random Forest on GPU. J Supercomput 78:10480–10500. https://doi.org/10.1007/s11227-021-04290-6

    Article  Google Scholar 

  41. Roh SB, Oh SK, Pedrycz W et al (2019) Design methodology for Radial Basis Function Neural Networks classifier based on locally linear reconstruction and Conditional Fuzzy C-Means clustering. Int J Approx Reason 106:228–243. https://doi.org/10.1016/j.ijar.2019.01.008

    Article  MathSciNet  Google Scholar 

  42. Mei W, Liu JM, Dong J (2021) The integrated sigma-max system and its application in target recognition. Inf Sci 555:198–214. https://doi.org/10.1016/j.ins.2020.12.054

    Article  MathSciNet  Google Scholar 

  43. Mei W (2019) Formalization of fuzzy control in possibility theory via rule extraction. IEEE Access 7:90115–90124

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Fundamental Research Funds for the Central Universities (No. 2024YJS015), the Central Guidance for Local Scientific and Technological Development Fund (No. 246Z0705G) and Beijing Laboratory of National Economic Security Early-warning Engineering, Beijing Jiaotong University.

Author information

Authors and Affiliations

Authors

Contributions

YZ helped in conceptualization and writing—original draft preparation; YZ and YD were involved in methodology; YZ and WH helped in investigation; YZ and YT contributed to writing—review and editing. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Ye Du.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

Derivation of sensitivity coefficient \(S(R_{i} )\). Suppose \(i = 1,2\), \(E(U)\) can be rewritten as

$$E(U) = \frac{{\int_{{R_{1}^{ - } }}^{{R_{1}^{ + } }} {\int_{{R_{2}^{ - } }}^{{R_{2}^{ + } }} {\frac{{A_{1} R_{1} + B_{1} R_{2} + C_{1} }}{{A_{2} R_{1} + B_{2} R_{2} + C_{2} }}} } \times \frac{1}{{2\pi \sigma_{1} \sigma_{2} }}\exp - \left[ {\frac{{\left( {R_{1} - \mu_{1} } \right)^{2} }}{{2\sigma_{1}^{2} }} + \frac{{\left( {R_{2} - \mu_{2} } \right)^{2} }}{{2\sigma_{2}^{2} }}} \right]dR_{1} dR_{2} }}{{(\rho_{1} \rho_{2} )^{ - 1} }}$$
(92)

where \(\rho_{1}\) and \(\rho_{2}\) can be given by Eq. (35). Let

$$\Im = \int_{{R_{1}^{ - } }}^{{R_{1}^{ + } }} {\int_{{R_{2}^{ - } }}^{{R_{2}^{ + } }} {\frac{{A_{1} R_{1} + B_{1} R_{2} + C_{1} }}{{A_{2} R_{1} + B_{2} R_{2} + C_{2} }}} } \times \frac{1}{{2\pi \sigma_{1} \sigma_{2} }}\exp - \left[ {\frac{{\left( {R_{1} - \mu_{1} } \right)^{2} }}{{2\sigma_{1}^{2} }} + \frac{{\left( {R_{2} - \mu_{2} } \right)^{2} }}{{2\sigma_{2}^{2} }}} \right]dR_{1} dR_{2}$$
(93)

For evidence \(e_{1}\), the partial derivatives of \(\partial E(U)/\partial R_{1}^{ + }\) and \(\partial E(U)/\partial R_{1}^{ - }\) can be calculated by

$$\left\{ \begin{gathered} \frac{\partial E(U)}{{\partial R_{1}^{ + } }} = \frac{{\int_{{R_{2}^{ - } }}^{{R_{2}^{ + } }} {\frac{{A_{1} R_{1}^{ + } + B_{1} R_{2} + C_{1} }}{{A_{2} R_{1}^{ + } + B_{2} R_{2} + C_{2} }} \times \frac{1}{{2\pi \sigma_{1} \sigma_{2} }}\exp - \left[ {\frac{{\left( {R_{1}^{ + } - \mu_{1} } \right)^{2} }}{{2\sigma_{1}^{2} }} + \frac{{\left( {R_{2} - \mu_{2} } \right)^{2} }}{{2\sigma_{2}^{2} }}} \right]} dR_{2} }}{{(\rho_{1} \rho_{2} )^{ - 1} }} - \frac{{\Im \rho_{2}^{ - 1} \frac{1}{{\sqrt {2\pi \sigma_{1}^{2} } }}\exp - \left[ {\frac{{\left( {R_{1}^{ + } - \mu_{1} } \right)^{2} }}{{2\sigma_{1}^{2} }}} \right]}}{{\left( {\rho_{1} \rho_{2} } \right)^{ - 2} }} \hfill \\ \frac{\partial E(U)}{{\partial R_{1}^{ - } }} = \frac{{\Im \rho_{2}^{ - 1} \frac{1}{{\sqrt {2\pi \sigma_{1}^{2} } }}\exp - \left[ {\frac{{\left( {R_{1}^{ - } - \mu_{1} } \right)^{2} }}{{2\sigma_{1}^{2} }}} \right]}}{{\left( {\rho_{1} \rho_{2} } \right)^{ - 2} }} - \frac{{\int_{{R_{2}^{ - } }}^{{R_{2}^{ + } }} {\frac{{A_{1} R_{1}^{ - } + B_{1} R_{2} + C_{1} }}{{A_{2} R_{1}^{ - } + B_{2} R_{2} + C_{2} }} \times \frac{1}{{2\pi \sigma_{1} \sigma_{2} }}\exp - \left[ {\frac{{\left( {R_{1}^{ - } - \mu_{1} } \right)^{2} }}{{2\sigma_{1}^{2} }} + \frac{{\left( {R_{2} - \mu_{2} } \right)^{2} }}{{2\sigma_{2}^{2} }}} \right]} dR_{2} }}{{(\rho_{1} \rho_{2} )^{ - 1} }} \hfill \\ \end{gathered} \right.$$
(94)

