Skip to main content

Advertisement

Log in

Aitken optimizer: an efficient optimization algorithm based on the Aitken acceleration method

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

While the optimization algorithm community boasts numerous members, the primary wellspring of inspiration largely stems from collective and social behaviors observed in nature. This paper introduces a new metaphor-free meta-heuristic algorithm called Aitken optimizer (ATK) based on the basic idea of solving groups of equations using iterative methods. ATK is based on the Aitken sequence, which accelerates the immobile point iteration method to improve the algorithm's convergence speed and solution accuracy and reduce the possibility of falling into local optimums. Taking inspiration from the Aitken acceleration method, the ATK integrates two essential rules, namely the Aitken acceleration method search mechanism and the random weighted exponential operator, into its entire search process, which are instrumental in further enhancing the exploration of optimal solutions. ATK was validated using three CEC benchmarks (CEC2017, CEC2020, and CEC2022), and its results were compared with those of three categories of existing optimization algorithms, as follows: (1) the most cited optimizers, including the grey wolf optimizer, whale optimization algorithm, and Harris Hawks optimization, (2) published high-performance algorithms, including BWO, FHO, NRBO, SGA, SCA, CPSOGSA, and KOA, and (3) high-performance optimizers, such as SaDE, JaDE, CJADE, IMODE, EBOwithCMAR, SHADE, LSHADE, AL-SHADE, and LSHADE-cnEpSin. Statistical analysis shows that ATK achieves a winning rate of up to 94.23% across 51 functions in the three test sets compared to 10 competing optimizers. When benchmarked against 9 state-of-the-art high-performance optimizers, ATK's winning rates on the CEC 2017, CEC 2020, and CEC 2022 test suites are 27.59%, 25%, and 66.67%, respectively, with Friedman mean rankings of 2, 3, and 1. The results indicate that ATK, as a high-performance optimizer, demonstrates superior global search capabilities in high-dimensional, non-convex, and multimodal problems, outperforming simpler optimization methods suited for low-dimensional or convex problems. This makes ATK particularly well suited for applications such as engineering design and neural network tuning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Data availability

No datasets were generated or analyzed during the current study.

References

  1. Okasha N, Alzo’ubi MAK, Mughieda O, Kewalramani M, Almasri AH (2024) A near-optimum multi-objective optimization approach for structural design. Ain Shams Eng J 15:102388. https://doi.org/10.1016/j.asej.2023.102388

    Article  Google Scholar 

  2. Guangyao C, Yangze L, Sihao L, Zhao X (2024) A novel gradient descent optimizer based on fractional order scheduler and its application in deep neural networks. Appl Math Model. https://doi.org/10.1016/j.apm.2023.12.018

    Article  MathSciNet  Google Scholar 

  3. Xu L (2015) Application of the Newton iteration algorithm to the parameter estimation for dynamical systems. J Comput Appl Math 288:33–43. https://doi.org/10.1016/j.cam.2015.03.057

    Article  MathSciNet  Google Scholar 

  4. Reeves C (2003) Genetic algorithms. In: Handbook of metaheuristics, pp 55–82. https://doi.org/10.1007/0-306-48056-5_3

  5. Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by simulated annealing. Science 220:671–680. https://doi.org/10.1126/science.220.4598.671

    Article  MathSciNet  Google Scholar 

  6. Dorigo M, Birattari M, Stutzle T (2006) Ant colony optimization. IEEE Comput Intell Mag 1:28–39. https://doi.org/10.1109/MCI.2006.329691

    Article  Google Scholar 

  7. Beni G, Wang J (1993) Swarm intelligence in cellular robotic systems. In: Robots and biological systems: towards a new bionics?, pp 703–712. https://doi.org/10.1007/978-3-642-58069-7_38

  8. Zaryab S, Manno AA, Martelli E (2022) SCR: a novel surrogate-based global optimization algorithm for constrained black-box problems. Comput Aided Chem Eng 51:1213–1218. https://doi.org/10.1016/B978-0-323-95879-0.50203-4

    Article  Google Scholar 

  9. Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of ICNN’95—International Conference on Neural Networks, vol 4, pp 1942–1948. https://doi.org/10.1109/ICNN.1995.488968.

