Skip to main content

Advertisement

Log in

Opposition-based learning Harris hawks optimization with steepest convergence for engineering design problems

  • Research
  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

Harris hawks optimization (HHO) is a swarm intelligent algorithm that mimics the collective hunting strategy of Harris hawks. Although it has specific advantages over other algorithms in local exploitation for feasible solutions, the original HHO may perform poorly in balancing locally meticulous exploitation with globally exploratory search. This imbalanced behavior leads to a global impact, which may result in slow convergence, inaccuracy, or insufficient search coverage, and quickly fall into local optima. To this end, an improved opposition-based learning Harris hawks optimization with steepest convergence (OHHOS) is proposed to solve the optimization problems of continuous function and engineering problems. The opposition-based learning is very helpful in improving the quality of initial population as well as jumping out of local optima in the later iteration process, while the steepest convergence technique performs well in accelerating the convergence process and delving deeper into potential solutions. At the same time, the nonlinear energy factor is introduced to better balance the local and global search capabilities of the algorithm. Finally, the algorithm is compared with other heuristic algorithms on 29 CEC2017 benchmark functions and three typical engineering problems to verify the significant performance of the proposed method. The experimental results indicate that the newly proposed algorithm exhibits excellent performance in competition with the HHO as well as other recognized optimizers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Algorithm 1
Fig. 3
Fig. 4
Fig. 5
Algorithm 2
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Mao K, Pan QK, Pang X, Chai T (2014) A novel Lagrangian relaxation approach for a hybrid flowshop scheduling problem in the steelmaking-continuous casting process. Eur J Op Res 236(1):51–60, ISSN 0377-2217. https://doi.org/10.1016/j.ejor.2013.11.010. URL https://www.sciencedirect.com/science/article/pii/S0377221713009090

  2. Dhargupta S, Ghosh M, Mirjalili S, Sarkar R (2020) Selective opposition based grey wolf optimization. Expert Syst Appl 151:113389. ISSN 0957-4174. https://doi.org/10.1016/j.eswa.2020.113389. URL https://www.sciencedirect.com/science/article/pii/S095741742030213X

  3. Qasaimeh A, Masoud T, Sharie H (2015) Genetic algorithm optimization for multi-biogas mass transfer in hydrophobic polymer biocell. J Sust Bioenergy Syst 5:73–81. https://doi.org/10.4236/jsbs.2015.53007

    Article  Google Scholar 

  4. Pant M, Zaheer H, Garcia-Hernandez L, Abraham A (2020) Differential evolution: a review of more than two decades of research. Eng Appl Artif Intell 90:103479, ISSN 0952-1976. https://doi.org/10.1016/j.engappai.2020.103479. URL https://www.sciencedirect.com/science/article/pii/S095219762030004X

  5. Rudolph G (2012) Evolutionary Strategies, pp. 673–698. Springer Berlin Heidelberg, Berlin, Heidelberg. ISBN 978-3-540-92910-9. https://doi.org/10.1007/978-3-540-92910-9_22

  6. Yao X, Liu Y, Lin G (1999) Evolutionary programming made faster. IEEE Trans Evolut Comput 3(2):82–102. https://doi.org/10.1109/4235.771163

    Article  Google Scholar 

  7. Kirkpatrick S, Gelatt Jr CD, Vecchi M (1983) Optimization by simulated annealing. Science 220:671–680, 01. https://doi.org/10.1142/9789812799371_0035

  8. Rashedi E, Nezamabadi-pour H, Saryazdi S (2009) Gsa: a gravitational search algorithm. Inf Sci 179(13):2232–2248, ISSN 0020-0255.https://doi.org/10.1016/j.ins.2009.03.004. URL https://www.sciencedirect.com/science/article/pii/S0020025509001200. Special Section on High Order Fuzzy Sets

  9. Webster B, Bernhard P (2003) A local search optimization algorithm based on natural principles of gravitation. In: International Conference on Information and Knowledge Engineering, pp. 255–261, 01

  10. Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of ICNN’95 - International Conference on Neural Networks, volume 4, pp. 1942–1948 vol.4. https://doi.org/10.1109/ICNN.1995.488968