For evidence \(e_{2}\), the partial derivatives of \(\partial E(U)/\partial R_{2}^{ + }\) and \(\partial E(U)/\partial R_{2}^{ - }\) are calculated by Eq. (94).

Suppose \(i = 1,2,...,L\), \(E(U)\), we can replace Eq. (45) with \((A_{1} R_{1} + B_{1} R_{2} + C_{1} )/(A_{2} R_{1} + B_{2} R_{2} + C_{2} )\) and iteratively compute the partial derivatives of all outputs with respect to lower and upper bounds.

In view of this, the sensitivity coefficient \(S(R_{i} )\) can be calculated.

$$\left\{ \begin{gathered} \frac{\partial E(U)}{{\partial R_{2}^{ + } }} = \frac{{\int_{{R_{1}^{ - } }}^{{R_{1}^{ + } }} {\frac{{A_{1} R_{1} + B_{1} R_{2}^{ + } + C_{1} }}{{A_{2} R_{1} + B_{2} R_{2}^{ + } + C_{2} }} \times \frac{1}{{2\pi \sigma_{1} \sigma_{2} }}\exp - \left[ {\frac{{\left( {R_{1} - \mu_{1} } \right)^{2} }}{{2\sigma_{1}^{2} }} + \frac{{\left( {R_{2}^{ + } - \mu_{2} } \right)^{2} }}{{2\sigma_{2}^{2} }}} \right]} dR_{1} }}{{(\rho_{1} \rho_{2} )^{ - 1} }} - \frac{{\Im \rho_{1}^{ - 1} \frac{1}{{\sqrt {2\pi \sigma_{2}^{2} } }}\exp - \left[ {\frac{{\left( {R_{2}^{ + } - \mu_{2} } \right)^{2} }}{{2\sigma_{2}^{2} }}} \right]}}{{\left( {\rho_{1} \rho_{2} } \right)^{ - 2} }} \hfill \\ \frac{\partial E(U)}{{\partial R_{2}^{ - } }} = \frac{{\Im \rho_{1}^{ - 1} \frac{1}{{\sqrt {2\pi \sigma_{2}^{2} } }}\exp - \left[ {\frac{{\left( {R_{2}^{ - } - \mu_{2} } \right)^{2} }}{{2\sigma_{2}^{2} }}} \right]}}{{\left( {\rho_{1} \rho_{2} } \right)^{ - 2} }} - \frac{{\int_{{R_{1}^{ - } }}^{{R_{1}^{ + } }} {\frac{{A_{1} R_{1} + B_{1} R_{2}^{ + } + C_{1} }}{{A_{2} R_{1} + B_{2} R_{2}^{ + } + C_{2} }} \times \frac{1}{{2\pi \sigma_{1} \sigma_{2} }}\exp - \left[ {\frac{{\left( {R_{1} - \mu_{1} } \right)^{2} }}{{2\sigma_{1}^{2} }} + \frac{{\left( {R_{2}^{ + } - \mu_{2} } \right)^{2} }}{{2\sigma_{2}^{2} }}} \right]} dR_{1} }}{{\left( {\rho_{1} \rho_{2} } \right)^{ - 1} }} \hfill \\ \end{gathered} \right.$$
(95)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Du, Y., He, W. et al. Inference of evidence reasoning rule with Gaussian distribution reliability and its application in safety assessment. J Supercomput 81, 205 (2025). https://doi.org/10.1007/s11227-024-06648-y

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11227-024-06648-y

Keywords