  10. Liu J, Chen Y, Liu X, Zuo F, Zhou H (2024) An efficient manta ray foraging optimization algorithm with individual information interaction and fractional derivative mutation for solving complex function extremum and engineering design problems. Appl Soft Comput 150:111042. https://doi.org/10.1016/j.asoc.2023.111042

    Article  Google Scholar 

  11. Liu J, Hou Y, Li Y, Zhou H (2024) Advanced strategies on update mechanism of tree-seed algorithm for function optimization and engineering design problems. Expert Syst Appl 236:121312. https://doi.org/10.1016/j.eswa.2023.121312

    Article  Google Scholar 

  12. Tang Y, Zhou F (2023) An improved imperialist competition algorithm with adaptive differential mutation assimilation strategy for function optimization. Expert Syst Appl 211:118686. https://doi.org/10.1016/j.eswa.2022.118686

    Article  Google Scholar 

  13. Lavine B, White C, Davidson C (2020) Genetic algorithms for variable selection and pattern recognition. Refer Module Chem Mol Sci Chem Eng. https://doi.org/10.1016/B978-0-12-409547-2.14888-7

    Article  Google Scholar 

  14. Cai C, Yang C, Lu S, Gao G, Na J (2023) Human motion pattern recognition based on the fused random forest algorithm. Measurement 222:113540. https://doi.org/10.1016/j.measurement.2023.113540

    Article  Google Scholar 

  15. Cavallaro C, Cutello V, Pavone M, Zito F (2024) Machine learning and genetic algorithms: a case study on image reconstruction. Knowl Based Syst 284:111194. https://doi.org/10.1016/j.knosys.2023.111194

    Article  Google Scholar 

  16. Mu L, Wang Z, Wu D, Zhao L, Yin H (2022) Prediction and evaluation of fuel properties of hydrochar from waste solid biomass: machine learning algorithm based on proposed PSO–NN model. Fuel 318:123644. https://doi.org/10.1016/j.fuel.2022.123644

    Article  Google Scholar 

  17. Ong P, Zainuddin Z (2023) An optimized wavelet neural networks using cuckoo search algorithm for function approximation and chaotic time series prediction. Decis Analyt J 6:100188. https://doi.org/10.1016/j.dajour.2023.100188

    Article  Google Scholar 

  18. Ding G, Hou S (2024) CFRP drive shaft damage identification and localization based on FBG sensing network and GWO-BP neural networks. Opt Fiber Technol 82:103631. https://doi.org/10.1016/j.yofte.2023.103631

    Article  Google Scholar 

  19. Jamali B, Rasekh M, Jamadi F, Gandomkar R, Makiabadi F (2019) Using PSO-GA algorithm for training artificial neural network to forecast solar space heating system parameters. Appl Therm Eng 147:647–660. https://doi.org/10.1016/j.applthermaleng.2018.10.070

    Article  Google Scholar 

  20. Miguel J, Neves PMLA, Martins AS, do Nascimento MZ, Tosta TAA (2023) Analysis of neural networks trained with evolutionary algorithms for the classification of breast cancer histological images. Expert Syst Appl 231:120609. https://doi.org/10.1016/j.eswa.2023.120609

    Article  Google Scholar 

  21. Amin A, Sajid Iqbal AM, Hamza Shahbaz M (2024) Development of intelligent fault-tolerant control systems with machine learning, deep learning, and transfer learning algorithms: a review. Expert Syst Appl 238:121956. https://doi.org/10.1016/j.eswa.2023.121956

