Skip to main content
Log in

A modified multi-step splitting iteration and its variants for computing PageRank

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

In recent years, the PageRank algorithm has garnered significant attention due to its crucial role in search engine technologies and its applications across various scientific fields. It is well-known that the power method is a classical method for computing PageRank. However, there is a pressing demand for alternative approaches that can address its limitations and enhance its efficiency. Specifically, the power method converges very slowly when the damping factor is close to 1. To address this challenge, this paper introduces a modified multi-step splitting iteration approach for accelerating PageRank computations. Furthermore, we present two variants for computing PageRank, which are variants of the modified multi-step splitting iteration approach, specifically utilizing the thick restarted Arnoldi and adaptively accelerated Arnoldi methods. We provide detailed discussions on the construction and theoretical convergence results of these two approaches. Extensive experiments using large test matrices demonstrate the significant performance improvements achieved by our proposed algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Algorithm 1
Algorithm 2
Algorithm 3
Algorithm 4
Algorithm 5
Algorithm 6
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The data and the code used during this study will be shared on reasonable request.

References

  1. Nooraei Abadeh M, Mirzaie M (2021) DiffPageRank: an efficient differential PageRank approach in MapReduce. J Supercomput 77(1):188–211. https://doi.org/10.1007/s11227-020-03265-3

    Article  Google Scholar 

  2. Langville AN, Meyer CD (2006) Google’s PageRank and beyond: the science of search engine rankings. Princeton University Press, Princeton. https://doi.org/10.1515/9781400830329

    Book  Google Scholar 

  3. Yu Q, Miao Z-K, Wu G, Wei Y-M (2012) Lumping algorithms for computing Google’s PageRank and its derivative, with attention to unreferenced nodes. Inf Retr 15(6):503–526. https://doi.org/10.1007/s10791-012-9183-2

    Article  Google Scholar 

  4. Yang F, Zhang H, Tao S, Fan X (2024) Simple hierarchical PageRank graph neural networks. J Supercomput 80(4):5509–5539. https://doi.org/10.1007/s11227-023-05666-6

    Article  Google Scholar 

  5. Miyata T (2018) A heuristic search algorithm based on subspaces for PageRank computation. J Supercomput 74(7):3278–3294. https://doi.org/10.1007/s11227-018-2383-9

    Article  Google Scholar 

  6. Langville AN, Meyer CD (2005) A survey of eigenvector methods for web information retrieval. SIAM Rev 47(1):135–161. https://doi.org/10.1137/S0036144503424786

    Article  MathSciNet  Google Scholar 

  7. Page L, Brin S, Motwani R, Winograd T (1999) The PageRank citation ranking: bringing order to the web. Technical report, Computer Science Department, Stanford University, Stanford. https://api.semanticscholar.org/CorpusID:1508503

  8. Langville AN, Meyer CD (2004) Deeper Inside PageRank. Internet Math 1(3):335–380. https://doi.org/10.1080/15427951.2004.10129091

    Article  MathSciNet  Google Scholar 

  9. Gleich DF, Gray AP, Greif C, Lau T (2010) An inner-outer iteration for computing PageRank. SIAM J Sci Comput 32(1):349–371. https://doi.org/10.1137/080727397

    Article  MathSciNet  Google Scholar 

  10. Gu C-Q, Xie F, Zhang K (2015) A two-step matrix splitting iteration for computing PageRank. J Comput Appl Math 278:19–28. https://doi.org/10.1016/j.cam.2014.09.022

    Article  MathSciNet  Google Scholar 

  11. Gu C-Q, Ma X-L (2014) Inner-outer iteration method modified with multi-step power for computing PageRank. Commun Appl Math Comput 4:454–460. https://doi.org/10.3969/j.issn.1006-6330.2014.04.009. (in Chinese)

    Article  Google Scholar 

  12. Gu C-Q, Jiang X-L, Nie Y, Chen Z-B (2018) A preprocessed multi-step splitting iteration for computing PageRank. Appl Math Comput 338:87–100. https://doi.org/10.1016/j.amc.2018.05.033

    Article  MathSciNet  Google Scholar 

  13. Wu G, Wei Y-M (2007) A Power–Arnoldi algorithm for computing PageRank. Numer Linear Algebra Appl 14(7):521–546. https://doi.org/10.1002/nla.531

    Article  MathSciNet  Google Scholar 

  14. Gu C-Q, Wang W-W (2017) An Arnoldi–Inout algorithm for computing PageRank problems. J Comput Appl Math 309:219–229. https://doi.org/10.1016/j.cam.2016.05.026

    Article  MathSciNet  Google Scholar 

  15. Dong Y-X, Gu C-Q, Chen Z-B (2017) An Arnoldi–Inout method accelerated with a two-stage matrix splitting iteration for computing PageRank. Calcolo 54(3):857–879. https://doi.org/10.1007/s10092-016-0211-2

    Article  MathSciNet  Google Scholar 

  16. Wu G, Zhang Y, Wei Y-M (2013) Accelerating the Arnoldi-type algorithm for the PageRank problem and the ProteinRank problem. J Sci Comput 57(1):74–104. https://doi.org/10.1007/s10915-013-9696-x

    Article  MathSciNet  Google Scholar 

  17. Tan X-Y (2017) A new extrapolation method for PageRank computations. J Comput Appl Math 313:383–392. https://doi.org/10.1016/j.cam.2016.08.034

    Article  MathSciNet  Google Scholar 

  18. Feng Y-H, You J-X, Dong Y-X (2022) An extrapolation iteration and its lumped type iteration for computing PageRank. Bull Iran Math Soc 48(5):2603–2620. https://doi.org/10.1007/s41980-021-00656-x