  11. Yang XS, Deb S (2009) Cuckoo search via lévy flights. In: 2009 World Congress on Nature and Biologically Inspired Computing (NaBIC), pp. 210–214. https://doi.org/10.1109/NABIC.2009.5393690

  12. Passino KM (2002) Biomimicry of bacterial foraging for distributed optimization and control. IEEE Control Syst Mag 22(3):52–67. https://doi.org/10.1109/MCS.2002.1004010

    Article  Google Scholar 

  13. Shirini K, Aghdasi Hadi S, Saeedvand S (2024) Multi-objective aircraft landing problem: a multi-population solution based on non-dominated sorting genetic algorithm-ii. J Supercomput 80:25283–25314, ISSN 1573-0484. https://doi.org/10.1007/s11227-024-06385-2. URL https://api.semanticscholar.org/CorpusID:271831793

  14. Shirini K, Aghdasi HS, Saeedvand S (2024) A comprehensive survey on multiple-runway aircraft landing optimization problem. Int J Aeronaut Space Sci. ISSN 2093-2480. https://doi.org/10.1007/s42405-024-00747-z. URL https://api.semanticscholar.org/CorpusID:270759059

  15. Taheri hajivand A, Shirini K, Samadi Gharehveran S (2024) Balancing time and cost in resource-constrained project scheduling using meta-heuristic approach. J Agric Mach 14(2):215–234. ISSN 2228-6829. https://doi.org/10.22067/jam.2023.81735.1157. URL https://jame.um.ac.ir/article_44124.html

  16. Shirini K, Taherihajivand A, Gharehveran SS (2023) A review of algorithms for solving the project scheduling problem with resource-constrained considering agricultural problems. Agric Mech 8(1):1–14

    Google Scholar 

  17. Keswani M (2024) A comparative analysis of metaheuristic algorithms in interval-valued sustainable economic production quantity inventory models using center-radius optimization. Decis Anal J 12:100508. ISSN 2772-6622. https://doi.org/10.1016/j.dajour.2024.100508. URL https://www.sciencedirect.com/science/article/pii/S2772662224001127

  18. Sattari MT, Shirini K, Javidan S (2024) Evaluating the efficiency of dimensionality reduction methods in improving the accuracy of water quality index modeling in qizil-uzen river using machine learning algorithms. Water Soil Manag Modell 4(2):89–104. ISSN 2783-2546. https://doi.org/10.22098/mmws.2023.12434.1241. URL https://mmws.uma.ac.ir/article_2154.html

  19. Gharehveran SS, Shirini K, Khavar SC, Mousavi SH, Abdolahi A (2024) Deep learning-based demand response for short-term operation of renewable-based microgrids. J Supercomput 80(18):26002–26035. https://doi.org/10.1007/s11227-024-06407-z

    Article  Google Scholar 

  20. Heidari AA, Mirjalili S, Faris H, Aljarah I, Mafarja M, Chen H (2019) Harris hawks optimization: algorithm and applications. Future Gener Comput Syst 97:849–872. ISSN 0167-739X. https://doi.org/10.1016/j.future.2019.02.028. URL https://www.sciencedirect.com/science/article/pii/S0167739X18313530

  21. Pandey AK, Jadoun VK, Sabhahit JN (2023) Real-time and day-ahead risk averse multi-objective operational scheduling of virtual power plant using modified harris hawk’s optimization. Electric Power Syst Res 220:109285, ISSN 0378-7796. https://doi.org/10.1016/j.epsr.2023.109285. URL https://www.sciencedirect.com/science/article/pii/S0378779623001748

  22. Xie Y, Gao W, Wang Y, Chen X, Ge S, Wang S (2022) Life prediction of underground structure by sulfate corrosion using harris hawks optimizing genetic programming. Eng Appl Artif Intell 115:105190, ISSN 0952-1976. https://doi.org/10.1016/j.engappai.2022.105190. URL https://www.sciencedirect.com/science/article/pii/S0952197622002883

  23. Gadekallu TR, Srivastava G, Liyanage M, Iyapparaja M, Chowdhary CL, Koppu S, Maddikunta PKR (2022) Hand gesture recognition based on a harris hawks optimized convolution neural network. Comput Electr Eng 100:107836, ISSN 0045-7906. https://doi.org/10.1016/j.compeleceng.2022.107836. URL https://www.sciencedirect.com/science/article/pii/S004579062200129X