    Article  Google Scholar 

  22. Al-wesabi I, Zhijian F, Farh HMH, Dagal I, Al-Shammaa AA, Al-Shaalan AM et al (2024) Hybrid SSA-PSO based intelligent direct sliding-mode control for extracting maximum photovoltaic output power and regulating the DC-bus voltage. Int J Hydrogen Energy 51:348–370. https://doi.org/10.1016/j.ijhydene.2023.10.034

    Article  Google Scholar 

  23. Hong Y, Fu C, Merci B (2023) Optimization and determination of the parameters for a PID based ventilation system for smoke control in tunnel fires: comparative study between a genetic algorithm and an analytical trial-and-error method. Tunnel Undergr Space Technol 136:105088. https://doi.org/10.1016/j.tust.2023.105088

    Article  Google Scholar 

  24. Hasan MdM, Rana MS, Tabassum F, Pota HR, Md H, Roni K (2023) Optimizing the initial weights of a PID neural network controller for voltage stabilization of microgrids using a PEO-GA algorithm. Appl Soft Comput 147:110771. https://doi.org/10.1016/j.asoc.2023.110771

    Article  Google Scholar 

  25. Guo A, Wang Y, Guo L, Zhang R, Yu Y, Gao S (2023) An adaptive position-guided gravitational search algorithm for function optimization and image threshold segmentation. Eng Appl Artif Intell 121:106040. https://doi.org/10.1016/j.engappai.2023.106040

    Article  Google Scholar 

  26. Elloumi W, El Abed H, Abraham A, Alimi AM (2014) A comparative study of the improvement of performance using a PSO modified by ACO applied to TSP. Appl Soft Comput 25:234–241. https://doi.org/10.1016/j.asoc.2014.09.031

    Article  Google Scholar 

  27. Toaza B, Esztergár-Kiss D (2023) A review of metaheuristic algorithms for solving TSP-based scheduling optimization problems Image 1. Appl Soft Comput 148:110908. https://doi.org/10.1016/j.asoc.2023.110908

    Article  Google Scholar 

  28. Skinderowicz R (2022) Improving ant colony optimization efficiency for solving large TSP instances. Appl Soft Comput 120:108653. https://doi.org/10.1016/j.asoc.2022.108653

    Article  Google Scholar 

  29. Mahmoudi S, Lotfi S (2015) Modified cuckoo optimization algorithm (MCOA) to solve graph coloring problem. Appl Soft Comput 33:48–64. https://doi.org/10.1016/j.asoc.2015.04.020

    Article  Google Scholar 

  30. Hsu L-Y, Horng S-J, Fan P, Khan MK, Wang Y-R, Run R-S et al (2011) MTPSO algorithm for solving planar graph coloring problem. Expert Syst Appl 38:5525–5531. https://doi.org/10.1016/j.eswa.2010.10.084

    Article  Google Scholar 

  31. Agrawal J, Agrawal S (2015) Acceleration based particle swarm optimization for graph coloring problem. Procedia Comput Sci 60:714–721. https://doi.org/10.1016/j.procs.2015.08.223

    Article  Google Scholar 

  32. Tang J, Gong G, Peng N, Zhu K, Huang D, Luo Q (2024) An effective memetic algorithm for distributed flexible job shop scheduling problem considering integrated sequencing flexibility. Expert Syst Appl 242:122734. https://doi.org/10.1016/j.eswa.2023.122734

    Article  Google Scholar 

  33. Tavakkoli-Moghaddam R, Azarkish M, Sadeghnejad-Barkousaraie A (2011) A new hybrid multi-objective Pareto archive PSO algorithm for a bi-objective job shop scheduling problem. Expert Syst Appl 38:10812–10821. https://doi.org/10.1016/j.eswa.2011.02.050

    Article  Google Scholar 

  34. Verma H, Verma D, Tiwari PK (2021) A population based hybrid FCM-PSO algorithm for clustering analysis and segmentation of brain image. Expert Syst Appl 167:114121. https://doi.org/10.1016/j.eswa.2020.114121