    Article  MathSciNet  Google Scholar 

  19. Wen C, Hu Q-Y, Shen Z-L (2023) An adaptively preconditioned multi-step matrix splitting iteration for computing PageRank. Numer Algorithms 92(2):1213–1231. https://doi.org/10.1007/s11075-022-01337-4

    Article  MathSciNet  Google Scholar 

  20. Tian Z, Liu Y, Zhang Y, Liu Z, Tian M (2019) The general inner-outer iteration method based on regular splittings for the PageRank problem. Appl Math Comput 356:479–501. https://doi.org/10.1016/j.amc.2019.02.066

    Article  MathSciNet  Google Scholar 

  21. Tian Z, Zhang Y, Wang J, Gu C (2021) Several relaxed iteration methods for computing PageRank. J Comput Appl Math 388:113295. https://doi.org/10.1016/j.cam.2020.113295

    Article  MathSciNet  Google Scholar 

  22. Tian Z, Liu Z, Dong Y (2022) The coupled iteration algorithms for computing PageRank. Numer Algorithms 89(4):1603–1637. https://doi.org/10.1007/s11075-021-01166-x

    Article  MathSciNet  Google Scholar 

  23. Gu X-M, Lei S-L, Zhang K, Shen Z-L, Wen C, Carpentieri B (2022) A Hessenberg-type algorithm for computing PageRank problems. Numer Algorithms 89(4):1845–1863. https://doi.org/10.1007/s11075-021-01175-w

    Article  MathSciNet  Google Scholar 

  24. Langville AN, Meyer CD (2004) Updating PageRank with iterative aggregation. In: Proceedings of the 13th International World Wide Web Conference on Alternate Track Papers & Posters. WWW Alt. ’04. Association for Computing Machinery, New York, NY, USA, pp 392–393. https://doi.org/10.1145/1013367.1013491

  25. Lin Y-Q, Shi X-H, Wei Y-M (2009) On computing PageRank via lumping the Google matrix. J Comput Appl Math 224(2):702–708. https://doi.org/10.1016/j.cam.2008.06.003

    Article  MathSciNet  Google Scholar 

  26. Dong Y-X, Feng Y-H, You J-X (2024) On computing HITS ExpertRank via lumping the hub matrix. Linear Multilinear Algebra 72(3):412–428. https://doi.org/10.1080/03081087.2022.2158995

    Article  MathSciNet  Google Scholar 

  27. Feng Y-H, Dong Y-X, You J-X (2022) A note on a minimal irreducible adjustment PageRank. Symmetry. https://doi.org/10.3390/sym14081640

    Article  Google Scholar 

  28. Morgan RB, Zeng M (2006) A harmonic restarted Arnoldi algorithm for calculating eigenvalues and determining multiplicity. Linear Algebra Appl 415(1):96–113. https://doi.org/10.1016/j.laa.2005.07.024

    Article  MathSciNet  Google Scholar 

  29. Wu K, Simon H (2000) Thick-restart Lanczos method for large symmetric eigenvalue problems. SIAM J Matrix Anal Appl 22(2):602–616. https://doi.org/10.1137/S0895479898334605

    Article  MathSciNet  Google Scholar 

  30. Sorensen DC (1992) Implicit application of polynomial filters in a k-step Arnoldi method. SIAM J Matrix Anal Appl 13(1):357–385. https://doi.org/10.1137/0613025

    Article  MathSciNet  Google Scholar 

  31. Lehoucq RB, Sorensen DC (1996) Deflation techniques for an implicitly restarted Arnoldi iteration. SIAM J Matrix Anal Appl 17(4):789–821. https://doi.org/10.1137/S0895479895281484

    Article  MathSciNet  Google Scholar 

  32. Yin J-F, Yin G-J, Ng M (2012) On adaptively accelerated Arnoldi method for computing PageRank. Numer Linear Algebra Appl 19(1):73–85. https://doi.org/10.1002/nla.789

    Article  MathSciNet  Google Scholar 

  33. Wen C, Huang T-Z, Shen Z-L (2017) A note on the two-step matrix splitting iteration for computing PageRank. J Comput Appl Math 315:87–97. https://doi.org/10.1016/j.cam.2016.10.020

    Article  MathSciNet  Google Scholar 

  34. Gu C-Q, Jiang X-L, Shao C-C, Chen Z-B (2018) A GMRES-Power algorithm for computing PageRank problems. J Comput Appl Math 343:113–123. https://doi.org/10.1016/j.cam.2018.03.017

    Article  MathSciNet  Google Scholar 

  35. Golub GH, Greif C (2006) An Arnoldi-type algorithm for computing page rank. BIT Numer Math 46:759–771

    Article  Google Scholar 

  36. Jia Z-X (1997) Refined iterative algorithms based on Arnoldi’s process for large unsymmetric eigenproblems. Linear Algebra Appl 259:1–23. https://doi.org/10.1016/S0024-3795(96)00238-8

    Article  MathSciNet  Google Scholar 

  37. Brin S, Page L (1998) The anatomy of a large-scale hypertextual Web search engine. Comput Netw ISDN Syst 30(1):107–117. https://doi.org/10.1016/S0169-7552(98)00110-X

    Article  Google Scholar 

Download references

Funding

This work was supported by National Natural Science Foundation of China (Grant Numbers 12001363, 72171170).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Xin Dong.

Ethics declarations

Conflict of interest

The authors declare no potential conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, GC., Dong, YX. & Feng, YH. A modified multi-step splitting iteration and its variants for computing PageRank. J Supercomput 81, 186 (2025). https://doi.org/10.1007/s11227-024-06669-7

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11227-024-06669-7

Keywords

Mathematics Subject Classification