  24. Çetinbaş İ, Tamyürek B, Demirtaş M (2021) Sizing optimization and design of an autonomous ac microgrid for commercial loads using harris hawks optimization algorithm. Energy Convers Manag 245:114562, ISSN 0196-8904. https://doi.org/10.1016/j.enconman.2021.114562. URL https://www.sciencedirect.com/science/article/pii/S019689042100738X

  25. Roy R, Mukherjee V, Singh RP (2022) Harris hawks optimization algorithm for model order reduction of interconnected wind turbines. ISA Transactions, 128:372–385. ISSN 0019-0578. https://doi.org/10.1016/j.isatra.2021.09.019. URL https://www.sciencedirect.com/science/article/pii/S0019057821005036

  26. Wang M, Zhao G, Wang S (2024) Hybrid random forest models optimized by sparrow search algorithm (ssa) and harris hawk optimization algorithm (hho) for slope stability prediction. Trans Geotech 48:101305, ISSN 2214-3912. https://doi.org/10.1016/j.trgeo.2024.101305. URL https://www.sciencedirect.com/science/article/pii/S2214391224001260

  27. Qiao L, Liu K, Xue Y, Tang W, Salehnia T (2024) A multi-level thresholding image segmentation method using hybrid arithmetic optimization and harris hawks optimizer algorithms. Expert Syst Appl 241:122316. ISSN 0957-4174. https://doi.org/10.1016/j.eswa.2023.122316. URL https://www.sciencedirect.com/science/article/pii/S095741742302818X

  28. Halawani HT, Mashraqi AM, Badr SK, Alkhalaf S (2023) Automated sentiment analysis in social media using harris hawks optimisation and deep learning techniques. Alexandria Eng J 80:433–443,. ISSN 1110-0168. https://doi.org/10.1016/j.aej.2023.08.062. URL https://www.sciencedirect.com/science/article/pii/S1110016823007561

  29. Jafari-Asl J, Seghier MEAB, Ohadi S, Correia J, Barroso J (2022) Reliability analysis based improved directional simulation using harris hawks optimization algorithm for engineering systems. Eng Fail Anal 135:106148. ISSN 1350-6307. https://doi.org/10.1016/j.engfailanal.2022.106148. URL https://www.sciencedirect.com/science/article/pii/S1350630722001224

  30. Liu Z, Fang Y, Liu L, and Ma S (2023) A multi-leader harris hawks optimizer with adaptive mutation and its application for modeling of silicon content in liquid iron of blast furnace. Math Comput Simul 213:466–514. ISSN 0378-4754. https://doi.org/10.1016/j.matcom.2023.06.021. URL https://www.sciencedirect.com/science/article/pii/S0378475423002756

  31. Kang H, Liu R, Yao Y, Yu F (2023) Improved harris hawks optimization for non-convex function optimization and design optimization problems. Math Comput Simul 204:619–639. ISSN 0378-4754. https://doi.org/10.1016/j.matcom.2022.09.010. URL https://www.sciencedirect.com/science/article/pii/S0378475422003767

  32. Song S, Wang P, Heidari AA, Zhao X, Chen H (2022) Adaptive harris hawks optimization with persistent trigonometric differences for photovoltaic model parameter extraction. Eng Appl Artif Intell 109:104608. ISSN 0952-1976. https://doi.org/10.1016/j.engappai.2021.104608. URL https://www.sciencedirect.com/science/article/pii/S0952197621004280

  33. Bardhan A, Kardani N, Alzo’ubi AK, Roy B, Samui P, Gandomi AH (2022) Novel integration of extreme learning machine and improved harris hawks optimization with particle swarm optimization-based mutation for predicting soil consolidation parameter. J Rock Mech Geotech Eng 14(5):1588–1608, ISSN 1674-7755. https://doi.org/10.1016/j.jrmge.2021.12.018. URL https://www.sciencedirect.com/science/article/pii/S1674775522000257