    Article  Google Scholar 

  35. Gómez D, Rojas A (2016) An empirical overview of the no free lunch theorem and its effect on real-world machine learning classification. Neural Comput 28:216–228. https://doi.org/10.1162/NECO_a_00793

    Article  MathSciNet  Google Scholar 

  36. Abualigah L, Yousri D, Abd Elaziz M, Ewees AA, Al-qaness MAA, Gandomi AH (2021) Aquila optimizer: a novel meta-heuristic optimization algorithm. Comput Ind Eng 157:107250. https://doi.org/10.1016/j.cie.2021.107250

    Article  Google Scholar 

  37. Chou J-S, Truong D-N (2021) A novel metaheuristic optimizer inspired by behavior of jellyfish in ocean. Appl Math Comput 389:125535. https://doi.org/10.1016/j.amc.2020.125535

    Article  MathSciNet  Google Scholar 

  38. Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61. https://doi.org/10.1016/j.advengsoft.2013.12.007

    Article  Google Scholar 

  39. Mirjalili S (2019) Genetic algorithm. In: Evolutionary algorithms and neural networks: theory and applications, pp 43–55. https://doi.org/10.1007/978-3-319-93025-1_4

  40. Bilal M, Pant H, Zaheer L, Garcia-Hernandez A, Abraham A (2020) Differential evolution: a review of more than two decades of research. Eng Appl Artif Intell 90:103479. https://doi.org/10.1016/j.engappai.2020.103479

    Article  Google Scholar 

  41. Rashedi E, Nezamabadi-pour H, Saryazdi S (2009) GSA: a gravitational search algorithm. Inf Sci 179:2232–2248. https://doi.org/10.1016/j.ins.2009.03.004

    Article  Google Scholar 

  42. Bai J, Li Y, Zheng M, Khatir S, Benaissa B, Abualigah L et al (2023) A Sinh Cosh optimizer. Knowl Based Syst 282:111081. https://doi.org/10.1016/j.knosys.2023.111081

    Article  Google Scholar 

  43. Ayyarao Tummala SL, Ramakrishna VNSS, Elavarasan RM, Polumahanthi N, Rambabu M, Saini G et al (2022) War strategy optimization algorithm: a new effective metaheuristic algorithm for global optimization. IEEE Access 10:25073–25105. https://doi.org/10.1109/ACCESS.2022.3153493

    Article  Google Scholar 

  44. Dehghani M, Trojovská E, Trojovský P (2022) A new human-based metaheuristic algorithm for solving optimization problems on the base of simulation of driving training process. Sci Rep 12:9924. https://doi.org/10.1038/s41598-022-14225-7

    Article  Google Scholar 

  45. Rajwar K, Deep K, Das S (2023) An exhaustive review of the metaheuristic algorithms for search and optimization: taxonomy, applications, and open challenges. Artif Intell Rev 56:13187–13257. https://doi.org/10.1007/s10462-023-10470-y

    Article  Google Scholar 

  46. Han L Xiao S (2022) An improved adaptive genetic algorithm. SHS Web Conf 140:01044. https://doi.org/10.1051/shsconf/202214001044

    Article  Google Scholar 

  47. Morales-Castañeda B, Zaldívar D, Cuevas E, Maciel-Castillo O, Aranguren I, Fausto F (2019) An improved simulated annealing algorithm based on ancient metallurgy techniques. Appl Soft Comput 84:105761. https://doi.org/10.1016/j.asoc.2019.105761

    Article  Google Scholar 

  48. Nickabadi AM, Ebadzadeh M, Safabakhsh R (2011) A novel particle swarm optimization algorithm with adaptive inertia weight. Appl Soft Comput 11:3658–3670. https://doi.org/10.1016/j.asoc.2011.01.037

    Article  Google Scholar 

  49. Pornsing C, Sodhi MS, Lamond BF (2016) Novel self-adaptive particle swarm optimization methods. Soft Comput 20:3579–3593. https://doi.org/10.1007/s00500-015-1716-3

    Article  Google Scholar 

  50. Tanabe R, A Fukunaga (2013) Success-history based parameter adaptation for differential evolution. IEEE Cong Evolution Comput 2013:71–78. https://doi.org/10.1109/CEC.2013.6557555

    Article  Google Scholar 

  51. Tanabe R, Fukunaga AS (2014) Improving the search performance of SHADE using linear population size reduction. IEEE Cong Evolution Comput (CEC) 2014:1658–1665. https://doi.org/10.1109/CEC.2014.6900380

    Article  Google Scholar 

  52. Awad NH, Ali MZ, Suganthan PN (2017) Ensemble sinusoidal differential covariance matrix adaptation with Euclidean neighborhood for solving CEC2017 benchmark problems. IEEE Cong Evolution Comput (CEC) 2017:372–379. https://doi.org/10.1109/CEC.2017.7969336

    Article  Google Scholar 

  53. Kahraman H, Aras TS, Gedikli E (2020) Fitness-distance balance (FDB): a new selection method for meta-heuristic search algorithms. Knowl Based Syst 190:105169. https://doi.org/10.1016/j.knosys.2019.105169

    Article  Google Scholar 

  54. Kahraman H, Kati TM, Aras S, Taşci D (2023) Development of the natural survivor method (NSM) for designing an updating mechanism in metaheuristic search algorithms. Eng Appl Artif Intell. https://doi.org/10.1016/j.engappai.2023.106121

    Article  Google Scholar 

  55. Ozkaya B, Kahraman HT, Duman S, Guvenc U (2023) Fitness-distance-constraint (FDC) based guide selection method for constrained optimization problems. Appl Soft Comput 144:110479. https://doi.org/10.1016/j.asoc.2023.110479

    Article  Google Scholar 

  56. Ghasemian H, Ghasemian F, Vahdat-Nejad H (2020) Human urbanization algorithm: a novel metaheuristic approach. Math Comput Simul 178:1–15. https://doi.org/10.1016/j.matcom.2020.05.023

    Article  MathSciNet  Google Scholar 

  57. Goodarzimehr V, Shojaee S, Hamzehei-Javaran S, Talatahari S (2022) Special relativity search: a novel metaheuristic method based on special relativity physics. Knowl Based Syst 257:109484. https://doi.org/10.1016/j.knosys.2022.109484

    Article  Google Scholar 

  58. Jia H, Rao H, Wen C, Mirjalili S (2023) Crayfish optimization algorithm. Artif Intell Rev 56:1919–1979. https://doi.org/10.1007/s10462-023-10567-4

    Article  Google Scholar 

  59. Guan Z, Ren C, Niu J, Wang P, Shang Y (2023) Great wall construction algorithm: a novel meta-heuristic algorithm for engineer problems. Expert Syst Appl 233:120905. https://doi.org/10.1016/j.eswa.2023.120905

    Article  Google Scholar 

  60. Cheng M-Y, Sholeh MN (2023) Optical microscope algorithm: a new metaheuristic inspired by microscope magnification for solving engineering optimization problems. Knowl Based Syst 279:110939. https://doi.org/10.1016/j.knosys.2023.110939

    Article  Google Scholar 

  61. Abdel-Basset M, Mohamed R, Abouhawwash M (2024) Crested porcupine optimizer: a new nature-inspired metaheuristic. Knowl-Based Syst 284:111257. https://doi.org/10.1016/j.knosys.2023.111257

    Article  Google Scholar 

  62. Deng L, Liu S (2023) Snow ablation optimizer: a novel metaheuristic technique for numerical optimization and engineering design. Expert Syst Appl 225:120069. https://doi.org/10.1016/j.eswa.2023.120069

    Article  Google Scholar 

  63. Su H, Zhao D, Heidari AA, Liu L, Zhang X, Mafarja M et al (2023) RIME: a physics-based optimization. Neurocomputing 532:183–214. https://doi.org/10.1016/j.neucom.2023.02.010