  34. Mohandas P, Devanathan ST (2021) Reconfiguration with dg location and capacity optimization using crossover mutation based harris hawk optimization algorithm (cmbhho). Appl Soft Comput 113:107982. ISSN 1568-4946. https://doi.org/10.1016/j.asoc.2021.107982. URL https://www.sciencedirect.com/science/article/pii/S1568494621009042

  35. Ayinla SL, Amosa TI, Ibrahim O, Rahman MS, Bahashwan AA, Mostafa MG, Yusuf AO (2024) Optimal control of dc motor using leader-based harris hawks optimization algorithm. Franklin Open 6:100058. ISSN 2773-1863. https://doi.org/10.1016/j.fraope.2023.100058. URL https://www.sciencedirect.com/science/article/pii/S277318632300052X

  36. Murlidhar BR, Nguyen H, Rostami J, Bui X, Armaghani DJ, Ragam P, Mohamad ET (2021) Prediction of flyrock distance induced by mine blasting using a novel harris hawks optimization-based multi-layer perceptron neural network. J Rock Mech Geotech Eng 13(6):1413–1427. ISSN 1674-7755. https://doi.org/10.1016/j.jrmge.2021.08.005. URL https://www.sciencedirect.com/science/article/pii/S1674775521001335

  37. Liu Z, Fang Y, Liu L, Ma S (2024) Dynamic harris hawks optimizer based on historical information and tournament strategy and its application in numerical optimization of blast furnace ingredients. Appl Soft Comput 164:111976. ISSN 1568-4946. https://doi.org/10.1016/j.asoc.2024.111976. URL https://www.sciencedirect.com/science/article/pii/S1568494624007506

  38. Tang B, Shiting C, Wang X, Yuan C, Zhu R (2024) Optimized operation strategy for energy storage charging piles based on multi-strategy hybrid improved harris hawk algorithm. Heliyon 10(10):e31525, ISSN 2405-8440. https://doi.org/10.1016/j.heliyon.2024.e31525. URL https://www.sciencedirect.com/science/article/pii/S240584402407556X

  39. Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE Trans Evol Comput 1(1):67–82. https://doi.org/10.1109/4235.585893

    Article  Google Scholar 

  40. Mahdavi S, Rahnamayan S, Deb K (2018) Opposition based learning: a literature review. Swarm Evol Comput 39:1–23, ISSN 2210-6502. https://doi.org/10.1016/j.swevo.2017.09.010. URL https://www.sciencedirect.com/science/article/pii/S2210650216304333

  41. Qu C, He W, Peng X, Peng X (2020) Harris hawks optimization with information exchange. Appl Math Modell 84:52–75, ISSN 0307-904X. https://doi.org/10.1016/j.apm.2020.03.024. URL https://www.sciencedirect.com/science/article/pii/S0307904X2030158X

  42. Jia H, Lang C, Oliva D, Song W, Peng X (2019) Dynamic harris hawks optimization with mutation mechanism for satellite image segmentation. Remote Sens, 11(12). ISSN 2072-4292. https://doi.org/10.3390/rs11121421. URL https://www.mdpi.com/2072-4292/11/12/1421

  43. Rahnamayan S, Tizhoosh HR, Salama MMA (2008) Opposition-based differential evolution. IEEE Trans Evol Comput 12(1):64–79. https://doi.org/10.1109/TEVC.2007.894200

  44. Yu X, WangYing X, Li C (2021) Opposition-based learning grey wolf optimizer for global optimization. Knowl Based Syst 226:107139. ISSN 0950-7051. https://doi.org/10.1016/j.knosys.2021.107139. URL https://www.sciencedirect.com/science/article/pii/S0950705121004020

  45. Fan Q, Huang H, Yang K, Zhang S, Yao L, Xiong Q (2021) A modified equilibrium optimizer using opposition-based learning and novel update rules. Expert Syst Appl 170:114575. ISSN 0957-4174. https://doi.org/10.1016/j.eswa.2021.114575. URL https://www.sciencedirect.com/science/article/pii/S0957417421000166

  46. Mirjalili S (2016) Sca: a sine cosine algorithm for solving optimization problems. Knowl Based Syst 96:120–133. ISSN 0950-7051. https://doi.org/10.1016/j.knosys.2015.12.022. URL https://www.sciencedirect.com/science/article/pii/S0950705115005043