    Article  Google Scholar 

  64. Zhao S, Zhang T, Cai L, Yang R (2024) Triangulation topology aggregation optimizer: a novel mathematics-based meta-heuristic algorithm for continuous optimization and engineering applications. Expert Syst Appl 238:121744. https://doi.org/10.1016/j.eswa.2023.121744

    Article  Google Scholar 

  65. Taheri A, RahimiZadeh K, Beheshti A, Baumbach J, Rao RV, Mirjalili S et al (2024) Partial reinforcement optimizer: an evolutionary optimization algorithm. Expert Syst Appl 238:122070. https://doi.org/10.1016/j.eswa.2023.122070

    Article  Google Scholar 

  66. Mahareek E, Cifci MA, El-Zohni H, Desuky AS (2023) Rhizostoma optimization algorithm and its application in different real-world optimization problems. Int J Electr Comput Eng 13:4317–4338. https://doi.org/10.11591/ijece.v13i4.pp4317-4338

    Article  Google Scholar 

  67. Ferahtia S, Houari A, Rezk H, Djerioui A, Machmoum M, Motahhir S et al (2023) Red-tailed hawk algorithm for numerical optimization and real-world problems. Sci Rep 13:12950. https://doi.org/10.1038/s41598-023-38778-3

    Article  Google Scholar 

  68. Zhao W, Wang L, Zhang Z, Mirjalili S, Khodadadi N, Ge Q (2023) Quadratic interpolation optimization (QIO): a new optimization algorithm based on generalized quadratic interpolation and its applications to real-world engineering problems. Comput Methods Appl Mech Eng 417:116446. https://doi.org/10.1016/j.cma.2023.116446

    Article  MathSciNet  Google Scholar 

  69. Ahmadianfar I, Heidari AA, Gandomi AH, Chu X, Chen H (2021) RUN beyond the metaphor: an efficient optimization algorithm based on Runge Kutta method. Expert Syst Appl 181:115079. https://doi.org/10.1016/j.eswa.2021.115079

    Article  Google Scholar 

  70. Le-Duc T, Nguyen Q-H, Nguyen-Xuan H (2020) Balancing composite motion optimization. Inform Sci 520:250–270. https://doi.org/10.1016/j.ins.2020.02.013

    Article  MathSciNet  Google Scholar 

  71. Wang K, Guo M, Dai C, Li Z, Wu C, Li J (2024) An effective metaheuristic technology of people duality psychological tendency and feedback mechanism-based inherited optimization algorithm for solving engineering applications. Expert Syst Appl 244:122732. https://doi.org/10.1016/j.eswa.2023.122732

    Article  Google Scholar 

  72. Barua S, Merabet A (2024) Lévy arithmetic algorithm: an enhanced metaheuristic algorithm and its application to engineering optimization. Expert Syst Appl 241:122335. https://doi.org/10.1016/j.eswa.2023.122335

    Article  Google Scholar 

  73. Wang K, Guo M, Dai C, Li Z (2023) A novel heuristic algorithm for solving engineering optimization and real-world problems: people identity attributes-based information-learning search optimization. Comput Methods Appl Mech Eng 416:116307. https://doi.org/10.1016/j.cma.2023.116307

    Article  Google Scholar 

  74. Fu S, Li K, Huang H, Ma C, Fan Q, Zhu Y (2024) Red-billed blue magpie optimizer: a novel metaheuristic algorithm for 2D/3D UAV path planning and engineering design problems. Artif Intell Rev 57:134. https://doi.org/10.1007/s10462-024-10716-3

    Article  Google Scholar 

  75. Matoušová I, Trojovský P, Dehghani M, Trojovská E, Kostra J (2023) Mother optimization algorithm: a new human-based metaheuristic approach for solving engineering optimization. Sci Rep 13:10312. https://doi.org/10.1038/s41598-023-37537-8

    Article  Google Scholar 

  76. Sörensen K (2015) Metaheuristics—the metaphor exposed. Int Trans Oper Res 22:3–18. https://doi.org/10.1111/itor.12001

    Article  MathSciNet  Google Scholar 

  77. Aranha C, Camacho Villalón CL, Campelo F, Dorigo M, Ruiz R, Sevaux M et al (2022) Metaphor-based metaheuristics, a call for action: the elephant in the room. Swarm Intell 16:1–6. https://doi.org/10.1007/s11721-021-00202-9

    Article  Google Scholar 

  78. Mirjalili S (2016) SCA: a sine cosine algorithm for solving optimization problems. Knowl Based Syst 96:120–133. https://doi.org/10.1016/j.knosys.2015.12.022

    Article  Google Scholar 

  79. Abualigah L, Diabat A, Mirjalili S, Abd Elaziz M, Gandomi AH (2021) The arithmetic optimization algorithm. Comput Methods Appl Mech Eng 376:113609. https://doi.org/10.1016/j.cma.2020.113609

    Article  MathSciNet  Google Scholar 

  80. Fika P, Mitrouli M (2017) Aitken’s method for estimating bilinear forms arising in applications. Calcolo 54:455–470. https://doi.org/10.1007/s10092-016-0193-0

    Article  MathSciNet  Google Scholar 

  81. Zhang Q, Hu Z, Hong N, Su Q (2024) A fixed point evolution algorithm based on expanded Aitken rapid iteration method for global numeric optimization. Math Comput Simul. https://doi.org/10.1016/j.matcom.2024.08.027

    Article  Google Scholar 

  82. Sowmya R, Premkumar M, Jangir P (2024) Newton-Raphson-based optimizer: a new population-based metaheuristic algorithm for continuous optimization problems. Eng Appl Artif Intell 128:107532. https://doi.org/10.1016/j.engappai.2023.107532

    Article  Google Scholar 

  83. Zhong C, Li G, Meng Z (2022) Beluga whale optimization: a novel nature-inspired metaheuristic algorithm. Knowl-Based Syst 251:109215. https://doi.org/10.1016/j.knosys.2022.109215

    Article  Google Scholar 

  84. Rather SA, Bala PS (2021) Constriction coefficient-based particle swarm optimization and gravitational search algorithm for image segmentation. In: Applying particle swarm optimization: new solutions and cases for optimized portfolios, pp 279–305. https://doi.org/10.1007/978-3-030-70281-6_15.

  85. Tian A-Q, Liu F-F, Lv H-X (2024) Snow geese algorithm: a novel migration-inspired meta-heuristic algorithm for constrained engineering optimization problems. Appl Math Model 126:327–347. https://doi.org/10.1016/j.apm.2023.10.045

    Article  Google Scholar 

  86. Azizi M, Talatahari S, Gandomi AH (2023) Fire Hawk optimizer: a novel metaheuristic algorithm. Artif Intell Rev 56:287–363. https://doi.org/10.1007/s10462-022-10173-w

    Article  Google Scholar 

  87. Abdel-Basset M, Mohamed R, Azeem SAA, Jameel M, Abouhawwash M (2023) Kepler optimization algorithm: a new metaheuristic algorithm inspired by Kepler’s laws of planetary motion. Knowl Based Syst 268:110454. https://doi.org/10.1016/j.knosys.2023.110454

    Article  Google Scholar 

  88. Mirjalili S, Lewis A (2016) The whale optimization algorithm. Adv Eng Softw 95:51–67. https://doi.org/10.1016/j.advengsoft.2016.01.008

    Article  Google Scholar 

  89. Heidari A, Mirjalili AS, Faris H, Aljarah I, Mafarja M, Chen H (2019) Harris hawks optimization: algorithm and applications. Futur Gener Comput Syst 97:849–872. https://doi.org/10.1016/j.future.2019.02.028

    Article  Google Scholar 

  90. Wu G, Mallipeddi R, Suganthan P (2016) Problem definitions and evaluation criteria for the CEC 2017 competition and special session on constrained single objective real-parameter optimization

  91. Liang J, Suganthan P, Qu B, Gong D, Yue C (2019) Problem definitions and evaluation criteria for the CEC 2020 special session on multimodal multiobjective optimization

  92. Luo W, Lin X, Li C, Yang S, Shi Y (2022) Benchmark functions for CEC 2022 competition on seeking multiple optima in dynamic environments. https://doi.org/10.48550/arXiv.2201.00523.