  47. Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61, ISSN 0965-9978. https://doi.org/10.1016/j.advengsoft.2013.12.007. URL https://www.sciencedirect.com/science/article/pii/S0965997813001853

  48. Arora S, Singh S (2019) Butterfly optimization algorithm: a novel approach for global optimization. Soft Comput 23:715–734. URL https://api.semanticscholar.org/CorpusID:59615920

  49. Jain M, Singh V, Rani A (2019) A novel nature-inspired algorithm for optimization: Squirrel search algorithm. Swarm Evol Comput 44:148–175. ISSN 2210-6502. https://doi.org/10.1016/j.swevo.2018.02.013. URL https://www.sciencedirect.com/science/article/pii/S2210650217305229

  50. Shirini K, Aghdasi HS, Saeedvand S (2024) Modified imperialist competitive algorithm for aircraft landing scheduling problem. J Supercomput 80(10):13782–13812. https://doi.org/10.1007/s11227-024-05999-w

  51. Gupta S, Deep K (2019) A hybrid self-adaptive sine cosine algorithm with opposition based learning. Expert Syst Appl 119:210–230, ISSN 0957-4174. https://doi.org/10.1016/j.eswa.2018.10.050. URL https://www.sciencedirect.com/science/article/pii/S0957417418307164

  52. Shan W, He X, Liu H, Heidari AA, Wang M, Cai Z, Chen H (2023) Cauchy mutation boosted harris hawk algorithm: optimal performance design and engineering applications. J Comput Des Eng 10(2):503–526, 01. ISSN 2288-5048. https://doi.org/10.1093/jcde/qwad002

  53. Demšar J (2006) Statistical comparisons of classifiers over multiple data sets. J Mach Learn Res 7:1–30

    MathSciNet  Google Scholar 

  54. García S, Fernández A, Luengo J, Herrera F (2010) Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: experimental analysis of power. Inf Sci 180:2044–2064. URL https://api.semanticscholar.org/CorpusID:7649812

  55. Hussain K, Zhu W, Salleh MNM (2019) Long-term memory harris’ hawk optimization for high dimensional and optimal power flow problems. IEEE Access 7:147596–147616. https://doi.org/10.1109/ACCESS.2019.2946664

  56. Arora J (2004) Introduction to optimum design. Academic Press, second edition. ISBN 0080470254

  57. Mezura-Montes E, Coello CAC (2005) Useful infeasible solutions in engineering optimization with evolutionary algorithms. In: Alexander Gelbukh, Álvaro de Albornoz, and Hugo Terashima-Marín, (eds), Mexican International Conference on Artificial Intelligence, volume 3789, pp. 652–662, Berlin, Heidelberg. Springer. ISBN 978-3-540-31653-4

  58. Kamboj VK, Nandi A, Bhadoria A, Sehgal S (2020) An intensify harris hawks optimizer for numerical and engineering optimization problems. Appl Soft Comput 89:106018

  59. Sadollah A, Bahreininejad A, Eskandar H, Hamdi M (2013) Mine blast algorithm: a new population based algorithm for solving constrained engineering optimization problems. Appl Soft Comput 13(5):2592–2612

Download references

Acknowledgements

The authors wish to acknowledge the National Natural Science Foundation of China (Grant No. U1731128); the Natural Science Foundation of Liaoning Province (Grant No. 2019-MS-174); the Foundation of Liaoning Province Education Administration (Grant No. LJKZ0279); the Team of Artificial Intelligence Theory and Application for the financial support.

Author information

Authors and Affiliations

Authors

Contributions

Yanfen Zhao: Conceptualization of this study, Methodology, Software, Writing - original draft. Hao Liu: Conceptualization, Methodology, Investigation, Data curation, Software, Visualization, Writing - original draft, Supervision, Project administration, Funding acquisition.

Corresponding author

Correspondence to Hao Liu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Liu, H. Opposition-based learning Harris hawks optimization with steepest convergence for engineering design problems. J Supercomput 81, 148 (2025). https://doi.org/10.1007/s11227-024-06649-x

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11227-024-06649-x

Keywords