  93. Karaboga D, Akay B (2009) A comparative study of artificial bee colony algorithm. Appl Math Comput 214:108–132. https://doi.org/10.1016/j.amc.2009.03.090

    Article  MathSciNet  Google Scholar 

  94. Fu S, Huang H, Ma C, Wei J, Li Y, Fu Y (2023) Improved dwarf mongoose optimization algorithm using novel nonlinear control and exploration strategies. Expert Syst Appl 233:120904. https://doi.org/10.1016/j.eswa.2023.120904

    Article  Google Scholar 

  95. Wilcoxon F (1945) Individual comparisons by ranking methods. Biometrics Bull 1:80. https://doi.org/10.2307/3001968

    Article  Google Scholar 

  96. Morales-Castañeda B, Zaldívar D, Cuevas E, Fausto F, Rodríguez A (2020) A better balance in metaheuristic algorithms: Does it exist? Swarm Evol Comput 54:100671. https://doi.org/10.1016/j.swevo.2020.100671

    Article  Google Scholar 

  97. Dhiman G, Kumar V (2019) Seagull optimization algorithm: Theory and its applications for large-scale industrial engineering problems. Knowl Based Syst 165:169–196. https://doi.org/10.1016/j.knosys.2018.11.024

    Article  Google Scholar 

  98. Eskandar H, Sadollah A, Bahreininejad A, Hamdi M (2012) Water cycle algorithm—a novel metaheuristic optimization method for solving constrained engineering optimization problems. Comput Struct 110–111:151–166. https://doi.org/10.1016/j.compstruc.2012.07.010

    Article  Google Scholar 

  99. Talatahari S, Azizi M (2021) Chaos game optimization: a novel metaheuristic algorithm. Artif Intell Rev 54:917–1004. https://doi.org/10.1007/s10462-020-09867-w

    Article  Google Scholar 

  100. Mirjalili S (2015) How effective is the grey wolf optimizer in training multi-layer perceptrons. Appl Intell 43:150–161. https://doi.org/10.1007/s10489-014-0645-7

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (52165063), Guizhou Provincial Science and Technology Projects [(GCC [2022].006-1), Qiankehe support normal [2022] No.165, [2021] No.445, [2021] No.172, [2021] No.397, [2022] No.008. Qiankehe pingtai rencai-CXTD [2023] No.007, Qiankehe support normal [2023] No.431, No.348, and No.309, Qiankehe support normal [2024] No.093], the Natural Science Foundation of Chongqing (CSTB2022NSCQ-MSX1600), the Science and Technology Platform and Talent Team Building Plan Project of Guizhou Province [2023] No. 134. Finally, the authors would like to thank the Editor and the anonymous reviewers for their constructive comments and valuable suggestions to improve the quality of the article.

Author information

Authors and Affiliations

Authors

Contributions

YZ took part in investigation, methodology, writing—original draft, writing—revised and editing. HH involved in methodology, writing—review and editing. SF took part in investigation, writing—review and editing. LZ involved in writing—review and editing. All authors revised the manuscript.

Corresponding author

Correspondence to Haisong Huang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Fu, S., Zhang, L. et al. Aitken optimizer: an efficient optimization algorithm based on the Aitken acceleration method. J Supercomput 81, 264 (2025). https://doi.org/10.1007/s11227-024-06709-2

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11227-024-06709-2

Keywords